
Welcome CS170
Ryan Wenger

ryanwenger@ucsb.edu
Office Hours: TBD (see Canvas announcement)

mailto:ryanwenger@ucsb.edu


Vote for OH times



Quick Aside: How to do well in this class

• Go
• To
• Lecture
• !!!
• That’s all!
• 9:30am is brutal but I promise it’s worth it
• No matter how much you already know, you will learn something
• Rich is incredibly receptive to questions during lectures (and on 

PiazzaCanvas)—ask him things if you need a way to stay awake!
• Piazza is switching to a subscription model this year, so we’re using Canvas discussions 

instead



Review – what is malloc()?

• Poor man’s version of C++’s operator new
• Allocates “dynamic memory” from “The Heap”

• Every malloc() call must be paired with exactly 1 free() call—
otherwise we get a memory leak
• Hopefully, none of this is new information



A closer look: “The Heap”

• Is it more than just the magical region of memory that malloc() and free() 
interface with?
• Not really, actually (for our purposes). 

• Like all other memory, the heap is just many 1’s and 0’s—a bunch of 
logically contiguous bytes; in some sense, it’s a (very large) array of 
unsigned char
• Modern systems are naturally more complicated than this, but we are not trying to 

implement anything as complex as libc malloc()
• In Lab0, this “heap” is just a regular global variable:
unsigned char MyHeap[MAX_MALLOC_SIZE];
• Ironically, the buffer used by MyMalloc as its heap is not, in fact, stored on The Heap; 

it’s stored in your program’s .data or .bss segment



How does a memory allocator work?

• How does malloc() know what memory it’s allowed to return?
• Likewise, how does free() know the size of the memory chunk being free’d?

• Typical malloc() implementations use records placed at the start of 
every “chunk” of the heap to track size and used/free status
• Whether allocated or not, these records *are* present in the bytes preceding 

a buffer returned by malloc()
• Try malloc’ing some memory on a *Nix system then write zeros to buf[-1], 

buf[-2], etc, and watch your program implode
• Crucially, this means that, in order to service any allocation request, 

the allocator (malloc) requires a chunk of memory at least the size of 
the request plus the size of a record.



Misc. tips

• Rich’s writeup at 
https://sites.cs.ucsb.edu/~rich/class/cs170/labs/lab1.malloc/index.ht
ml goes into more detail and includes helpful diagrams, so reference 
that.
• Prepare to get lost in a rabbit hole if you try to reference “real” malloc 

implementations—they are interesting, but way more complicated.
• Test your code
• Test your code more
• Test your tests too

https://sites.cs.ucsb.edu/~rich/class/cs170/labs/lab1.malloc/index.html
https://sites.cs.ucsb.edu/~rich/class/cs170/labs/lab1.malloc/index.html


Vote for OH times


