Welcome CS170

Ryan Wenger

ryanwenger@ucsb.edu

Office Hours: TBD (see Canvas announcement)


mailto:ryanwenger@ucsb.edu

Vote for OH time




Quick Aside: How to do well in this class

* Go
* TJo

* Lecture
o Il

e That’s all!

e 9:30am is brutal but | promise it’s worth it
* No matter how much you already know, you will learn something

* Richis incredibly receptive to questions during lectures (and on
RiazzaCanvas)—ask him things if you need a way to stay awake!

* Piazza is switching to a subscription model this year, so we’re using Canvas discussions
instead



Review — what is malloc()?

* Poor man’s version of C++’s operator new
* Allocates “dynamic memory” from “The Heap”

* Every malloc() call must be paired with exactly 1 free() call—
otherwise we get a memory leak

* Hopefully, none of this is new information



A closer look: “The Heap”

* |s it more than just the magical region of memory that malloc() and free()
interface with?

* Not really, actually (for our purposes).

* Like all other memory, the heap is just many 1’s and 0’s—a bunch of
logically contiguous bytes; in some sense, it’s a (very large) array of
unsigned char

* Modern systems are naturally more complicated than this, but we are not trying to
implement anything as complex as libc malloc()

* In LabO0, this “heap” is just a regular global variable:
unsigned char MyHeap[MAX MALLOC SIZE];

* Ironically, the buffer used by MyMalloc as its heap is not, in fact, stored on The Heap;
it’s stored in your program’s .data or .bss segment



How does a memory allocator work?

* How does malloc() know what memory it’s allowed to return?
* Likewise, how does free() know the size of the memory chunk being free’d?

 Typical malloc() implementations use records placed at the start of
every “chunk” of the heap to track size and used/free status

 Whether allocated or not, these records *are* present in the bytes preceding
a buffer returned by malloc()

* Try malloc’ing some memory on a *Nix system then write zeros to buf[-1],
buf[-2], etc, and watch your program implode

* Crucially, this means that, in order to service any allocation request,
the allocator (malloc) requires a chunk of memory at least the size of
the request plus the size of a record.



Misc. tips

* Rich’s writeup at
https://sites.cs.ucsb.edu/~rich/class/cs170/labs/labl.malloc/index.ht
ml goes into more detail and includes helpful diagrams, so reference
that.

* Prepare to get lost in a rabbit hole if you try to reference “real” malloc
implementations—they are interesting, but way more complicated.

|H

* Test your code
* Test your code more
* Test your tests too


https://sites.cs.ucsb.edu/~rich/class/cs170/labs/lab1.malloc/index.html
https://sites.cs.ucsb.edu/~rich/class/cs170/labs/lab1.malloc/index.html

Vote for OH times




