
Lab 2: time-shared multiprogramming

First task: allow the user to compile/run programs that use malloc() + standard I/O library
● ioctl() (kinda)
● fstat() (kinda)
● sbrk()
● …

Second task: implement system calls for a simple shell
● fork()
● execve()
● wait()
● exit()

Third task: implement process IDs
● getpid()
● getppid()

Fourth task: make time slicing work

Lab 2—more on fork(), execve(), and wait()

● How I split my memory up
○ Maintain a global partition map to keep track of what parts are allocated/free
○ Write two helper functions:

■ int alloc_mem_part(int *base, int *limit);
■ void free_mem_part(int base);

○ Allocate memory inside init_user_process() and fork()
○ Free memory inside exit() system call

● How to tackle execve()
○ Start by factoring out part of init_user_proc()
○ perform_exec(struct PCB_struct *pcb, char *fname, char **argv)

■ This is where you do:
● load_user_program()
● MoveArgsToStack()
● InitCRuntime()

■ You can reuse this when implementing execve()
○ Ignore envp[] — we don’t have environment variables

● How to tackle fork()
○ Create a new PCB and allocate some memory for it
○ The new PCB should have the same register values as its parent, but a different base and limit
○ After fork() finishes, there should be one additional PCB on the ready queue

■ Queue both parent + child

The wait() system call

● Each PCB must keep track of who its parent is
○ Add a pointer field that points to the parent PCB

● The very first process must be a child of the Init PCB
○ Init never gets run; it only exists so that the first PCB has a parent

● Each PCB must also keep track of all the processes that are waiting on it
○ You could use a doubly-linked list for this
○ When a child calls exit(), it will be added to its parent’s waiting list
○ wait() will clean up one child or block if no children are ready to be cleaned up yet

● When a process dies, its children become children of Init
● Modify the PCB struct to keep track of all its active children

○ When fork() is called, the new child must be added to its parent’s active children list
○ When exit() is called, all active children must be moved to be children of Init

The exit() system call

● What do I do when I exit?
○ Record my exit status in the PCB
○ Free the memory partition I used
○ If I have any children, make them all children of Init
○ Delete myself from my parent’s list of children
○ Add myself to my parent’s list of waiters
○ Unblock my parent’s wait semaphore (if my parent isn’t Init)
○ kt_exit() and we’re done!

The sbrk(), fstat(), and ioctl() system calls

● sbrk() increments the location of the program break
○ The division between the heap and unallocated memory
○ Return the location of the program break before incrementing (yeah it’s weird…)

● We only implement one case of ioctl() for this lab
○ Use ioctl_console_fill()

● For fstat(), use stat_buf_fill()
○ We only care about file descriptors 0, 1, and 2

■ fd 0 -> size = 1
■ fd 1, 2 -> size = 256

● The man pages are your best friend!

Process IDs

● Process IDs will be of type unsigned short
● How do we ensure distinct process IDs?

○ You can use a red-black tree!
■ /cs/faculty/rich/cs170/include/jrb.h

Let’s talk about ksh…

● If ksh works, great!
● If it doesn’t, don’t stress

○ Either way, please write your own test codes to test fork(), execve(), wait(), etc.
● We will NOT grade your lab 2 implementation against ksh, so don’t let it distract you

Time slicing

● This lets us switch between processes!
● Just call start_timer(ticks) once

○ I did it at the end of InitUserProcess()
○ You can use ticks = 10 (or whatever, really)

● Simulator throws a TimerInt every time interval
○ When handling this, just put the current running process at the end of your ready queue

PCB struct additions

struct PCB_struct {
 int mem_base;
 int mem_limit;
 int data_end;
 int sbrk;
 unsigned short pid;
 struct PCB_struct *parent;
 kt_sem *waiter_sem;
 Dllist waiters;
 Rb_node children;
 int exit_status;
 int registers[NumTotalRegs];
};

Some other system calls

● close()
○ Return (-1 * EBADF)

● getdtablesize()
○ Return the value 64

● getpagesize()
○ Return the value of PageSize in simulator.h (512)

