
Intro to lab 2: time-shared multiprogramming

First task: allow the user to compile/run programs that use malloc() + standard I/O library
● ioctl() (kinda)
● fstat() (kinda)
● sbrk()
● …

Second task: implement system calls for a simple shell
● fork()
● execve()
● wait()
● exit()

Third task: implement process IDs
● getpid()
● getppid()

Fourth task: make time slicing work



The sbrk(), fstat(), and ioctl() system calls

void *sbrk(intptr_t increment);
int fstat(int fd, struct stat *statbuf);
int ioctl(int fd, unsigned long request, ...);

● sbrk() increments the location of the program break
○ The division between the heap and unallocated memory
○ Return the location of the program break before incrementing (yeah it’s weird…)

● We only implement one case of ioctl() for this lab
○ Use ioctl_console_fill()

● For fstat(), use stat_buf_fill()
○ We only care about file descriptors 0, 1, and 2

■ fd 0 -> size = 1
■ fd 1, 2 -> size = 256

● The man pages are your best friend!



Some other system calls

● close()
○ Return (-1 * EBADF)

● getdtablesize()
○ Return the value 64

● getpagesize()
○ Return the value of PageSize in simulator.h (512)



The fork(), execve(), and wait() system calls

pid_t fork(void);
pid_t wait(int *_Nullable wstatus);
int execve(const char *pathname, char *const _Nullable argv[], char *const _Nullable envp[]);

● wait() — when called by a parent, waits until a child exits
○ After the child exits, clean up its PCB
○ Add two fields to your PCB data structure

■ unsigned short pid
■ Pointer to parent PCB

● execve() — malloc some space on the heap to save pathname and argv[]
○ When you call load_user_program(), you’ll overwrite everything
○ Ignore envp[] — we don’t have environment variables

● fork() — duplicate the current process (except for the PIDs)
○ Child gets 0
○ Parent gets child’s PID
○ Queue both onto the scheduler



Child exits:
● Clean up its own stuff (deallocate mem partition)
● V(semaphore)

Parent waits:
● P(semaphore)
● Clean up child

○ Free the PCB
○ Delete the dll node



Task 3: implementing process IDs

pid_t getpid(void);
pid_t getppid(void);

● Every process needs a unique ID
○ You can use a red-black tree (or not!)
○ /cs/faculty/rich/cs170/include/jrb.h

Task 4: time slicing

● This lets us switch between processes!
● Just call start_timer(ticks) once

○ I did it at the end of InitUserProcess()
○ You can use ticks = 10 (or whatever, really)

● Simulator throws a TimerInt every time interval
○ When handling this, just put the current running process at the end of your ready 

queue


