
Defending against Sybil Devices in Crowdsourced
Mapping Services

Gang Wang†, Bolun Wang†, Tianyi Wang†‡, Ana Nika†, Haitao Zheng†, Ben Y. Zhao†

†Department of Computer Science, UC Santa Barbara
‡Department of Electronic Engineering, Tsinghua University

{gangw, bolunwang, tianyi, anika, htzheng, ravenben}@cs.ucsb.edu

ABSTRACT
Real-time crowdsourced maps such as Waze provide timely up-
dates on traffic, congestion, accidents and points of interest. In
this paper, we demonstrate how lack of strong location authenti-
cation allows creation of software-basedSybil devicesthat expose
crowdsourced map systems to a variety of security and privacy at-
tacks. Our experiments show that a single Sybil device with lim-
ited resources can cause havoc on Waze, reporting false congestion
and accidents and automatically rerouting user traffic. More im-
portantly, we describe techniques to generate Sybil devices at scale,
creating armies of virtual vehicles capable of remotely tracking pre-
cise movements for large user populations while avoiding detec-
tion. We propose a new approach to defend against Sybil devices
based onco-location edges, authenticated records that attest to the
one-time physical co-location of a pair of devices. Over time, co-
location edges combine to form largeproximity graphsthat attest to
physical interactions between devices, allowing scalable detection
of virtual vehicles. We demonstrate the efficacy of this approach
using large-scale simulations, and discuss how they can be used
to dramatically reduce the impact of attacks against crowdsourced
mapping services.

1. INTRODUCTION
Crowdsourcing is indispensable as a real-time data gathering tool

for today’s online services. Take for example map and navigation
services. Both Google Maps and Waze use periodic GPS readings
from mobile devices to infer traffic speed and congestion levels
on streets and highways. Waze, the most popular crowdsourced
map service, offers users more ways to actively share information
on accidents, police cars, and even contribute content like editing
roads, landmarks, and local fuel prices. This and the ability to in-
teract with nearby users made Waze extremely popular, with an
estimated 50 million users when it was acquired by Google for a
reported $1.3 Billion USD in June 2013. Today, Google integrates
selected crowdsourced data (e.g.accidents) from Waze into its own
Maps application.

Unfortunately, systems that rely on crowdsourced data are in-
herently vulnerable to mischievous or malicious users seeking to

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys’16, June 25-30, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 978-1-4503-4269-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2906388.2906420

disrupt or game the system [41]. For example, business owners
can badmouth competitors by falsifying negative reviews on Yelp
or TripAdvisor, and FourSquare users can forge their physical lo-
cations for discounts [11, 54]. For location-based services, these
attacks are possible because there are no widely deployed tools
to authenticate the location of mobile devices. In fact, there are
few effective tools today to identify whether the origin of traffic
requests are real mobile devices or software scripts.

The goal of our work is to explore the vulnerability of today’s
crowdsourced mobile apps againstSybil devices, software scripts
that appear to application servers as “virtual mobile devices.”1 While
a single Sybil device can damage mobile apps through misbehav-
ior, larger groups of Sybil devices can overwhelm normal users and
significantly disrupt any crowdsourced mobile app. In this paper,
we identify techniques that allow malicious attackers to reliably
create large populations of Sybil devices using software. Using the
context of the Waze crowdsourced map service, we illustrate the
powerful Sybil device attack, and then develop and evaluate robust
defenses against them.

While our experiments and defenses are designed with Waze
(and crowdsourced maps) in mind, our results generalize to a wide
range of mobile apps. With minimal modifications, our techniques
can be applied to services ranging from Foursquare and Yelp to
Uber and YikYak, allowing attackers to cheaply emulate numerous
virtual devices with forged locations to overwhelm these systems
via misbehavior. Misbehavior can range from falsely obtaining
coupons on FourSquare/Yelp, gaming the new user coupon sys-
tem in Uber, to imposing censorship on YikYak. We believe our
proposed defenses can be extended to these services as well. We
discuss broader implications of our work in Section 8.

Sybil attacks in Waze. In the context of Waze, our experi-
ments reveal a number of potential attacks by Sybil devices. First
is simpleevent forgery, where devices can generate fake events to
the Waze server, including congestion, accidents or police activity
that might affect user routes. Second, we describe techniques to
reverse engineer mobile app APIs, thus allowing attackers to cre-
ate lightweight scripts that effectively emulate a large number of
virtual vehicles that collude under the control of a single attacker.
We call Sybil devices in Waze “ghost riders.” These Sybils can
effectively magnify the efficacy of any attack, and overwhelm con-
tributions from any legitimate users. Finally, we discover a sig-
nificant privacy attack where ghost riders can silently and invisibly
“follow” and precisely track individual Waze users throughout their
day, precisely mapping out their movement to work, stores, hotels,
gas station, and home. We experimentally confirmed the accuracy

1We refer to these scripts as Sybil devices, since they are the man-
ifestations of Sybil attacks [16] in the context of mobile networks.

of this attack against our own vehicles, quantifying the accuracy of
the attack against GPS coordinates. Magnified by an army of ghost
riders, an attacker can potentially track the constant whereabouts of
millions of users, all without any risk of detection.

Defenses. Prior proposals to address the location authentication
problem have limited appeal, because of reliance on widespread de-
ployment of specialized hardware, either as part of physical infras-
tructure,i.e., cellular base stations, or as modifications to mobile
devices themselves. Instead, we propose a practical solution that
limits the ability of Sybil devices to amplify the potential damage
incurred by any single attacker. We introducecollocation edges,
authenticated records that attest to the one-time physical proxim-
ity of a pair of mobile devices. The creation of collocation edges
can be triggered opportunistically by the mapping service,e.g.,
Waze. Over time, collocation edges combine to form largeprox-
imity graphs, network structures that attest to physical interactions
between devices. Since ghost riders cannot physically interact with
real devices, they cannot form direct edges with real devices, only
indirectly through a small number of real devices operated by the
attacker. Thus, the edges between an attacker and the rest of the
network are limited by the number of real physical devices she has,
regardless of how many ghost riders are under her control. This
reduces the problem of detecting ghost riders to a community de-
tection problem on the proximity graph (The graph is seeded by a
small number of trusted infrastructure locations).

Our paper includes these key contributions:

• We explore limits and impacts of single device attacks on
Waze,e.g., artificial congestion and events.

• We describe techniques to create light-weight ghost riders,
virtual vehicles emulated by client-side scripts, through re-
verse engineering of the Waze app’s communication protocol
with the server.

• We identify a new privacy attack that allows ghost riders to
virtually follow and track individual Waze users in real-time,
and describe techniques to produce precise, robust location
updates.

• We propose and evaluate defenses against ghost riders, us-
ing proximity graphsconstructed with edges representing au-
thenticated collocation events between pairs of devices. Since
collocation can only occur between pairs of physical devices,
proximity graphs limit the number of edges between real de-
vices and ghost riders, thus isolating groups of ghost riders
and making them detectable using community detection al-
gorithms.

2. WAZE BACKGROUND
Waze is the most popular crowdsourced navigation app on smart-

phones, with more than 50 million users when it was acquired by
Google in June 2013 [19]. Waze collects GPS values of users’ de-
vices to estimate real-time traffic. It also allows users to report on-
road events such as accidents, road closures and police vehicles, as
well as curating points of interest, editing roads, and even updating
local fuel prices. Some features,e.g., user reported accidents, have
been integrated into Google Maps [20]. Here, we briefly describe
the key functionality in Waze as context for our work.

Trip Navigation. Waze’s main feature is assist users to find the
best route to their destination and turn-by-turn navigation. Waze
generates aggregated real-time traffic updates using GPS data from
its users, and optimizes user routes both during trip planning and
during navigation. If and when traffic congestions is detected, Waze
automatically re-routes users towards an alternative.

Figure 1: Before the attack (left), Waze shows the fastest route
for the user. After the attack (right), the user gets automatically
re-routed by the fake traffic jam.

Crowdsourced User Reports. Waze users can generate real-
time event reportson their routes to inform others about ongoing
incidents. Events range from accidents to road closures, hazards,
and even police speed traps. Each report can include a short note
with a photo. The event shows up on the map of users driving
towards the reported location. As users get close, Waze pops up
a window to let the user “say thanks,” or report the event is “not
there.” If multiple users choose “not there”, the event will be re-
moved. Waze also merges multiple reports of the same event type
at the same location into a single event.

Social Function. To increase user engagement, Waze sup-
ports simple social interactions. Users can see avatars and loca-
tions of nearby users. Clicking on a user’s avatar shows more de-
tailed user information, including nickname, ranking, and traveling
speed. Also, users can send messages and chat with nearby users.
This social function gives users the sense of a large community.
Users can elevate their rankings in the community by contributing
and receiving “thanks” from others.

3. ATTACKING CROWDSOURCED MAPS
In this section, we describe basic attacks to manipulate Waze

by generating false road events and fake traffic congestion. Since
Waze relies on real-time data for trip planning and route selec-
tion, these attacks can influence user’s routing decisions. Attackers
can attack specific users by forging congestion to force automatic
rerouting on their trips. The attack is possible because Waze has no
reliable authentication on user reported data, such as their device
GPS.

We first discuss experimental ethics and steps we took to limit
impact on real users. Then, we describe basic mechanisms and
resources needed to launch attacks, and use controlled experiments
on two attacks to understand their feasibility and limits. One attack
creates fake road events at arbitrary locations, and the other seeks
to generate artificial traffic hotspots to influence user routing.

3.1 Ethics
Our experiments seek to understand the feasibility and limits of

practical attacks on crowdsourcing maps like Waze. We are very
aware of the potential impact to real Waze users from any exper-
iments. We consulted our local IRB and have taken all possible
precautions to ensure that our experiments do not negatively im-
pact real Waze users. In particular, we choose experiment locations

 0

 5

 10

 15

 20

 25

 30

1:4 1:3 1:2 1:1 2:1 3:1 4:1

T
ra

ffi
c

S
pe

ed
 (

m
ph

)

Ratio of Slow Cars to Fast Cars

Average
Predicted
Waze

(a) Highway

 0

 4

 8

 12

 16

1:4 1:3 1:2 1:1 2:1 3:1 4:1

T
ra

ffi
c

S
pe

ed
 (

m
ph

)

Ratio of Slow Cars to Fast Cars

Average
Predicted
Waze

(b) Local Road

 0

 3

 6

 9

 12

1:4 1:3 1:2 1:1 2:1 3:1 4:1

T
ra

ffi
c

S
pe

ed
 (

m
ph

)

Ratio of Slow Cars to Fast Cars

Average
Predicted
Waze

(c) Residential

Figure 2: The traffic speed of the road with respect to different combinations of number of slow cars and fast cars. We show that
Waze is not using the average speed of all cars, and our inferred function can correctly predict the traffic speed displayed on Waze.

where user population density is extremely low (unoccupied roads),
and only perform experiments at low-traffic hours,e.g., between
2am and 5am. During the experiments, we continuously scan the
entire experiment region and neighboring areas, to ensure no other
Waze users (except our own accounts) are within miles of the test
area. If any Waze users are detected, we immediately terminate all
running experiments. Our study received the IRB approval under
protocol# COMS-ZH-YA-010-7N.

Our work is further motivated by our view of the risks of inac-
tion versus risks posed to users by our study. On one hand, we
can and have minimized risk to Waze users during our study, and
we believe our experiments have not affected any Waze users. On
the other hand, we believe the risk to millions of Waze users from
pervasive location tracking (described in Section 5) is realistic and
potentially very damaging. We feel that investigating these attacks
and identifying these risks to the broad community at large was the
ethically correct course of action. Furthermore, full understanding
of the attacks was necessary to design an effective andpractical
defense. Please see Appendix A for more detailed information on
our IRB approval and steps taken towards responsible disclosure.

3.2 Basic Attack: Generating Fake Events
Launching attacks against crowdsourced maps like Waze requires

three steps: automate input to mobile devices that run the Waze
app; control the device GPS and simulate device movements (e.g.,
car driving); obtain access tomultipledevices. All three are easily
achieved using widely available mobile device emulators.

Most mobile emulators run a full OS (e.g., Android, iOS) down
to the kernel level, and simulate hardware features such as cam-
era, SDCard and GPS. We choose the GenyMotion Android em-
ulator [3] for its performance and reliability. Attackers can au-
tomatically control the GenyMotion emulator via Monkeyrunner
scripts [4]. They can generate user actions such as clicking but-
tons and typing text, and feed pre-designed GPS sequences to the
emulator (through a command line interface) to simulate location
positioning and device movement. By controlling the timing of the
GPS updates, they can simulate any “movement speed” of the sim-
ulated devices.

Using these tools, attackers can generate fake events (or alerts) at
a given location by setting fake GPS on their virtual devices. This
includes any events supported by Waze, including accidents, po-
lice, hazards, and road closures. We find that a single emulator can
generate any event at arbitrary locations on the map. We validate
this using experiments on a variety of unoccupied roads, includ-
ing highways, local and rural roads (50+ locations, 3 repeated tests
each). Note that our experiments only involve data in the Waze
system, and do not affect real road vehicles not running the Waze
app. Thus “unoccupied” means no vehicles on the road with mo-
bile devices actively running the Waze app. After creation, the fake

event stays on the map for about 30 minutes. Any Waze user can
report that an event was “not there.” We find it takes two consec-
utive “not theres” (without any “thanks” in between) to delete the
event. Thus an attacker can ensure an event persists by occasion-
ally “driving” other virtual devices to the region and “thanking” the
original attacker for the event report.

3.3 Congestion and Traffic Routing
A more serious attack targets Waze’s real-time trip routing func-

tion. Since route selection in Waze relies on predicted trip time,
attackers can influence routes by creating “fake” traffic hotspots at
specific locations. This can be done by configuring a group of vir-
tual vehicles to travel slowly on a chosen road segment.

We use controlled experiments to answer two questions. First,
under what conditions can attackers successfully create traffic hotspots?
Second, how long can an artificial traffic hotspot last? We select
three low-traffic roads in the state of Texas that are representative
of three popular road types based on their speed limit—Highway
(65 mph), Local (45 mph) and Residential (25 mph). To avoid real
users, we choose roads in low population rural areas, and run tests
at hours with the lowest traffic volumes (usually 3-5AM). We con-
stantly scan for real users in or nearby the experimental region, and
reset/terminate experiments if users come close to an area with on-
going experiments. Across all our experiments, only 2 tests were
terminated due to detected presence of real users nearby. Finally,
we have examined different road types and hours of the day to en-
sure they do not introduce bias into our results.

Creating Traffic Hotspots. Our experiment shows that it only
takes one slow moving car to create a traffic congestion, when there
are no real Waze users around. Waze displays a red overlay on the
road to indicate traffic congestion (Figure 1, right). Different road
types have different congestion thresholds, with thresholds strongly
correlated to the speed limit. The congestion thresholds for High-
way, Local and Residential roads are 40mph, 20mph and 15mph,
respectively.

To understand if this is generalizable, we repeat our tests on other
unoccupied roads in different states and countries. We picked 18
roads in five states in the US (CO, MO, NM, UT, MS) and British
Columbia, Canada. In each region, we select three roads with dif-
ferent speed limits (highway, local and residential). We find con-
sistent results: a single virtual vehicle can always generate a traffic
hotspot; and the congestion thresholds were consistent across dif-
ferent roads of the same speed limit.

Outvoting Real Users. Generating traffic hotspot in practical
scenarios faces a challenge from real Waze users who drive at nor-
mal (non-congested) speeds: attacker’s virtual vehicles must “con-
vince” the server there’s a stream of slow speed traffic on the road

 0
 10
 20
 30
 40
 50
 60

 0 10 20 30 40 50

T
ra

ffi
c

S
pe

ed
 (

m
ph

)

Time (minute)

Highway
Local
Residential

Figure 3: Long-last traffic jam created by slow cars driving-by.

even as real users tell the server otherwise. We need to understand
how Waze aggregated multiple inputs to estimate traffic speed.

We perform an experiment to infer this aggregation function used
by Waze. We create two groups of virtual vehicles:Ns slow-
driving cars with speedSs, andNf fast-driving cars with speed
Sf ; and they all pass the target location at the same time. We study
the congestion reported by Waze to infer the aggregation function.
Note that the server-estimated traffic speed is visible on the map
only if we formed a traffic hotspot. We achieve this by setting the
speed tuple (Ss, Sf) to (10mph, 30mph) for Highway, (5, 15) for
Local and (5, 10) for Residential.

As shown in Figure 2, when we vary the ratio of slow cars over
fast cars (Ns:Nf), the Waze server produces different final traffic
speeds. We observe that Waze does not simply compute an “av-
erage” speed over all the cars. Instead, it uses a weighted average
with higher weight on the majority cars’ speed. We infer an aggre-
gation function as follows:

Swaze =
Smax ·max(Ns, Nf) + Savg ·min(Ns, Nf)

Ns +Nf

whereSavg =
SsNs+SfNf

Ns+Nf
, andSmax is the speed of the group

with Nmax cars. As shown in Figure 2, our function can predict
Waze’s aggregate traffic speed accurately, for all different types of
roads in our test. For validation purposes, we run another set of
experiments by raisingSf above the hotspot thresholds (65mph,
30mph and 20mph respectively for the three roads). We can still
form traffic hotspots by using more slow-driving cars (Ns > Nf),
and our function can still predict the traffic speed on Waze accu-
rately.

Long-Lasting Traffic Congestion. A traffic hotspot will last for
25-30 minutes if no other cars drive by. Once aggregate speed nor-
malizes, the congestion event is dismissed within 2-5 minutes. To
create a long-lasting virtual traffic jam, attackers can simply keep
sending slow-driving cars to the congestion area to resist the input
from real users. We validate this using a simple, 50-minute long
experiment where 3 virtual vehicles create a persistent congestion
by driving slowly through an area, and then looping back every 10
minutes. Meanwhile, 2 other virtual cars emulate legitimate drivers
that pass by at high speed every 10 minutes. As shown in Figure 3,
the traffic hotspot persists for the entire experiment period.

Impact on End Users. Waze uses real-time traffic data to op-
timize routes during trip planning. Waze estimates the end-to-end
trip time and recommends the fastest route. Once on the road, Waze
continuously estimates the travel time, and automatically reroutes
if the current route becomes congested. An attacker can launch
physical attacks by placing fake traffic hotspots on the user’s origi-
nal route. While congestion alone does not trigger rerouting, Waze
reroutes the user to a detour when the estimated travel time through
the detour is shorter than the current congested route (see Figure 1).

HTTPS

Plain Text

Waze Client HTTPS Proxy Waze Server

HTTPS

Controlled By

Attacker

Figure 4: Using a HTTPS proxy as man-in-the-middle to inter-
cept traffic between Waze client and server.

We also note that Waze data is used by Google Maps, and there-
fore can potentially impact their 1+ billion users [36]. Our ex-
periment shows that artificial congestion do not appear on Google
Maps, but fake events generated on Waze are displayed on Google
Maps without verification, including “accidents”, “construction”
and “objects on road”. Finally, event updates are synchronized on
both services, with a 2-minute delay and persist for a similar period
of time (e.g., 30 minutes).

4. SYBIL ATTACKS
So far, we have shown that attackers using emulators can cre-

ate “virtual vehicles” that manipulate the Waze map. An attacker
can generate much higher impact using a large group of virtual ve-
hicles (orSybils[16]) under control. In this section, we describe
techniques to produce light-weight virtual vehicles in Waze, and
explore the scalability of the group-based attacks. We refer to large
groups of virtual vehicles as “ghost riders” for two reasons. First,
they are easy to create en masse, and can travel in packs to outvote
real users to generate more complex events,e.g., persistent traffic
congestion. Second, as we show in §5, they can make themselves
invisible to nearby vehicles.

Factors Limiting Sybil Creation. We start by looking at the
limits of the large-scale Sybil attacks on Waze. First, we note user
accounts do not pose a challenge to attackers, since account regis-
tration can be fully automated. We found that a single-threaded
Monkeyrunner script could automatically register 1000 new ac-
counts in a day. Even though the latest version of Waze app re-
quires SMS verification to register accounts, attackers can use older
versions of APIs to create accounts without verification. Alterna-
tively, accounts can be verified through disposable phone/SMS ser-
vices [44].

The limiting factor is the scalability of vehicle emulation. Even
though emulators like GenyMotion are relatively lightweight, each
instance still takes significant computational resources. For exam-
ple, a MacBookPro with 8G of RAM supports only 10 simulta-
neous emulator instances. For this, we explore a more scalable
approach to client emulation that can increase the number of sup-
ported virtual vehicles by orders of magnitude. Specifically, we
reverse engineer the communication APIs used by the app, and re-
place emulators with simple Python scripts that mimic API calls.

Reverse Engineering Waze APIs. The Waze app uses HTTPS
to communicate with the server, so API details cannot be directly
observed by capturing network traffic (TLS/SSL encrypted). How-
ever, an attacker can still intercept HTTPS traffic, by setting up
a proxy [2] between her phone and Waze server as a man-in-the-
middle attack [40, 9]. As shown in Figure 4, an attacker needs to
pre-install the proxy server’s root Certificate Authorities (CA) to
her own phone as a “trusted CA.” This allows the proxy to present
self-signed certificates to the phone claiming to be the Waze server.
The Waze app on the phone will trust the proxy (since the certificate

is signed by a “trusted CA”), and establish HTTPS connections with
the proxy using proxy’s public key. On the proxy side, the attacker
can decrypt the traffic using proxy’s private key, and then forward
traffic from the phone to Waze server through a separate TLS/SSL
channel. The proxy then observes traffic to the Waze servers and
extracts the API calls from plain text traffic.

Hiding API calls using traffic encryption is fundamentally chal-
lenging, because the attacker has control over most of the com-
ponents in the communication process, including phone, the app
binary, and the proxy. A known countermeasure is certificate pin-
ning [18], which embeds a copy of the server certificate within the
app. When the app makes HTTPS requests, it validates the server-
provided certificate with its known copy before establishing con-
nections. However, dedicated attackers can extract and replace the
embedded certificate by disassembling the app binary or attaching
the app to a debugger [35, 17].

Scalability of Ghost Riders. With the knowledge of Waze
APIs, we build extremely lightweight Waze clients using python
scripts, allocating one thread for each client. Within each thread,
we log in to the app using a separate account, and maintain a live
session by sending periodic GPS coordinates to the Waze server.
The Python client is a full Waze client, and can report fake events
using the API. Scripted emulation is highly scalable. We run 1000
virtual vehicles on a single Linux Dell PowerEdge Server (Quad
Core, 2GB RAM), and find that at steady state, 1000 virtual devices
only introduces a small overhead: 11% of memory usage, 2% of
CPU and 420 Kbps bandwidth. In practice, attackers can easily run
tens of thousands of virtual devices on a commodity server.

Finally, we experimentally confirm the practical efficacy and scal-
ability of ghost riders. We chose a secluded highway in rural Texas,
and used 1000 virtual vehicles (hosted on a single server and single
IP) to generate a highly congested traffic hotspot. We perform our
experiment in the middle of the night after repeated scans showed
no Waze users within miles of our test area. We positioned 1000
ghost riders one after another, and drove them slowly at 15 mph
along the highway, looping them back every 15 minutes for an en-
tire hour. The congestion shows up on Waze 5 minutes after our
test began, and stayed on the map during the entire test period. No
problems were observed during our test, and tests to generate fake
events (accidents etc.) also succeeded.

5. USER TRACKING ATTACK
Next, we describe a powerful new attack on user privacy, where

virtual vehicles can track Waze users continuously without risk-
ing detection themselves. By exploiting a key social functionality
in Waze, attackers can remotely follow (or stalk) any individual
user in real time. This is possible with single device emulation,
but greatly amplified with the help of large groups of ghost riders,
possibly tracking large user populations simultaneously and putting
user (location) privacy at great risk. We start by examining the fea-
sibility (and key enablers) of this attack. We then present a simple
but highly effective tracking algorithm that follows individual users
in real time, which we have validated using real life experiments
(with ourselves as the targets).

The only way for Waze users to avoid tracking is to go “invisible”
in Waze. However, doing so forfeits the ability to generate reports
or message other users. Users are also reset to “visible” each time
the Waze app opens.

5.1 Feasibility of User Tracking
A key feature in Waze allows users to socialize with others on

the road. Each user sees on her screen icons representing the loca-

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400

T
ot

al
 #

 o
f U

ni
qu

e
U

se
rs

of Queries

24x32 mile2

12x16 mile2

6x8 mile2

3x4 mile2

Figure 5: # of queries vs. unique returned users in the area.

 0

 10

 20

 30

 40

 50

 10 20 30 40 50

U
se

r
C

ou
nt

of Times for a User being Returned

Server-1
Server-2
Server-3
Server-4

Figure 6: User’s number of appearances in the returned results
(6× 8 mile2 area).

tions of nearby users, and can chat or message with them through
the app. Leveraging this feature, an attacker can pinpoint any tar-
get who has the Waze app running on her phone. By constantly
“refreshing” the app screen (issuing an update query to the server),
an attacker can query the victim’s GPS location from Waze in real
time. To understand this capability, we perform detailed measure-
ments on Waze to evaluate the efficiency and precision of user
tracking.

Tracking via User Queries. A Waze client periodically re-
quests updates in her nearby area, by issuing an update query with
its GPS coordinates and a rectangular “search area.” This search
area can be set to any location on the map, and does not depend
on the requester’s own location. The server returns a list of users
located in the area, including userID, nickname, account creation
time, GPS coordinates and the GPS timestamp. Thus an attacker
can find and “follow” a target user by first locating them at any
given location (work, home) and then continuously following them
by issuing update queries centered on the target vehicle location,
all automated by scripts.

Overcoming Downsampling. The user query approach faces
a downsampling challenge, because Waze responds to each query
with an “incomplete” set of users,i.e., up to 20 users per query
regardless of the search area size. This downsampled result is nec-
essary to prevent flooding the app screen with too many user icons,
but it also limits an attacker’s ability to follow a moving target.

This downsampling can be overcome by simply repeatedly query-
ing the system until the target is found. We perform query mea-
surements on four test areas (of different sizes between3×4 mile2

and24 × 32 mile2) in the downtown area of Los Angeles (City
A, with 10 million residents as of 2015). For each area, we issue
400 queries within 10 seconds, and examine the number of unique
users returned by all the queries. Results in Figure 5 show that the
number of unique users reported converges after 150-250 queries
for the three small search areas (≤ 12 × 16 mile2). For the area
of size 24×32 mile2, more than 400 queries are required to reach
convergence.

We confirm this “downsampling” is uniformly random, by com-
paring our measurement results to a mathematical model that projects
the statistics of query results assuming uniform-random sampling.

Location
Route

Length (Mile)
Travel

Time (Minute)
GPS Sent
By Victim

GPS Captured
by Attacker

Followed to
Destination?

Avg. Track
Delay (Second)

Waze User Density
(# of Users / mile2)

City A 12.8 35 18 16 Yes 43.79 56.6
Highway B 36.6 40 20 19 Yes 9.24 2.8

Table 1: Tracking Experiment Results.

Consider totalM users in the search area. The probability of a user
x getting sampled in a single round of query (20 users per query)
is P (x) = 20

M
. OverN queries, the number of appearances per

user should follow a Binomial Distribution [25] with meanN ·
20

M
.

Figure 6 plots the measured user appearances for the four servers
on the6×8 mile2 area withN = 100. The measured statistics fol-
low the projected Binomial Distribution (the measured mean values
closely match the theoretical expectation). This confirms that the
downsampling is indeed random, and thus an attacker can recover a
(near) complete set of Waze users with repeated queries. While the
number of queries required increases superlinearly with area size,
a complementary technique is to divide an area into smaller, fixed
size partitions and query each partition’s users in parallel.

We also observe that user lists returned by different Waze servers
had only a partial overlap (roughly 20% of users from each server
were unique to that server). This “inconsistency” across servers
is caused by synchronization delay among the servers. Each user
only sends its GPS coordinates to a single server which takes 2-5
minutes to propagate to other servers. Therefore, a complete user
set requires queries to cover all Waze servers. At the time of our
experiments, the number of Waze servers could be traced through
app traffic and could be covered by a moderate number of querying
accounts.

Tracking Users over Time. Our analysis found that each active
Waze app updates its GPS coordinates to the server every 2 min-
utes, regardless of whether the user is mobile or stationary. Even
when running in the background, the Waze app reports GPS values
every 5 minutes. As long as the Waze app is open (even running
in the background), the user’s location is continuously reported
to Waze and potential attackers. Clearly, a more conservative ap-
proach to managing location data would be extremely helpful here.

We note that attackers can perform long-term tracking on a target
user (e.g., over months). The attacker needs a persistent ID associ-
ated to the target. The “userID” field in the metadata is insufficient,
because it is a random “session” ID assigned upon user login and
is released when the user kills the app. However, the “account cre-
ation time” can serve as a persistent ID, because a) it remains the
same across the user’s different login sessions, and b) it is precise
down to the second, and is sufficiently to uniquely identify single
users in the same geographic area. While Waze can remove the “ac-
count creation time” field from metadata, a persistent attacker can
overcome this by analyzing the victim’s mobility pattern. For ex-
ample, the attacker can identify a set of locations where the victim
has visited frequently or stayed during the past session, mapping to
home or workplace. Then the attacker can assign a ghost rider to
constantly monitor those areas, and re-identify the target once her
icon shows up in a monitored location,e.g., home.

Stealth Mode. We note that attackers remain invisible to their
targets, because queries on any specific geographic area can be
done by Sybils operating “remotely,” i.e. claiming to be in a dif-
ferent city, state or country. Attackers can enable their “invisible”
option to hide from other nearby users. Finally, disabling these
features still does not make the attacker visible. Waze only updates
each user’s “nearby” screen every 2 minutes (while sending its own

Start End

GPS Points

Missed by Attacker

Figure 7: A graphical view of the tracking result in Los Angeles
downtown (City A). Blue dots are GPS points captured by the
attacker and the red dots are those missed by the attacker.

GPS update to the servers). Thus a tracker can “pop into” the tar-
get’s region, query for the target, and then move out of the target’s
observable range, all before the target can update and detect it.

5.2 Real-time Individual User Tracking
To build a detailed trace of a target user’s movements, an attacker

first bootstraps by identifying the target’s icon on the map. This
can be done by identifying the target’s icon while confirming her
physical presence at a time and location. The attacker centers its
search area on the victim’s location, and issues a large number of
queries (using Sybil accounts) until it captures the next GPS report
from the target. If the target is moving, the attacker moves the
search area along the target’s direction of movement and repeats
the process to get updates.

Experiments. To evaluate its effectiveness, we performed ex-
periments by tracking one of our own Android smartphones and
one of our virtual devices. Tracking was effective in both cases, but
we experimented more with tracking our virtual device, since we
could have it travel to any location. Using the OSRM tool [5], we
generate detailed GPS traces of two driving trips, one in downtown
area of Los Angeles (City A), and one along the interstate highway-
101 (Highway B). The target device uses a realistic driving speed
based on average traffic speeds estimated by Google Maps during
the experiment. The attacker used 20 virtual devices to query Waze
simultaneously in a rectangular search area of size6 × 8 mile2.
This should be sufficient to track the GPS update of a fast-driving
car (up to 160 mph). Both experiments were during morning
hours, and we logged both the network traffic of the target phone
and query data retrieved by the attacker. Note that we did not gen-
erate any “events” or otherwise affect the Waze system in this ex-
periment.

Results. Table 1 lists the results of tracking our virtual device,
and Figure 7 presents a graphical view of the City A result. For
both routes, the attacker can consistently follow the victim to her
destination, though the attacker fails to capture 1-2 GPS points out
of the 18-20 reported. For City A, the tracking delay,i.e., the time
spent to capture the subsequent GPS of the victim, is larger (aver-
aging 43s rather than 9s). This is because the downtown area has
a higher Waze user density, and required more rounds of queries to
locate the target.

Our experiments represent two highly challenging (i.e., worst
case) scenarios for the attacker. The high density of Waze users

in City A downtown is makes it challenging to locate a target in
real time with downsampling. On Highway B, the target travels
at a high speed (∼60mph), putting a stringent time limit on the
tracking latency,i.e., the attacker must capture the target before he
leaves the search area. The success of both experiments confirms
the effectiveness and practicality of the proposed attack.

6. DEFENSES
In this section, we propose defense mechanisms to significantly

limit the magnitude and impact of these attacks. While individual
devices can inflict limited damage, an attacker’s ability to control
a large number of virtual vehicles at low cost elevates the severity
of the attack in both quantity and quality. Our priority, then, is to
restrict the number of ghost riders available to each attacker, thus
increasing the cost per “vehicle” and reducing potential damage.

The most intuitive approach is perform strong location authen-
tication, so that attackers must use real devices physically located
at the actual locations reported. This would make ghost riders as
expensive to operate as real devices. Unfortunately, existing meth-
ods for location authentication do not extend well to our context.
Some proposals solely rely on trusted infrastructures (e.g., wireless
access points) to verify the physical presence of devices in close
proximity [30, 37]. However, this requires large scale retrofitting
of cellular celltowers or installation of new hardware, neither of
which is practical at large geographic scales. Others propose to
embed tamperproof location hardware on mobile devices [32, 38],
which incurs high cost per user, and is only effective if enforced
across all devices. For our purposes, we need a scalable approach
that works with current hardware, without incurring costs on mo-
bile users or the map service (Waze).

6.1 Sybil Detection via Proximity Graph
Instead of optimizing per-device location authentication, our pro-

posed defense is a Sybil detection mechanism based on the novel
concept ofproximity graph. Specifically, we leverage physical prox-
imity between real devices to createcollocation edges, which act
as secure attestations of shared physical presence. In a proximity
graph, nodes are Waze devices (uniquely identified by an account
username and password on the server side). They perform secure
peer-to-peer location authentication with the Waze app running in
the background. An edge is established if the proximity authenti-
cation is successful.

Because Sybil devices are scripted software, they are highly un-
likely to come into physical proximity with real devices. A Sybil
device can only form collocation edges with other Sybil devices
(with coordination by the attacker) or the attacker’s own physi-
cal devices. The resulting graph should have only very few (or
no) edges between virtual devices and real users (other than the
attacker). Leveraging prior work on Sybil detection in social net-
works, groups of Sybils can be characterized by the few “attack
edges” connecting them to the rest of the graph, making them iden-
tifiable through community-detection algorithms [47].

We usea very small numberof trusted nodes only to bootstrap
trust in the graph. We assume a small number of infrastructure ac-
cess points are known to Waze servers,e.g., hotels and public WiFi
networks associated with physical locations stored in IP-location
databases (used for geolocation by Apple and Google). Waze also
can work with merchants that own public WiFi access points (e.g.,
Starbucks). These infrastructures are trusted nodes (we assume
trusted nodes don’t collude with attackers). Any Waze device that
communicates with the Waze server under their IPs (and reports a
GPS location consistent with the IP) automatically creates a new
collocation edge to the trusted node.

Our Sybil defense contains two key steps. First, we build a prox-
imity graph based on the “encounters” between Waze users (§6.2).
Second, we detect Sybils based on the trust propagation in proxim-
ity graph (§6.3).

6.2 Peer-based Proximity Authentication
To build the proximity graph, we first need a reliable method to

verify thephysicalcollocation of mobile devices. We cannot rely
on GPS reports since attackers can forge arbitrary GPS coordinates,
or Bluetooth based device ranging [55] because the coverage is too
short (<10 meters) for vehicles. Instead, we consider a challenge-
based proximity authentication method, which leverages the lim-
ited transmission range of WiFi radios.

WiFi Tethering Challenge. We use the smartphone’s WiFi
radio to implement a proximity challenge between two Waze de-
vices. Because WiFi radios have limited ranges (<250 meters for
802.11n [45])), two Waze devices must be in physical proximity to
complete the challenge. Specifically, we (or the Waze server) in-
struct one device to enable WiFi tethering and broadcast beacons
with an SSID provided by the Waze server,i.e., a randomly gen-
erated, time-varying bit string. This bit string cannot be forged by
other users or used to re-identify a particular user. The second de-
vice proves its proximity to the first device by returning the SSID
value heard over the air to the Waze server.

The key concerns of this approach are whether the WiFi link
between two vehicles is stable/strong enough to complete the chal-
lenge, and whether the separation distance is long enough for our
needs. This concern is valid given the high moving speed, poten-
tial signal blockage from vehicles’ metal components, and the low
transmit power of smartphones. We explore these issues with de-
tailed measurements on real mobile devices.

First, we perform measurements on stationary vehicles to study
the joint effect of blockage and limited mobile transmit power. We
put two Android phones into two cars (with windows and doors
closed), one running WiFi tethering to broadcast beacons and the
other scanning for beacons. Figure 8 plots the WiFi beacon strength
at different separation distances. We see that the above artifacts
make the signal strength drop to -100 dBm before the distance
reaches 250 meters. In the same figure, we also plot the probability
of successful beacon decoding (thus challenge completion) across
400 attempts within 2 minutes. It remains 100% when the two cars
are separated by<80 meters, and drops to zero at 160 meters.

Next, we perform driving experiments on a highway at normal
traffic hours in the presence of other vehicles. The vehicles travel
at speeds averaging 65 mph. During driving, we are able to vary
the distance between the two cars, and use recorded GPS logs to
calculate the separation distance. Figure 9 shows that while WiFi
signal strength fluctuates during our experiments, the probability of
beacon decoding remains very high at 98% when the separation is
less than 80 meters but drops to<10% once the two cars are more
than 140 meters apart.

Overall, the results suggest the proposed WiFi tethering chal-
lenge is a reliable method for proximity authentication for our sys-
tem. In practice, Waze can start the challenge when detecting the
two vehicles are within the effective range,e.g., 80 meters. Since
the WiFi channel scan is fast,e.g., 1-2 seconds to do a full chan-
nel scan in our experiments, this challenge can be accomplished
quickly with minimum energy cost on mobile devices. It is easy to
implement this scheme using existing APIs to control WiFi radio
to open tethering (setWifiApEnabled API in Android).

Constructing Proximity Graphs. In a proximity graph, each
node is a Waze device, and an edge indicates the two users come

-100

-90

-80

-70

-60

-50

 0 20 40 60 80 100 120 140 160 180 200
 0

 0.2

 0.4

 0.6

 0.8

 1
S

ig
na

l S
tr

en
gt

h
(d

B
m

)

S
ca

n
S

uc
ce

ss
 R

at
e

Distance between Two Devices (m)

Scan Success Rate

Signal Strength

Figure 8: WiFi signal strength and scan success rate with re-
spect to car distance in static scenarios.

-100

-90

-80

-70

-60

-50

 0 20 40 60 80 100 120 140 160 180 200
 0

 0.2

 0.4

 0.6

 0.8

 1

S
ig

na
l S

tr
en

gt
h

(d
B

m
)

S
ca

n
S

uc
ce

ss
 R

at
e

Distance between Two Devices (m)

Scan Success Rate

Signal Strength

Figure 9: WiFi signal strength and scan success rate with re-
spect to car distance in driving scenarios.

into physical proximity,e.g., 80 meters, within a predefined time
window. The resulting graph is undirected but weighted based
on the number of times the two users have encountered. Using
weighted graph makes it harder for Sybils to blend into the normal
user region. Intuitively, real users will get more weights on their
edges as they use Waze over time. For attackers, in order to blend
in the graph, they need to build more weighted attack edges to real
users (higher costs).

This approach should not introduce much energy consumption
to users’ phones. First, Waze server does not need to trigger collo-
cation authentication every time two users are in close proximity.
Instead, the proximity graph will be built up over time. A user
only need to authenticate with other users occasionally, since we
can require that device authentication expires after a moderate time
period (e.g.,months) to reduce the net impact on wireless perfor-
mance and energy usage. Second, since the process is triggered by
the Waze server, Waze can can use WiFi sensing from devices to
find “opportunistic” authentication times that minimize impact on
performance and energy. Waze can also use one tether to simultane-
ously authenticate multiple colocated devices within an area. This
further reduces authentication overhead, and avoids performance
issues like wireless interference in areas with high user density.

6.3 Graph-based Sybil Detection
We apply graph-based Sybil detection algorithms to detect Sybils

in Waze proximity graph. Graph-based Sybil detectors [53, 52, 47,
14, 10] were originally proposed in social networks. They all rely
on the key assumption that Sybils have difficulty to form edges with
real users, which results in a sparse cut between the Sybil and non-
Sybil regions in the social graph. Because of the limited number of
“attack edges” between Sybils and non-Sybils, a random walk from
non-Sybil region has a higher landing probability to land on a non-
Sybil node than a Sybil node. Our proximity graph holds the same
assumption that these algorithms require—with the WiFi proximity
authentication, it’s difficult for Sybil devices (ghost riders) to build
attack edges to real Waze users.

SybilRank. Among available algorithms, we use SybilRank [10].
Compared to its counterparts (SybilGuard [53], SybilLimit [52]
and SybilInfer [14]), SybilRank achieves higher accuracy at a lower
computational cost. At the high-level, its counterparts need to per-
form actual random walks, which is very costly and yet often gives
incomplete views of the graph. Instead, SybilRank usespower iter-
ation [28] to compute the random walk landing probability for all
nodes. This significantly boosts the algorithm accuracy and speed.
Furthermore, SybilRank has a better tolerance on community struc-
tures in the non-Sybil region (for using multiple trusted nodes),
making it more suitable for real-world graphs.

As context, we briefly describe how SybilRank works and refer
readers to [10] for more details. SybilRank ranks the nodes based

on how likely they are Sybils. The algorithm starts with multi-
ple trusted nodes in the graph. It iteratively computes the landing
probability for short random walks (originated from trusted nodes)
to land on all other nodes. The landing probability is normalized by
the node’s degree, which acts as the trust score for ranking. Intu-
itively, short random walks from trusted nodes are very unlikely to
traverse the few attack edges to reach Sybil nodes, thus the ranking
scores of Sybils should be lower. For Sybil detection, Waze can set
a cutoff threshold on the trust score, and label the tail of the ranked
list as Sybils.

The original SybilRank works on unweighted social graphs. We
modified it to work on our weighted proximity graph: when a
node propagates trust (or performs random walks) to its neighbors,
instead of splitting the trust equally, it distributes proportionally
based on the edge weights. This actually makes it harder for Sybils
to evade SybilRank—they will need to build more high-weight at-
tack edges to real users to receive trust.

7. COUNTERMEASURE EVALUATION
We use simulations to evaluate the effectiveness of our proposed

defense. We focus on evaluating the feasibility and cost for attack-
ers to maintain a large number of Sybils after the Sybil detection
is in place. We quantify the cost by the number of attack edges a
Sybil must establish with real users. In practice, this translates into
the effort taken to physically drive around and use physical devices
(with WiFi radios) per Sybil to complete proximity authentication.
In the following, we first describe our simulation setup, and then
present the key findings and their implications on Waze.

7.1 Evaluation Setup
We first discuss how we construct a synthetic proximity graph for

our evaluation, followed by the counter strategies taken by attackers
to evade detection. Finally, we describe the evaluation metrics for
Sybil detection.

Simulating Proximity Graphs. We use well-known models on
human encountering to create synthetic proximity graphs. This is
because, to the best of our knowledge, there is no publicper-user
mobility dataset with sufficient scale and temporal coverage to sup-
port our evaluation. Also, directly crawling large-scale, per-user
mobility trace from Waze can lead to questionable privacy implica-
tions, and thus we exclude this option.

Existing literatures [33, 13, 43, 23, 29] all suggest that human
(and vehicle) encounter patterns display strong scale-free and “small-
world” properties [6]. Thus we follow the methodology of [33] to
simulate a power-law based encounter process among Waze users.
Given a user populationN , we first assign each user an encounter
probability following a power-law distribution (α =2 based on the
empirical values [33, 12]). We then simulate user encounter over

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10k 20k 30k 40k 50k

A
re

a
un

de
r

R
O

C
 C

ur
ve

of Total Attack Edges

Gateway=1
Gateway=100
Gateway=500

Gateway=1000

(a) Sybil inner connection avg. degree = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10k 20k 30k 40k 50k

A
re

a
un

de
r

R
O

C
 C

ur
ve

of Total Attack Edges

Gateway=1
Gateway=100
Gateway=500

Gateway=1000

(b) Sybil inner connection avg. degree = 10

Figure 10: AUC with respect to number of attack edges, where Sybils form power-law
inner connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 20 30 40 50

A
re

a
un

de
r

R
O

C
 C

ur
ve

of Trusted Nodes

Gateway=1
Gateway=100
Gateway=500
Gateway=1000

Figure 11: Impact of # of trusted nodes
(average degree =10 for Sybil region; 5K
attack edges).

time, by adding edges to the graph based on the joint probability of
the two nodes.

For our evaluation, we produce a proximity graph forN =
10000 normal users and use the snapshot when 99.9% of nodes are
connected. Note that as the graph gets denser over time, it is harder
for Sybils to blend into normal user regions. We use this graph to
simulate the lower-bound performance of Sybil detection.2 As a
potential limitation, the simulated graph parameters might be dif-
ferent for different cities of Waze. Thus we don’t claim our reported
numbers will exactly match what Waze produces. The idea is that
Waze can follow our methodology to run the same experiments on
their real graphs.

Attacker Models. In the presence of Sybil detection, an attacker
will try mixing their Sybils into the proximity graph. We consider
the following strategies:

1. Single-Gateway– An attacker first takes one Sybil account
(as the gateway) to build attack edges to normal users. Then
the attacker connects the remaining Sybils to this gateway.
In practice, this means the attacker only needs to take one
physical phone to go out and encounter normal users.

2. Multi-Gateways – An attacker distributes the attack edges to
multiple gateways, and then evenly spreads the other Sybils
across the gateways. This helps the Sybils to blend in with
normal users. The attacker pays an extra cost in terms of
using multiple real devices to build attack edges.

The attacker also builds edges among its own Sybils. This incurs
no additional cost since Sybils can easily collude to pass proximity
authentication, but introduces key benefits.First, it makes Sybils’
degree distribution appear more legitimate.Second, it can poten-
tially increase Sybils’ trust score: when a random walk reaches one
Sybil node, its edges to the fellow Sybils help to sustain the ran-
dom walk within the Sybil region. In our simulation, we follow the
scale-free distribution to add edges among Sybils mimicking nor-
mal user region (we did not use a fully connected network between
Sybils since it is more easily detectable).

Evaluation Metrics. To evaluate Sybil detection efficacy, we
use the standard false positive (negative) rate, and the Area under
the Receiver Operating Characteristic curve (AUC) used by Sybil-
Rank [10]. AUC represents the probability that SybilRank ranks a
random Sybil node lower than a random non-Sybil node. Its value
ranges from 0 to 1, where 1 means the ranking is perfect (all Sybils
are ranked lower than non-Sybils), 0 means the ranking is always
flipped, and 0.5 matches the result of random guessing. Compared
to false positive (negative) rates, AUC is independent of the cutoff
threshold, and thus comparable across experiment settings.

2Validated by experiments: a denser, 99.99% connected graph can
uniformly improve Sybil detection accuracy.

7.2 Results

Accuracy of Sybil Detection. We assume the attacker seeks to
embed 1000 Sybils into the proximity graph. We use either single-
or multi-gateway approaches to build attack edges on the proxim-
ity graph by connecting Sybils to randomly chosen normal users.
We then add edges between Sybil nodes, following the power-law
distribution and producing an average weighted degree of either 5
or 10 (to emulate different Sybil subgraph density). We randomly
select 10 trusted nodes to bootstrap trust for SybilRank and run it
on the proximity graph. We repeat each experiment 50 times.

Figure 10 shows that the Sybil detection mechanism is highly ef-
fective. For attackers of the single-gateway model, the AUC is very
close to 1 (> 0.983), indicating Waze can identify almost all Sybils
even after the attacker established a large number of attack edges,
e.g., 50000. Meanwhile, the multi-gateway method helps attackers
add “undetected” Sybils, but the number of gateways required is
significant. For example, to maintain 1000 Sybils,i.e., by bringing
down AUC to 0.5, the attacker needs at least 500 as gateways. In
practice, this means wardriving with 500+ physical devices to meet
real users, which is a significant overhead.

Interestingly, the 1000-gateway result (where every Sybil is a
gateway) shows that, at certain point, adding more attack edges
can actually hurt Sybils. This is potentially due to the fact that
SybilRank uses node degree to normalize trust score. For gateways
that connect to both normal users and other Sybils, the additional
“trust” received by adding more attack edges cannot compensate
the penalty of degree normalization.

For a better look at thedetection accuracy, we convert the AUC
in Figure 10(b) to false positives (classifying real users as Sybils)
and false negatives (classifying Sybils as real users). For simplicity,
we set a cutoff value to mark the bottom 10% of the ranked nodes
as Sybils.3 As shown in Figure 12, SybilRank is highly accurate to
detect Sybils when the number of gateways is less than 100. Again
100 gateways incurs high cost in practice.

Next we quickly examine the impact of trusted nodes to Sybil de-
tection. Figure 11 shows a small number of trusted node is enough
to run SybilRank. Interestingly, adding more trusted nodes can
slightly hurt Sybil detection, possibly because it gives the attacker
(gateways) a higher chance to receive trust. In practice, multiple
trusted nodes can help SybilRank overcome potential community
structures in proximity graph (e.g., users of the same city form a
cluster). So Waze should place trusted nodes accordingly to cover
geographic clusters.

Cost of Sybil Attacks. Next, we infer the rough cost of attack-
ers on implementing successful Sybil attacks. For this we look at

3This cutoff value is only to convert the error rate. In practice,
Waze can optimize this value based on the trust score or manual
examination.

 0

 0.04

 0.08

 0.12

 0.16

 0.2

0 10k 20k 30k 40k 50k

F
al

se
 P

os
iti

ve
 R

at
e

of Total Attack Edges

Gateway=1000
Gateway=500
Gateway=100

Gateway=1

(a) False Positive Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10k 20k 30k 40k 50k

F
al

se
 N

eg
at

iv
e

R
at

e

of Total Attack Edges

Gateway=1000
Gateway=500
Gateway=100

Gateway=1

(b) False Negative Rate

Figure 12: Detection error rates with respect to number of attack edges. We set aver-
age degree =10 for Sybils’ power-law inner connections.

0

20k

40k

60k

80k

100k

120k

1000 2000 3000 4000 5000

of

 A
tta

ck
 E

dg
es

of Sybils

AUC=0.75
AUC=0.80
AUC=0.85
AUC=0.90
AUC=0.95

Figure 13: # of attack edges needed to
maintain x Sybil devices with respect to
different AUC level.

the number of attack edges required to successfully embed a given
number of Sybils. Our experiment assumes the attacker uses 500
gateways and builds power-law distributed inner connections with
average degree=10. Figure 13 shows the number of attack edges
required to achieve a specific AUC under SybilRank as a function
of the target number of Sybils. We see that the attack edge count
increases linearly with the Sybil count. The cost of Sybil attack is
high: to maintain 3000 Sybils, the attacker must make 60,000 at-
tack edges to keep AUC below 0.75, and spread these attack edges
across 500 high-cost gateways.

Smaller Sybil Groups. Finally, we examine how effective our
system is in detecting much smaller Sybil groups. We test Sybil
groups with size of 20, 50 and 100 using a single-gateway ap-
proach. We configure 50K attacking edges for Sybils with inner
degree = 10. The resulting AUC of Sybil detection is 0.90, 0.95
and 0.99 respectively. This confirms our system can effectively
identify small Sybil groups as well.

7.3 Implications on Waze
These results show that our Sybil detection method is highly ef-

fective. It significantly increases the cost (in purchasing physical
devices and time spent actually driving on the road) to launch Sybil
attacks. Also, SybilRank is scalable enough for large systems like
Waze. A social network with tens of millions of users has been
running SybilRank on Hadoop servers [10].

In addition to Sybil detection, Waze can incorporate other mech-
anisms to protect its users. We briefly describe a few key ideas, but
leave the integration with our approach to future work.First, IP
verification: when a user claims she is driving, Waze can examine
whether her IP is a mobile IP that belongs to a valid cellular carrier
or a suspicious web proxy. However, this approach is ineffective
if dedicated attackers route the attack traffic through a cellular data
plan. Second, strict rate limit: with that, attackers will need to run
more Sybil devices to implement the same attack.Third, verifi-
cations on account registration: this needs to be handled carefully
since email/SMS based verification can be bypassed using dispos-
able email or phone numbers [44].Finally, detecting extremely
inconsistent GPS/event reports. The challenge, however, is to dis-
tinguish honest reports from the fake ones since attacker can easily
outvote real users. If Waze chooses to ignore all the inconsistent re-
ports, it will lead to DOS attack where attackers disable the service
with inconsistent data.

8. BROADER IMPLICATIONS
While our experiments and defenses have focused strictly on

Waze, our results are applicable to a wider range of mobile ap-
plications that rely on geolocation for user-contributed content and
metadata. Examples include location based check-in and review
services (Foursquare, Yelp), crowdsourced navigation systems (Waze,

Moovit), crowdsourced taxi services (Uber, Lyft), mobile dating
apps (Tinder, Bumble) and anonymous mobile communities (Yik
Yak, Whisper).

These systems face two common challenges exposing them to
potential attacks. First, our efforts show that it is difficult for app
developers to build a truly secure channel between the app and the
server. There are numerous avenues for an attacker to reverse-
engineer and mimic an app’s API calls, thereby creating “cheap”
virtual devices and launching Sybil attack [16]. Second, there are
no deployed mechanisms to authenticate location data (e.g., GPS
report). Without a secure channel to the server and authenticated
location, these mobile apps are vulnerable to automated attacks
ranging from nuisance (prank calls to Uber) to malicious content
attacks (large-scale rating manipulation on Yelp).

To validate our point, we run a quick empirical analysis on a
broad class of mobile apps to understand how easy it is to reverse-
engineer their APIs and inject falsified data into the system. We
pick one app from each category including Foursquare, Uber, Tin-
der and Yik Yak (an incomplete list). We find that, although all the
listed apps use TLS/SSL to encrypt their network traffic, their APIs
can be fully exposed by the method in §4. For each app, we were
able to build a light-weight client using python script, and feed ar-
bitrary GPS to their key function calls. For example, with forged
GPS, a group of Foursquare clients can deliver large volumes of
check-ins to a given venue without physically visiting it; On Uber,
one can distribute many virtual devices as sensors, and passively
monitor and track all drivers (and their passengers) within a large
area (see §5). Similarly for Yik Yak and Tinder, the virtual devices
make it possible to perform wardriving in a given location area to
post and collect anonymous Yik Yak messages or Tinder profiles.
In addition, apps like Tinder also display the geographical distance
to a nearby user (e.g., 1 mile). Attacker can use multiple virtual
devices to measure the distance to the target user, and “triangulate”
that user’s exact location [50]. There are possible app-specific de-
fenses, and we leave their design and evaluation to future work.

9. DISCLOSURE AND IMPACT
Before the first writeup of our work, we sought to inform the

Google Waze team of our results. We first used multiple existing
Google contacts on the security and Android teams. When that
failed to reach the Waze team, we got in touch with Niels Provos,
who then relayed information about our project to the Waze team.

Through our periodic tests of the Waze app, we noticed recent
updates made significant changes to how the app reports user loca-
tion data to the server (and other users). In the new Waze update
(v4.4.0, released in April 2016), the app only reports user GPS val-
ues when the user is actively driving (moving at a moderate/fast rate
of speed). GPS tracking stops when a user is walking or standing
still. In addition, Waze automatically shuts down if the user puts it

in the background, and has not driven for a while. To resume user
tracking (GPS reporting), users must manually bring the app to the
foreground. Finally, Waze now hide users’ starting and destination
locations of their trips.

While online documentation claims that these optimizations are
to reduce energy usage for the Waze app, we are gratified by the
dramatic steps taken to limit user tracking and improve user pri-
vacy. These changes dramatically reduce the amount of GPS data
sent to the server (and made available to potential attackers through
the API). By our estimates, the update reduces the amount of GPS
tracking data for a typical user by nearly a factor of 10x. In addi-
tion, removing the first and last GPS values of a trip means that it
is significantly harder to track a user through multiple trips. Pre-
viously, users could be tracked across new Waze sessions, despite
new per-session identifiers, by matching the destination point of
one trip with the starting point of the next.

We note that while Waze has taken significantly steps to improve
user privacy, users can still be tracked while they are actively using
the app. More importantly, the attack we identified here can still
wreak havoc with a wide range of mobile apps, and Sybil devices
are a real challenge still in need of practical solutions. We hope our
work spurs future work to address this problem.

10. RELATED WORK

Security in Location-based Services. Location-based ser-
vices face various threats, ranging from rogue users reporting fake
GPS [11, 22], to malicious parties compromising user privacy [15,
26, 27]. A related study on Waze [39] demonstrated that small-
scale attacks can create traffic jams or track user icons, with up to
15 mobile emulators. Our work differs in two key aspects. First, we
show that it’s possible to reverse engineer its APIs, enabling light-
weight Sybil devices (simple scripts) to replace full-stack emula-
tors. This increase the scale of potential attacks by orders of magni-
tude, to thousands of Waze clients per commodity laptop. The im-
pact of thousands of virtual vehicles is qualitatively different from
10-15 mobile simulators. Second, as possible defenses, [39] cites
known tools such as phone number/IP verification, or location au-
thentication with cellular towers, which have limited applicability
(see §6). In contrast, we propose a novel proximity graph approach
to detect and constrain the impact of virtual devices.

Researchers have proposed to preserve user location privacy against
map services such as Waze and Google. Earlier studies apply lo-
cation cloaking by adding noise to the GPS reports [21]. Recent
work use zero-knowledge [24] and differential privacy [8] to pre-
serve the location privacy of individual users, while maintaining
user accountability and the accuracy of aggregated statistics. Our
work differs by focusing on the attacks against the map services.

Mobile Location Authentication. Defending against forged
GPS is challenging. One direction is to authenticate user locations
using wireless infrastructures: WiFi APs [30, 37], cellular base sta-
tions [30, 37] and femtocells [7]. Devices must come into phys-
ical proximity to these infrastructures to be authenticated. But it
requires cooperation among a wide range of infrastructures (also
modifications to their software/hardware), which is impractical for
large-scale services like Waze. Our work only uses a small num-
ber of trusted infrastructures to bootstrap, and relies on peer-based
trust propagation to achieve coverage. Other researchers have pro-
posed “peer-based” methods to authenticate collocated mobile de-
vices [42, 51, 55, 31, 34]. Different from existing work, we use
peer-based collocation authentication to build proximity graphs for
Sybil detection, instead of directly authenticating a device’s physi-
cal location.

Sybil Detection. Sybil detection has been studied in P2P
networks [16] and online social networks [47, 49, 48]. The most
popular approach is graph-based where the key assumption is that
Sybils have difficulty to connect to real users [10, 14, 46, 52, 53].
Thus Sybils would form a well-connected subgraph that has a small
quotient-cut from the non-Sybil region. Our work constructs a
proximity graph that holds the same assumption, and applies Sybil
detection algorithm to locate ghost riders in Waze. We differ from [10]
in the graph used and the attack models.

11. CONCLUSION
We describe our efforts to identify and study a range of attacks

on crowdsourced map services. We identify a range of single and
multi-user attacks, and describe techniques to build and control
groups of virtual vehicles (ghost riders) to amplify these attacks.
Our work shows that today’s mapping services are highly vulnera-
ble to software agents controlled by malicious users, and both the
stability of these services and the privacy of millions of users are at
stake. While our study and experiments focus on the Waze system,
we believe the large majority of our results can be generalized to
crowdsourced apps as a group. We propose and validate a suite of
techniques that help services build proximity graphs and use them
to effectively detect Sybil devices.

Throughout this work, we have taken active steps to isolate our
experiments and prevent any negative consequence on real Waze
users. We also used our existing Google/Waze contacts to inform
Waze team of our results. More details on IRB, ethics and disclo-
sure are contained in Appendix A.

Acknowledgments
We would like to thank our shepherd Z. Morley Mao and the anony-
mous reviewers for their comments. This project was supported by
NSF grants CNS-1527939 and CNS-1224100. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of any funding agencies.

Appendix A— IRB, Ethics
Our study was reviewed and approved by our local IRB. Prior to
doing any real measurements on the system, we submitted a human
subject protocol for approval by our institutional IRB. The protocol
was fully reviewed for ethics and privacy risks, and the response
was our study can be exempt. We put the request into our IRB
system and began our work. Then the confirmation of exemption
arrived and our study received the IRB approval under protocol #
COMS-ZH-YA-010-7N.

As described in the paper, we are very aware of the potential im-
pact on real Waze users from any experiments. We took very care-
ful precautions to ensure that our experiments will not negatively
impact Waze servers or Waze users. In particular, we conducted
numerous measurements of diverse traffic regions (read-only) to
locate areas of extremely low traffic density. We chose experiment
locations where user population density is extremely low (unoccu-
pied roads), and only perform experiments at low-traffic hours,e.g.
between 3am and 5am. During experiments, we continuously scan
the entire region including our experimental area and neighboring
regions, to ensure no other Waze users (except our own accounts)
are within miles of the test area. If any Waze users are detected,
we immediately terminate any running experiments. We took care
to limit congestion tests to areas with lots of local route redun-
dancy, thus we would not affect the routing of any long distance

trips (e.g. taking highway 80 because the 101 was congested). Fi-
nally, while we cannot detect invisible users in our test area, we
have taken every precaution to only test on roads and times that
show very little traffic, e.g. low population areas at 4am local time.
We believe in practice, invisible users make up a small subset of
the Waze population, because they cannot send reports or message
other users (effectively removing most/all of the social functional-
ity in Waze), and Waze resets the invisible setting every time the
app is opened [1].

12. REFERENCES
[1] About Waze: Privacy.

https://support.google.com/waze/answer/6071193?hl=en.
[2] Charles Proxy. http://www.charlesproxy.com.
[3] GenyMotion Emulator. http://www.genymotion.com.
[4] Monkeyrunner. http://developer.android.com/tools/

help/monkeyrunner_concepts.html.
[5] Open Source Routing Machine (OSRM).

http://map.project-osrm.org.
[6] A.-L. Barabasi and R. Albert. Emergence of scaling in

random networks.Science, 286, 1999.
[7] J. Brassil, P. K. Manadhata, and R. Netravali. Traffic

signature-based mobile device location authentication.IEEE
Transactions on Mobile Computing, 13(9):2156–2169, 2014.

[8] J. W. S. Brown, O. Ohrimenko, and R. Tamassia. Haze:
Privacy-preserving real-time traffic statistics. InProc. of
SIGSPATIAL, 2013.

[9] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov.
Using frankencerts for automated adversarial testing of
certificate validation in ssl/tls implementations. InProc. of
IEEE S&P, 2014.

[10] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the
detection of fake accounts in large scale social online
services. InProc. of NSDI, 2012.

[11] B. Carbunar and R. Potharaju. You unlocked the mt. everest
badge on foursquare! countering location fraud in geosocial
networks. InProc. of MASS, 2012.

[12] A. Clauset, C. R. Shalizi, and M. E. Newman. Power-law
distributions in empirical data.SIAM review, 51(4):661–703,
2009.

[13] F. Cunha, A. C. Viana, R. A. F. Mini, and A. A. F. Loureiro.
Is it possible to find social properties in vehicular networks?
In Proc. of ISCC, 2014.

[14] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes
using social networks. InProc of NDSS, 2009.

[15] Y.-A. de Montjoye, M. Verleysen, and V. D. Blondel. Unique
in the crowd: The privacy bounds of human mobility.
Scientific Reports, 3, 2013.

[16] J. R. Douceur. The Sybil attack. InProc. of IPTPS, 2002.
[17] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study

of android application security. InProc. of USENIX Security,
2011.

[18] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith.
Rethinking ssl development in an appified world. InProc. of
CCS, 2013.

[19] V. Goel. Maps that live and breathe with data. The New York
Times, June 2013.

[20] Google. Google maps and waze, outsmarting traffic together.
Google Official Blog, June 2013.

[21] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal
cloaking. InProc. of MobiSys, 2003.

[22] W. He, X. Liu, and M. Ren. Location cheating: A security
challenge to location-based social network services. InProc.
of ICDCS, 2011.

[23] T. Hossmann, T. Spyropoulos, and F. Legendre. Know thy
neighbor: Towards optimal mapping of contacts to social
graphs for dtn routing. InProc. of INFOCOM, 2010.

[24] T. Jeske. Floating car data from smartphones: What google
and waze know about you and how hackers can control
traffic. Black Hat, 2013.

[25] V. Kachitvichyanukul and B. W. Schmeiser. Binomial
random variate generation.Commun. ACM, 31(2):216–222,
1988.

[26] J. Krumm. Inference attacks on location tracks. InPervasive
Computing. 2007.

[27] J. Krumm. A survey of computational location privacy.
Personal and Ubiquitous Computing, 2009.

[28] A. Langville and C. Meyer. Deeper inside pagerank.Internet
Mathematics, 1(3):335–380, 2004.

[29] X. Liu, Z. Li, W. Li, S. Lu, X. Wang, and D. Chen. Exploring
social properties in vehicular ad hoc networks. InProc. of
Internetware, 2012.

[30] W. Luo and U. Hengartner. Proving your location without
giving up your privacy. InProc. of HotMobile, 2010.

[31] J. Manweiler, R. Scudellari, and L. P. Cox. Smile:
Encounter-based trust for mobile social services. InProc. of
CCS, 2009.

[32] C. Marforio, N. Karapanos, C. Soriente, and K. Capkun.
Smartphones as practical and secure location verification
tokens for payments. InProc. of NDSS, 2014.

[33] A. G. Miklas, K. K. Gollu, K. K. W. Chan, S. Saroiu, K. P.
Gummadi, and E. de Lara. Exploiting social interactions in
mobile systems. InProc. of Ubicomp, 2007.

[34] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,
and D. Boneh. Location Privacy via Private Proximity
Testing. InProc. of NDSS, 2011.

[35] J. Osborne and A. Diquet. When security gets in the way:
Pentesting mobile apps that use certificate pinning.Black
Hat, 2012.

[36] B. Reed. Google maps becomes google’s second 1
billion-download hit. Yahoo! News, June 2014.

[37] S. Saroiu and A. Wolman. Enabling new mobile applications
with location proofs. InProc. of HotMobile, 2009.

[38] S. Saroiu and A. Wolman. I am a sensor, and i approve this
message. InProc. of HotMobile, 2010.

[39] M. B. Sinai, N. Partush, S. Yadid, and E. Yahav. Exploiting
social navigation.Black Hat Asia, CoRR:abs/1410.0151,
2015.

[40] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan.
Smv-hunter: Large scale, automated detection of ssl/tls
man-in-the-middle vulnerabilities in android apps. InProc.
of NDSS, 2014.

[41] N. Stefanovitch, A. Alshamsi, M. Cebrian, and I. Rahwan.
Error and attack tolerance of collective problem solving: The
darpa shredder challenge.EPJ Data Science, 3(1):1–27,
2014.

[42] M. Talasila, R. Curtmola, and C. Borcea. LINK: location
verification through immediate neighbors knowledge. In
Proc. of MobiQuitous, 2010.

[43] F. Tan, Y. Borghol, and S. Ardon. Emo: A statistical
encounter-based mobility model for simulating delay tolerant
networks. InProc. of WOWMOM, 2008.

[44] K. Thomas, D. Iatskiv, E. Bursztein, T. Pietraszek, C. Grier,
and D. McCoy. Dialing back abuse on phone verified
accounts. InProc. of CCS, 2014.

[45] J. M. Tjensvold. Comparison of the IEEE 802.11,
802.15.1,802.15.4 and 802.15.6 wireless standards.
http://janmagnet.files.wordpress.com/2008/07/
comparison-ieee-802-standards.pdf, 2007.

[46] N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient
online content voting. InProc. of NSDI, 2009.

[47] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An
analysis of social network-based sybil defenses. InProc. of
SIGCOMM, 2010.

[48] G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng, and
B. Y. Zhao. You are how you click: Clickstream analysis for
sybil detection. InProc. of USENIX Security, 2013.

[49] G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger,
H. Zheng, and B. Y. Zhao. Social turing tests:
Crowdsourcing sybil detection. InProc. of NDSS, 2013.

[50] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y.

Zhao. Whispers in the dark: Analysis of an anonymous
social network. InProc. of IMC, 2014.

[51] X. Wang, J. Zhu, A. Pande, A. Raghuramu, P. Mohapatra,
T. Abdelzaher, and R. Ganti. STAMP: Ad hoc
spatial-temporal provenance assurance for mobile users. In
Proc. of ICNP, 2013.

[52] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit:
A near-optimal social network defense against sybil attacks.
In Proc. of IEEE S&P, 2008.

[53] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
Sybilguard: defending against sybil attacks via social
networks. InProc. of SIGCOMM, 2006.

[54] Z. Zhang, L. Zhou, X. Zhao, G. Wang, Y. Su, M. Metzger,
H. Zheng, and B. Y. Zhao. On the validity of geosocial
mobility traces. InProc. of HotNets, 2013.

[55] Z. Zhu and G. Cao. Toward privacy preserving and collusion
resistance in a location proof updating system.IEEE
Transactions on Mobile Computing, 12(1):51–64, 2013.

