
Concurrent Non-malleable Commitments from
Any One-way Function

Huijia Lin Rafael Pass
Muthuramakrishnan Venkitasubramaniam

Cornell University,
{huijia,rafael,vmuthu}@cs.cornell.edu

Abstract. We show the existence of concurrent non-malleable commit-
ments based on the existence of one-way functions. Our proof of security
only requires the use of black-box techniques, and additionally provides
an arguably simplified proof of the existence of even stand-alone secure
non-malleable commitments.

1 Introduction

Often described as the “digital” analogue of sealed envelopes, commitment
schemes enable a sender to commit itself to a value while keeping it secret from
the receiver. For some applications, however, the most basic security guarantees
of commitments are not sufficient. For instance, the basic definition of commit-
ments does not rule out an attack where an adversary, upon seeing a commitment
to a specific value v, is able to commit to a related value (say, v−1), even though
it does not know the actual value of v. This kind of attack might have devas-
tating consequences if the underlying application relies on the independence of
committed values (e.g., consider a case in which the commitment scheme is used
for securely implementing a contract bidding mechanism). The state of affairs
is even worsened by the fact that many of the known commitment schemes are
actually susceptible to this kind of attack. In order to address the above con-
cerns, Dolev, Dwork and Naor (DDN) introduced the concept of non-malleable
commitments [6]. Loosely speaking, a commitment scheme is said to be non-
malleable if it is infeasible for an adversary to “maul” a commitment to a value
v into a commitment of a related value ṽ.

The first non-malleable commitment protocol was constructed by Dolev,
Dwork and Naor [6]. The security of their protocol relies on the existence of
one-way functions and requires O(log n) rounds of interaction, where n ∈ N is
the length of party identifiers (or alternatively, a security parameter). A more
recent result by Barak presents a constant-round protocol for non-malleable
commitments whose security relies on the existence of trapdoor permutations
and hash functions that are collision-resistant against sub-exponential sized cir-
cuits [2]. Even more recently, Pass and Rosen present a constant-round protocol,
assuming only collision resistant hash function secure against polynomial sized
circuits [12].



1.1 Concurrent Non-Malleable Commitments

The basic definition of non-malleable commitments only considers a scenario
in which two executions take place at the same time. A natural extension of
this scenario (already suggested in [6]) is one in which more than two invoca-
tions of the commitment protocol take place concurrently. In the concurrent
scenario, the adversary is receiving commitments to multiple values v1, . . . , vm,
while attempting to commit to related values ṽ1, . . . , ṽm. As argued in [6], non-
malleability with respect to two executions can be shown to guarantee individual
independence of any ṽi from any vj . However, it does not rule out the possibility
of an adversary creating joint dependencies between more than a single individ-
ual pair (see [6], Section 3.4.1 for an example in the context of non-malleable
encryption). Resolving this issue has been stated as a major open problem in [6].

Partially addressing this issue, Pass demonstrated the existence of commit-
ment schemes that remain non-malleable under bounded concurrent composi-
tion [10]. That is, for any (predetermined) polynomial p(·), there exists a non-
malleable commitment that remains secure as long as it is not executed more
than p(n) times, where n ∈ N is a security parameter. More recently, Pass
and Rosen [12] constructed a commitment scheme that remains non-malleable
also under an unbounded number of concurrent executions. Their construction
uses only a constant number of rounds and is based on the existence of (certi-
fied) claw-free permutations. The protocol—which is a variant of the protocol
of [11]—relies on the message-length technique of [10], which in turn relies on
the non-black box zero-knowledge protocol of Barak [1]. As such, it seems that
practical implementations of this approach currently are not within reach.

In contrast, the original construction of Dolev, Dwork and Naor (which is
only stand-alone secure) relied on the minimal assumption of one-way functions
and had a black-box security proof. Natural questions left open are thus:

Can concurrent non-malleable commitments be based solely on the exis-
tence of one-way functions?

Does there exist concurrent non-malleable commitments with black-box
proofs of security?

A partial answer to the second question was provided by Pass and Vaikun-
tanathan [13], demonstrating the existence of concurrent non-malleable com-
mitments with black-box security proofs; their construction, however, relies on
a new (and non-standard) hardness assumption with a strong non-malleability
flavor.1

1.2 Our Results

In this work, we fully resolve both of the above questions. Namely, we show the
following theorem using only black-box techniques.
1 More precisely, they assume the existence of, so called, adaptive one-way permuta-

tions—namely permutations which remain one-way even when the adversary has
access to an inversion oracle.



Main Theorem If one-way functions exist, then there exists a statistically-binding
commitment scheme that is concurrent non-malleable.

Our protocol, which is a variant of the protocol of [6] (and in particular relies
on the same scheduling techniques as in [6]), uses O(n) number of communi-
cation rounds. Moreover, it seems that by relying on specific (number theo-
retic) hardness assumptions (and appropriate Σ-protocols [4]), one can obtain
an “implementable” instantiation of our protocol (without going through Cook’s
reductions).

Additional results. All previous constructions of non-malleable commitments
require complex and subtle proofs. As an additional contribution, our protocol
and its proof provide the arguably simplest proof of existence of non-malleable
commitments (let alone the question of concurrency); more precisely, it provides
a new (and arguably simpler) proof of the feasibility result of [6].

Furthermore, by relying on the concurrent security of our protocol, we also
obtain a simple (and self-contained) proof of the existence of log n-round (stand-
alone secure) non-malleable commitment schemes based on only the existence of
one-way functions. As far as we know, a complete proof of this statement (which
appeared only with a proof sketch in [6]) has never appeared before.

Finally, we mention that our protocols satisfy a notion of non-malleability
called strict (as opposed to liberal) non-malleability—this notion, which was
defined (but not achieved) in [6], requires simulation to be performed by a strict
polynomial-time machine (as opposed to an expected polynomial-time machine).
Our results provide the first construction of strictly non-malleable commitments
based on one-way functions, or using a black-box security proof.

1.3 Overview

Section 2 contains basic notation and definitions of commitment schemes and
concurrent non-malleability. In Section 3, we present our O(n)-round commit-
ment scheme, and in Section 4, we prove that the commitment scheme is con-
current non-malleable. In Section 5, we additionally provide the construction of
a O(log n)-round (stand-alone secure) non-malleable commitment scheme based
on any O(n)-round concurrent non-malleable commitment scheme.

2 Definitions and Notations

We let N denote the set of all integers. For any integer m ∈ N , denote by [m]
the set {1, 2, . . . ,m}. For any x ∈ {0, 1}∗, we let |x| denote the size of x (i.e., the
number of bits used in order to write it). For two machines M,A, we let MA(x)
denote the output of machine M on input x and given oracle access to A. The
term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function ν(·) from non-negative
integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.



2.1 Witness Relations

We recall the definition of a witness relation for an NP language [8].

Definition 1 (Witness relation). A witness relation for a language L ∈ NP is
a binary relation RL that is polynomially bounded, polynomial time recognizable
and characterizes L by L = {x : ∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also
let RL(x) denote the set of witnesses for the membership x ∈ L, i.e., RL(x) =
{y : (x, y) ∈ L}. In the following, we assume a fixed witness relation RL for each
language L ∈ NP.

2.2 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing
machines) [9] and arguments (a.k.a computationally-sound proofs) [3]. Given a
pair of interactive Turing machines, P and V , we denote by 〈P, V 〉(x) the random
variable representing the (local) output of V when interacting with machine P
on common input x, when the random input to each machine is uniformly and
independently chosen.

Definition 2 (Interactive Proof System). A pair of interactive machines
〈P, V 〉 is called an interactive proof system for a language L if for every proba-
bilistic polynomial time machine (PPT) V there is a negligible function ν(·) such
that the following two conditions hold :

– Completeness: For every x ∈ L, Pr [〈P, V 〉(x) = 1] = 1
– Soundness: For every x 6∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ 1
ν(|x|)

In case that the soundness condition is required to hold only with respect to a
computationally bounded prover, the pair 〈P, V 〉 is called an interactive argument
system.

Special-sound proofs. A 3-round public-coin interactive proof for the language
L ∈ NP with witness relation RL is special-sound with respect to RL, if for any
two transcripts (α, β, γ) and (α′, β′, γ′) such that the initial messages α, α′ are
the same but the challenges β, β′ are different, there is a deterministic procedure
to extract the witness from the two transcripts and runs in polynomial time.
Special-sound WI proofs for languages in NP can be based on the existence
of non-interactive commitment schemes, which in turn can be based on one-
way permutations. Assuming only one-way functions, 4-round special-soundWI
proofs for NP exist.2 For simplicity, we use 3-round special-sound proofs in our
protocol though our proof works also with 4-round proofs.
2 A 4-round protocol is special sound if a witness can be extracted from any two

transcripts (τ, α, β, γ) and (τ ′, α′, β′, γ′) such that τ = τ ,α = α′ and β 6= β′.



2.3 Indistinguishability

Definition 3 ((Computational) Indistinguishability). Let X and Y be
countable sets. Two ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to
be computationally indistinguishable over x ∈ X, if for every probabilistic “distin-
guishing” machine D whose running time is polynomial in its first input, there
exists a negligible function ν(·) so that for every x ∈ X, y ∈ Y :

|Pr [a← Ax,y : D(x, y, a) = 1]− Pr [b← Bx,y : D(x, y, b) = 1]| < ν(|x|)

2.4 Witness Indistinguishability

An interactive proof is said to be witness indistinguishable (WI) if the verifier’s
output is “computationally independent” of the witness used by the prover for
proving the statement. In this context, we focus on languages L ∈ NP with a
corresponding witness relation RL. Namely, we consider interactions in which
on common input x the prover is given a witness in RL(x). By saying that the
output is computationally independent of the witness, we mean that for any two
possible NP-witnesses that could be used by the prover to prove the statement
x ∈ L, the corresponding outputs are computationally indistinguishable.

Definition 4 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive
proof system for a language L ∈ NP. We say that 〈P, V 〉 is
witness-indistinguishable for RL, if for every probabilistic polynomial-time inter-
active machine V ∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L, such that

w1
x, w2

x ∈ RL(x) for every x ∈ L, the probability ensembles
{〈P (w1

x), V ∗(z)〉(x)}x∈L,z∈{0,1}∗ and {〈P (w2
x), V ∗(z)〉(x)}x∈L,z∈{0,1}∗ are com-

putationally indistinguishable over x ∈ L.

2.5 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to com-
mit itself to a value while keeping it secret from the receiver (this property is
called hiding). Furthermore, the commitment is binding, and thus in a later stage
when the commitment is opened, it is guaranteed that the “opening” can yield
only a single value determined in the committing phase. In this work, we con-
sider commitment schemes that are statistically-binding, namely while the hiding
property only holds against computationally bounded (non-uniform) adversaries,
the binding property is required to hold against unbounded adversaries. More
precisely, a pair of PPT machines 〈C,R〉 is said to be a commitment scheme if
the following two properties hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that,
the following ensembles are computationally indistinguishable over {0, 1}n.
– {staR∗

〈C,R〉(v1, z)}v1,v2∈{0,1}n,n∈N,z∈{0,1}∗

– {staR∗

〈C,R〉(v2, z)}v1,v2∈{0,1}n,n∈N,z∈{0,1}∗



where staR∗

〈C,R〉(v, z) denotes the random variable describing the output of
R∗ after receiving a commitment to v using 〈C,R〉.

Statistical binding: Informally, the statistical-binding property asserts that,
with overwhelming probability over the coin-tosses of the receiver R, the
transcript of the interaction fully determines the value committed to by the
sender. We refer to [8] for more details.

2.6 Concurrent Non-Malleable Commitments

Our definition of concurrent non-malleable commitments is very similar to that
of [11], but different in two aspects: first, our definition of non-malleability is
w.r.t identities (in analogy with DDN [6])3; second, our definition considers not
only the values the adversary commits to, but also the view of the adversary.4

Let 〈C,R〉 be a commitment scheme, and let n ∈ N be a security parameter.
Consider man-in-the-middle adversaries that are participating in left and right
interactions in which m = poly(n) commitments take place. We compare be-
tween a man-in-the-middle and a simulated execution. In the man-in-the-middle
execution, the adversary A is simultaneously participating in m left and right
interactions. In the left interactions the man-in-the-middle adversary A interacts
with C receiving commitments to values v1, . . . , vm, using identities id1, . . . , idm

of its choice. In the right interaction A interacts with R attempting to commit
to a sequence of related values ṽ1, . . . , ṽm, again using identities of its choice
ĩd1, . . . , ĩdm. If any of the right commitments are invalid, or undefined, its value
is set to ⊥. For any i such that ĩdi = idj for some j, set ṽi = ⊥—i.e., any commit-
ment where the adversary uses the same identity as one of the honest committers
is considered invalid. Let mimA

〈C,R〉(v1, . . . , vm, z) denote a random variable that
describes the values ṽ1, . . . , ṽm and the view of A, in the above experiment.

In the simulated execution, a simulator S directly interacts with R. Let
simS

〈C,R〉(1
n, z) denote the random variable describing the values ṽ1, . . . , ṽm com-

mitted to by S, and the output view of S; again, whenever view contains a right
interaction i where the identity is the same as any of the left interactions, ṽi is
set to ⊥.

Definition 5. A commitment scheme 〈C,R〉 is said to be concurrent
non-malleable (with respect to commitment) if for every polynomial p(·), and
every probabilistic polynomial-time man-in-the-middle adversary A that partic-
ipates in at most m = p(n) concurrent executions, there exists a probabilistic

3 That is, we disallow even copying of commitment as long as the adversary uses
a different identity (than all the committers he receives commitments from). In
contrast, [11] defined non-malleability w.r.t content; i.e., the adversary allowed copy
commitments. This difference is inconsequential as any commitment non-malleable
w.r.t content can be turned into one that is non-malleable w.r.t identities, and vice
versa.

4 This point is particularly important when considering our definition w.r.t compos-
ability; see Proposition 1 and Section 5.



polynomial time simulator S such that the following ensembles are computation-
ally indistinguishable over {0, 1}n:{

mimA
〈C,R〉(v1, . . . , vm, z)

}
v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗{

simS
〈C,R〉(1

n, z)
}

v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗

We also consider relaxed notions of concurrent non-malleability: one-many, many-
one and one-one secure non-malleable commitments. In a one-one (i.e., a stand-
alone secure) non-malleable commitment, we consider only adversaries A that
participate in one left and one right interaction; in one-many, A participates in
one left and many right, and in many-one, A participates in many left and one
right.

Dolev, Dwork and Naor [6] argued that one-one commitments are also many-
one secure. Pass and Rosen [11] additionally showed that one-many
non-malleability implies (many-many) concurrent non-malleability if the com-
mitment protocol is “natural”. Given our stronger definition, which also con-
siders the view of the adversary, we prove that any protocol that is one-many
non-malleable is also concurrent non-malleable. Namely,

Proposition 1. Let 〈C,R〉 be a one-many concurrent non-malleable commit-
ment. Then, 〈C,R〉 is also a concurrent non-malleable commitment.

Proof. Let A be a man-in-the-middle adversary that participates in at most m =
p(n) concurrent executions. Below, we provide a simulator S for A. S proceeds
as follows on input 1n and z. S incorporates A(z) and internally emulates all the
left interactions for A by simply honestly committing to the string 0n. Messages
from the right interactions are instead forwarded externally. Finally S outputs
the view of A.

We show that the values that S commits to are indistinguishable from the
values that A commits to. Suppose, for contradiction, that this is not the case.
Then, there exists a polynomial-time distinguisher D and a polynomial p(n) such
that for infinitely many n, there exist strings v1, . . . , vm ∈ {0, 1}n, z ∈ {0, 1}∗
such that D distinguishes mimA

〈C,R〉(v1, . . . , vm, z) and staS
〈C,R〉(1

n, z) with proba-
bility 1

p(n) . Fix a generic n for which this happens. Consider the hybrid simulator
Si that on input 1n, z′ = v1, . . . , vm, z, proceeds just as S, with the exception
that in left interactions j ≤ i, it instead commits to vj . It directly follows that
mimA

〈C,R〉(v1, . . . , vm, z) = staSm

〈C,R〉(1
n, z′) and staS

〈C,R〉(1
n, z) = staS0

〈C,R〉(1
n, z′).

By a standard hybrid argument there exists an i ∈ [m] such that∣∣∣Pr
[
a← sta

Si−1

〈C,R〉(1
n, z′) :D(1n, z′, a) = 1

]
− Pr

[
b← staSi

〈C,R〉(1
n, z′) : D(1n, z′, b) = 1

]∣∣∣ ≥ 1
p(n)m

Note that the only difference between the executions by Si−1(1n, z′) and
Si(1n, z′) is that in the former A receives a commitment to 0n in session i,



whereas in the latter it receives a commitment to vi. Consider the one-many
adversary Ã that on input z̃ = z′, n, i executes Si−1(1n, z′) with the excep-
tion that the i’th left interaction is forwarded externally. Consider, the function
reconstruct that on input mimÃ

com(0n, z̃), i.e. values v′1, . . . , v
′
m, and the view of

Ã, reconstructs the view view of A in the emulation by Ã, and sets ṽi = v′1 if
A did not copy the identity of any of the left interactions, and ⊥ otherwise, and
finally outputs ṽ1, . . . , ṽm, view. By construction, it follows that

reconstruct(mimÃ
〈C,R〉(0

n, z̃)) = sta
Si−1

〈C,R〉(1
n, z′)

reconstruct(mimÃ
〈C,R〉(vi, z̃)) = staSi

〈C,R〉(1
n, z′)

Since reconstruct is polynomial-time computable, this contradicts the one-many
non-malleability of 〈C,R〉.

3 The Protocol

Our protocol is based on Feige-Shamir’s zero-knowledge protocol [7] while relying
on the message scheduling technique of Dolev, Dwork and Naor[6]. For simplicity
of exposition, our description below relies on the existence of one-way functions
with efficiently recognizable range, but the protocol can be easily modified to
work with any arbitrary one-way function (by simply providing a witness hiding
proof that an element is in the range of the one-way function). The protocol
proceeds in the following three stages on common input the identity id ∈ {0, 1}l
of the committer, and security parameter n.

1. In Stage 1, the Receiver picks a random string r ∈ {0, 1}n, and sends its
image s = f(r) through a one-way function f with an efficiently recognizable
range to the Committer. The Committer checks that s is in the range of f
and aborts otherwise.

2. In Stage 2, the Committer sends c = com(v), where com(·) is any commit-
ment scheme that is statistically-binding.

3. In Stage 3, the Committer proves that c is a valid commitment for v or s
is in the image set of f . This is proved by 4l invocations of a special-sound
WI proof where the messages are scheduled based on the id (very similar to
the scheduling presented in [6]). More precisely, there are l rounds, where in
round i, the schedule designidi

is followed by design1−idi
(See Figure 1).

We remark that the scheduling (essentially identical to [6]) in Stage 3 of the
protocol is the key in achieving concurrent non-malleability. Loosely speaking,
the purpose of the scheduling is to guarantee that for each of the commitments
that a man-in-the-middle adversary gives, there exists a point at which the
adversary cannot answer the challenge from the receiver simply by “mauling”
the commitments on the left (provided that the identity of the commitment is
different from any of the commitments on the left).

One important difference between our protocol and the protocol of [6] is that
the designs we use consist of two three-round protocols, whereas the protocol in



[6] uses more rounds; this makes the analysis clearer. An additional simplification
is the use of only WI proofs (instead of zero-knowledge proofs as in [6]).

design0 design1

γ2

β2

α2

γ1

β1

α1

γ2

β2

γ1

β1

α1

α2

Fig. 1. Description of the schedules used in Stage 3 of the protocol

Claim 1 〈C,R〉 is a statistically-binding commitment scheme.

Proof. We show that the 〈C,R〉 scheme satisfies the binding and hiding proper-
ties.

Protocol ConcNMCom

Common Input: An identifier id ∈ {0, 1}l.
Auxiliary Input for Committer: A string v ∈ {0, 1}n.
Stage 1:

R uniformly chooses r ∈ {0, 1}n.
R → C: s = f(r).
C aborts if s not in the range of f .

Stage 2:
C uniformly chooses r′ ∈ {0, 1}poly(n).
C → R: c = com(v, r′).

Stage 3:

C → R: 4l special-sound WI proofs of the statement
either there exists values v, r′ s.t c = com(v, r′)
or there exists a value r s.t s = f(r)

with verifier query of length 2n, in the following schedule:
For j = 1 to l do: Execute designidj

followed by Execute design1−idj

Fig. 2. Non-Malleable String Commitment Scheme 〈C, R〉

Binding: The binding property follows directly from the binding property of
com.

Hiding: The hiding property essentially follows from the hiding property of com
and the fact that Stage 3 of the protocol is WI (since WI proofs are closed



under concurrent composition [7]). For completeness, we provide the proof.
We show that any adversary R∗ that violates the hiding property of 〈C,R〉
can be used to violate the hiding property of com. More precisely, given any
adversary R∗ (without loss of generality, deterministic) that distinguishes
a commitment made using 〈C,R〉, we construct a machine R′ that distin-
guishes a commitment made using com. Let s be the first message sent by
R∗. R′ on auxiliary-input a “fake” witness r such that s = f(r), proceeds as
follows. It internally incorporates R∗ and forwards the external commitment
made using com to R∗ in Stage 2. In Stage 3, R′ gives WI proofs using
the “fake witness” r. Finally, it outputs whatever R∗ outputs. From theWI
property of Stage 3, it follows that R′ distinguishes the commitment made
using com, if R∗ distinguishes the commitment made using 〈C,R〉.

4 Proof of Security

Theorem 1 〈C,R〉 is one-many concurrent non-malleable.

Proof: Let A be a man-in-the-middle adversary that participates in one execution
in the left and many executions in the right. We construct a simulator S such
that the following ensembles are computationally indistinguishable over {0, 1}∗.{

mimA
〈C,R〉(v, z)

}
v∈{0,1}n,n∈N,z∈{0,1}∗{

simS
〈C,R〉(1

n, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

The simulator S on input (1n, z) proceeds as follows. S incorporates A(z) and
internally emulates the left interaction by honestly committing to the string 0n.
Messages in the right interactions are instead forwarded externally. Finally, S
outputs the view of A. We show that the values that S commits to combined
with the output view are indistinguishable from the values that A commits
to combined with its view. Since S emulates the left interaction by honestly
committing to 0n, this is equivalent to showing that{

mimA
〈C,R〉(v, z)

}
v∈{0,1}n,n∈N,z∈{0,1}∗

≈
{

mimA
〈C,R〉(0

n, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

Towards this goal, we define a new commitment scheme 〈Ĉ, R̂〉 (much like the
adaptor scheme in DDN [6]), which is a variant of 〈C,R〉 where the receiver can
ask for an arbitrary number of special-sound WI designs in Stage 3. Further-
more, 〈Ĉ, R̂〉 does not have a fixed scheduling in Stage 3; the receiver instead
gets to choose which design to execute in each iteration (by sending bit i to
select designi). Note that, clearly, any execution of 〈C,R〉 can be emulated by
an execution of 〈Ĉ, R̂〉 by simply requesting the appropriate designs.

Using the same proof as in Claim 1, it follows that 〈Ĉ, R̂〉 is hiding, i.e.

Lemma 1 For every (expected) PPT machine M ,{
staM

〈Ĉ,R̂〉(v, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗
≈

{
staM

〈Ĉ,R̂〉(0
n, z)

}
v∈{0,1}n,n∈N,z∈{0,1}∗



Below, in Lemma 2, we show that for every adversary A, there exists an
expected non-uniform PPT machine R∗ whose output, upon receiving a com-
mitment using 〈Ĉ, R̂〉 to v, is indistinguishable from the view and the values com-
mitted to by A(z) when receiving a commitment to v using 〈C,R〉; by the hiding
property of 〈Ĉ, R̂〉 we then conclude that mimA

〈C,R〉(v, z) and mimA
〈C,R〉(0

n, z) are
indistinguishable. On a high-level, R∗ will emulate an execution of 〈C,R〉 for
A (by requesting the appropriate design in 〈Ĉ, R̂〉) and then will attempt to
extract the values committed to by A. In fact, it suffices for R∗ to extract only
the values committed to after the left execution starts (as all values committed
to before-hand can be non-uniformly given to R∗).

Let Γ (A, z) denote the distribution of all joint views τ of A and the receivers
in the right, such that A sends its first message in the left interaction directly
after receiving the messages in τ . Let the function Z : {0, 1}∗×{0, 1}∗ → {0, 1}∗
be such that, Z(z, τ) = z‖τ‖ṽ1‖ . . . ‖ṽ` where ṽ1 . . . ṽ`, ` ∈ [m] are the values
committed to by A(z) in τ (using com).

The main technical content of Theorem 1 is in proving the following lemma.

Lemma 2 For every PPT adversary A, there exists an expected PPT adversary
R∗ such that the following ensembles are indistinguishable over {0, 1}∗.

–
{

τ ← Γ (A, z), z′ ← Z(z, τ) : staR∗

〈Ĉ,R̂〉(v, z′)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

–
{

mimA
〈C,R〉(v, z)

}
v∈{0,1}n,n∈N,z∈{0,1}∗

Before proceeding to the proof of lemma 2, note that by lemma 1, it holds that
the following ensembles are indistinguishable

–
{

staR∗

〈Ĉ,R̂〉(v, z′)
}

v∈{0,1}n,n∈N,z,τ,z′∈{0,1}∗

–
{

staR∗

〈Ĉ,R̂〉(0
n, z′)

}
v∈{0,1}n,n∈N,z,τ,z′∈{0,1}∗

It thus follows that the following ensembles also are indistinguishable

–
{

τ ← Γ (A, z), z′ ← Z(z, τ) : staR∗

〈Ĉ,R̂〉(v, z′)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

–
{

τ ← Γ (A, z), z′ ← Z(z, τ) : staR∗

〈Ĉ,R̂〉(0
n, z′)

}
v∈{0,1}n,n∈N,z∈{0,1}∗

By lemma 2, we thus conclude that the following ensembles are indistinguishable,

–
{

mimA
〈C,R〉(v, z)

}
v∈{0,1}n,n∈N,z∈{0,1}∗

–
{

mimA
〈C,R〉(0

n, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

which concludes the proof of theorem 1.



Description of R∗

Input: R∗ receives auxiliary input z′ = z‖τ‖ṽ1‖ . . . ‖ṽ`.
Procedure: R∗ interacts externally as a receiver using 〈Ĉ, R̂〉. Internally it incorpo-
rates A(z) and emulates a one-many man-in-the-middle execution by simulating all
right receivers and emulating the left 〈C, R〉 interaction by requesting the appropriate
designs expected by A(z) using 〈Ĉ, R̂〉 from outside.

Main Execution Phase: Feed the view in τ to A and all right receivers. Emulate
all the interactions from τ and complete the execution with A. Let ∆ be the
transcript of messages obtained.

Rewinding Phase: For k = `+1 to m, if interaction k is convincing and its identity
is different from the left interaction, do:
– In ∆, find the first point ρ that is a safe-point for interaction k; let the asso-

ciated proof be (αρ, βρ, γρ).
– Repeat until a second-proof transcript (αρ, β′

ρ, γ′ρ) is obtained:
Emulate the left interaction as in the Main-Execution Phase. For the left
interaction:
• If A expects to get a new proof from the external committer (case (i)

in Figure 5): Emulate the proof, by requesting for design0 from outside
committer. Forward one of the two proofs internally.

• If A sends a challenge for a proof whose first message occurs in ρ: Cancel
the execution, rewind to ρ and continue.

– If βρ 6= β′
ρ extract witness w from (αρ, βρ, γρ) and (αρ, β′

ρ, γ′ρ). Otherwise halt
and output fail.

– If w = (v, r) is valid commitment for interaction k, i.e. com(v, r) = ck, where
ck is the Stage 2 message in interaction k, then set v̂k = v. Otherwise halt
and output fail.

Note that, since right interactions `+1 to n all have their Stage 2 and 3 occurring
after τ , none of the rewinding can make A request a new commitment from the
external committer.

Output Phase: For every interaction k that is not convincing or if the identity of the
right interaction is the same as the left interaction, set v̂k =⊥. Output (v̂1, . . . , v̂m)
and the view from the Main Execution Phase.

Finally, if it runs for more than 2n steps, halt and output fail.

Fig. 3. The construction of R∗

Proof (of lemma 2). Recall that by the definition of Z it holds that z′ =
z‖τ‖ṽ1‖ . . . ‖ṽ` where ṽ1 . . . ṽ`, ` ∈ [m], are the values committed to by A(z)
using com in the view τ . On a high-level, R∗ on auxiliary input z′, internally
incorporates A(z) and emulates the left and the right executions for A. First,
however, it starts by feeding A its part of the joint view τ . It, then, emulates
the left interaction for A by externally forwarding messages using 〈Ĉ, R̂〉 (by
appropriately choosing the “right” designs); the right interactions are instead
dealt with internally by first honestly emulating the receivers on the right, from
the view in τ—this is called the main execution. In a second phase, it then at-
tempts to extract all the values committed to on the right—this is called the



rewinding phase. Finally, in the output phase, it outputs the view of A and all
the values extracted, including the ones received as auxiliary input (additionally,
if A fails in completing one of the commitments that started in τ , or if it uses
the same identity as the left interaction, that value is replaced by ⊥). The core
of the proof is to show that extraction during the rewinding phase is successful.
Towards this goal, we need to ensure that there exist some point where we can
rewind A on the right interaction, without rewinding on the left ; this is possible
in two cases: (1) if rewinding on the right does not cause A to request any new
messages on the left, or (2) if rewinding on the right causes A to only request a
new special-sound proof—in this case R∗ can perfectly emulate this new proof
by simply requesting another design from 〈Ĉ, R̂〉.

We show below that there exist certain points—called safe-points—in each
execution, from which it will be possible to perform extraction by simply rewind-
ing until we obtain a second proof transcript, without rewinding on the left (and
aborting all rewindings where A requests a message on the left which would
require us to rewind also the left execution). (Actually, to simplify our analysis
this extraction procedure is cut-off if it runs “too long” (2n steps) in which case
R∗ halts and outputs fail.)

Below we provide a definition of safe-points. A formal description of R∗ (which
relies on the notion of safe-points) is found in Figure 3.

Intuitively, a safe point ρ is a prefix of some transcript ∆ which has the
property that if during a rewinding from ρ, A uses the same “scheduling” of
messages as in ∆, then the left execution can be perfectly emulated without
rewinding (on the left). As we show later, if we rewind only from such points
we ensure that the expected running time is polynomially bounded (even if A
adaptively schedule the messages on the left).

Definition 6. A prefix ρ of a transcript ∆ is called a safe-point for interaction
k, if there exists an accepting proof (αr, βr, γr) in the kthright interaction, such
that:

1. αr occurs in ρ, but not βr (and γr).
2. for any proof (αl, βl, γl) in the left interaction, if αl occurs in ρ, then βl

occurs after γr.

If ρ is a safe-point, let (αρ, βρ, γρ) denote the canonical “safe” right proof.5

Note that the only case a right-interaction proof does not have a safe-point is
if it is “aligned” with a left execution proof (such that A can forward messages
between the left and the right interactions); see Figure 4. In contrast, in all other
cases, a right-interaction proof has a safe-point. In Figure 5, we present the three

5 We remark that our definition of safe-points is analogous to the “safe” rewinding
points inside exposed triplets defined in DDN [6]. Loosely speaking, for every exposed
triplet, there is a “safe” rewinding point that one can rewind to extract the committed
value on the right without “affecting” the left interaction. Defining safe-point this
way, avoids the complication of finding the “safe” rewinding point in each type of
the exposed triplet.



characteristic types of safe-point. Note that in the first case (see Figure 5 (i)),
when rewinding from ρ, R∗ can emulate the left proof by requesting a new design
from 〈Ĉ, R̂〉; in the second case (Figure 5 (ii)), R∗ can simply re-send the third
message of the left proof (since it is determined by the first two messages in the
proof); and in the last case (Figure 5 (ii)), no new message is requested by A,
so the left interaction can be “trivially” emulated (by doing nothing).

γl

βl

αl

γr

βr

αrρ

Fig. 4. Prefix ρ that is not a safe point.

γl

βl

αl

γr

βr

αrρ

γl

βl

αl

γr

βr

αrρ

γl

βl

αl

γr

βr

αrρ

(i) (ii) (iii)

Fig. 5. Three characteristic safe-points.

Running-time analysis of R∗. We show that R∗ is expected PPT. Note that the
time spent by R∗ in the Main Execution Phase is poly(n) (where n is the security
parameter), since A is a strict polynomial time machine. We show below that
the expected time spent by R∗ in the Rewinding Phase is poly(n). To bound
the expected running time, we assume for simplicity that R∗ does not check the
fail conditions and may run for more than 2n steps (since this only increases the
running time).

Recall that in the Rewinding Phase, R∗ rewinds A from all safe points. Let
Tk(i) be the random variable that describes the time spent in rewinding a proof
in interaction k after i messages have been exchanged. We show that E[Tk(i)] ≤
poly(n) and then by linearity of expectation, we conclude that the expected time



spent by R∗ in the Rewinding phase is
m∑

k=1

∑
i

E[Tk(i)] ≤
m∑

k=1

∑
i

poly(n) ≤ poly(n),

where the total number of messages exchanged and m is poly(n).

Bounding E[Tk(i)]. Given a (partial) transcript of messages ρ, let Pr [ρ] denote
the probability that ρ occurs as a prefix of the execution emulated in the Main
Execution phase. Furthermore, let pρ denote the probability that ρ is a safe-point
and is rewound—i.e. pρ is the probability that, conditioned on the prefix ρ occur-
ring, the right interaction k is convincing and ρ is a safe-point for interaction k.
Recall that R∗ rewinds until it finds another transcript for the proof (αρ, βρ, γρ)
associated
with ρ, cancelling each rewinding for which A requests the second message of
a proof in the left-interaction whose first message occurs in ρ. We claim that
the probability of cancelling a rewinding from ρ, is at most 1 − pρ since ρ is
not a safe-point for every rewinding that is cancelled, and conditioned on ρ, the
probability of a view occurring in a rewinding from ρ is same as occurring in
the Main Execution phase (as the emulated receiver picks uniformly random
messages in Stage 3 of the protocol). Thus, the expected number of rewindings
is at most 1

pρ
Therefore, the expected number of rewindings from ρ is at most

pρ · 1
pρ

= 1 and each rewinding takes at most poly(n) steps, i.e.

E[Tk(i)|ρ] ≤ poly(n)

Thus,

E[Tk(i)] =
∑

ρ of length i

E[Tk(i)|ρ] Pr [ρ] ≤ poly(n)×
∑

ρ of length i

Pr [ρ] ≤ poly(n)

Output distribution of R∗ is correct. We proceed to show that the output dis-
tribution of R∗ is correct. This follows from the following two claims:

Claim 2 Assume that R∗ does not output fail, then except with negligible prob-
ability, its output is identical to the values committed to by A in the right inter-
actions combined with its view.

Proof. We first note that since in the Main Execution Phase, R∗ feeds A messages
according to the correct distribution, the view of A in the simulation by R∗ is
identical to the view of A in a real interaction. We show in Lemma 3 that there
is a safe point for every right interaction that has an identity different from the
left interaction. Hence, for every convincing right interaction k > ` that has a
different identity, R∗ rewinds that interaction and eventually will either output
fail or a witness is extracted from the rewinding phase of R∗. Conditioned on
R∗ not outputting fail, by the statistical-binding property of com, except with
negligible probability the witnesses extracted by R∗ are the values committed
to by A.



Lemma 3 (Safe-point Lemma) In any one-many man-in-the-middle execu-
tion with m right interactions, for any right interaction k, k ∈ [m], such that
it has a different identity from the identity of the left interaction, there exists a
safe-point for interaction k.

Proof. Consider a one-many man-in-the-middle execution ∆, where the identities
in the left and right interaction are different. Assume for contradiction, that there
is some right interaction k which does not have a safe-point, i.e. every prefix of
∆ is not a safe-point for interaction k.

Consider any proof (αr, βr, γr) in the right interaction k. Let ρ be the prefix
after which βr is sent immediately. By assumption, ρ is not a safe-point. This
means there exists a proof (αl, βl, γl) in the left interaction, such that αl occurs
before ρ, βl occurs after ρ and before γr, as depicted in Figure 4. That is, βl

occurs in between βr and γr; we say a left proof is associated with a right proof
in this case. Note that each left proof can be associated with at most one right
proof. For the interaction k to not have a safe-point, the proofs in the left and
right interactions must match up each other one by one: the ith proof in the left
is associated with the ith proof in the right.

Since the identities in the left and right interactions are different, there must
be a position j they differ at. Let the jth bit in the left be b and that in the
right be 1 − b. Recall that, in the jthround of Stage 3 of the protocol, the
left interaction has designb followed by design1−b; and the right interaction has
design1−b followed by designb. Since all the proofs are “matched up”, it must be
the case that there is a design0 on the left that is matched with a design1 on
the right, as depicted in Figure 6. Let (αl

i, β
l
i, γ

l
i), i = 1, 2, be the two proofs

in design0, and (αr
i , β

r
i , γr

i ), i = 1, 2, be the ones on the right in design1. In
this case, consider ρ to be the prefix that includes all the message up until βl

1.
Consider the second proof (αr

2, β
r
2 , γr

2); there is no proof on the left having its
first message before ρ and its challenge before γr

2 at the same time. Hence, we
arrive at a contradiction to our assumption that there is no safe-point for that
right interaction.

γl
2

βl
2

αl
2

γl
1

βl
1

αl
1

γr
2

βr
2

γr
1

βr
1

αr
1

αr
2

ρ

Fig. 6. A design0 matches up with design1.



Claim 3 R∗ outputs fail with negligible probability.

Proof. R∗ outputs fail only in the following cases:

R∗ runs for more than 2n steps: We know that the expected running time
of R∗ is poly(n). Using Markov inequality, we conclude that the probability
that R∗ runs more than 2n steps is at most poly(n)

2n .
The same proof transcript is obtained from some safe-point: This case

occurs if R∗ picks some challenge β in the Rewinding Phase that appeared
as a challenge in the Main Execution Phase. As R∗ runs for at most 2n steps,
it picks at most 2n challenges. Furthermore, the length of each challenge is
2n. By applying the union bound, we obtain that the probability that a β is
picked twice is at most 2n

22n . Since there are at most polynomially many chal-
lenges picked in the Main Execution Phase, using the union bound again, we
conclude that the probability that it outputs fail in this case is negligible.

The witness extracted is not a valid decommitment: Suppose, the wit-
ness extracted is not the decommitment information, then by the special-
sound property it follows that it must be a value r such that f(r) = s. We
show that if this happens with non-negligible probability, then we can invert
the one-way function f . More precisely, given A, z and v, we construct A∗

that inverts f ; A∗ on input y, picks τ uniformly at random from Γ (A, z) (by
emulating an execution of A(z) internally) and proceeds identically as R∗

with inputs τ, z′ where z′ = z‖τ‖⊥‖⊥‖ . . . with the exception that it picks a
random right interaction, say k, and feeds y as the Stage 1 message in that
interaction. On the left interaction it honestly commits to the string v using
〈Ĉ, R̂〉. Finally, if the value r′ output for interaction k is the inverse image of
y w.r.t f (i.e. f(r′) = y), then A∗ outputs r′. (Notice that it is not necessary
to compute z′ according to the definition of Z, since R∗ uses the values in z′

only in the output phase and not in its extraction procedure). Therefore, the
probability that A∗ inverts f is identical to the probability that R∗ inverts
f which is non-negligible; this contradicts the one-wayness of f .

Since each of the above cases occur with negligible probability, using the
union bound, we conclude that R∗ outputs fail with negligible probability.

5 A log n-round Non-Malleable Commitment Scheme

In this section, we show how to construct a O(log n)-round commitment scheme
that is stand-alone non-malleable using any O(n)-round commitment scheme
that is one-many non-malleable. In particular, using the scheme 〈C,R〉 described
in the previous section, we obtain a O(log n)-round commitment scheme that is
stand-alone non-malleable. The idea for this construction is almost identical to
the O(log n)-round protocol constructed in [6], except that our construction is
more general, as it can be applied to any commitment scheme that satisfies our
notion of one-many non-malleability; we here rely on the fact that our definition
considers not only the values committed to by the adversary but also its view.



Description of the Protocol 〈C̃, R̃〉: To commit to value v ∈ {0, 1}n, choose ran-
dom shares r1, . . . , rn ∈ {0, 1}n, such that v = r1 ⊕ . . . ⊕ rl. If id ∈ {0, 1}l is
the identity of the 〈C̃, R̃〉 interaction, then for each i, commit to ri (in parallel)
using 〈C,R〉 with identity (i, idi), where idi is the ith bit of id.

In the full version of the paper, we show the following claim.

Claim 4 〈C̃, R̃〉 is stand-alone non-malleable.

6 Acknowledgement

We are very grateful to Danny Dolev for helpful conversations and for his con-
tagious enthusiasm. We are also grateful to Cynthia Dwork and Moni Naor for
helpful clarifications.

References

1. B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS,
pages 106–115, 2001.

2. B. Barak. Constant-Round Coin-Tossing or Realizing the Shared-Random String
Model. In 43rd FOCS, pages 345-355, 2002.

3. G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge.
JCSS, Vol. 37, No. 2, pages 156–189, 1988. Preliminary version by Brassard and
Crépeau in 27th FOCS, 1986.

4. R. Cramer, I. Damg̊ard and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In Crypto94, Springer LNCS 839,
pages. 174–187, 1994.

5. G. di Crescenzo, G. Persiano and I. Visconti. Constant-Round Resettable Zero
Knowledge with Concurrent Soundness in the Bare Public-Key Model. In Crypto04,
Springer LNCS 3152, pages. 237–253, 2004.

6. D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal on
Computing, Vol. 30(2), pages 391–437, 2000.

7. A. Feige and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Crypto86, Springer LNCS 263, pages 181–187, 1987.

8. O. Goldreich. Foundations of Cryptography – Basic Tools. Cambridge University
Press, 2001.

9. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Jour. on Computing, Vol. 18(1), pp. 186–208, 1989.

10. R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest
Majority. In 36th STOC, pages 232–241, 2004.

11. R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a
Constant Number of Rounds. In 44th FOCS, 2003.

12. R. Pass and A. Rosen. New and Improved Constructions of Non-Malleable Cryp-
tographic Protocols. In 37th STOC, pages 533–542, 2005.

13. R. Pass, V. Vaikuntanathan. New-Age Cryptography. Manuscript.


