
File System
part I

CS170

File System

1. User’s view (abstractions)

2. Bottom up view (implementation)

3. Performance optimizations

Interface to the secondary storage

(Among other things)

User’s view

Data & metadata

• File: logical storage unit (for data)

• Attributes (metadata)

• name
• size
• location (on disk)
• protection (including ownership)
• time: of creation, modification, access

Operations

• Create: allocate space for data & metadata

• Check proposed name and permissions

• Delete: release data & metadata

• Typically does not destroy the data

• Truncate: shrink data to 0, keep metadata

Operations

Write: which file, what to write, and where

new data new datafile

write pointer write pointer

Operations

Read: which file, how much to read, and where

data to be readfile

read pointer read pointer

“Conveniences”

• Current file position

• Seek: moves pointer (no I/O)

• Open file table

• Open: returns an index into it (fd)

• Close: frees up the entry

• Obviates lookups upon every operation

Access Modes

• Sequential (think tape)

• Read next
• Write next
• Rewind

• Direct (think disk/memory)

• Read next or Read at position
• Write next or Write at position
• Move to position

Inside files

• Sequence of logical records

• bytes, words, structures

• Special format for executables

• Resource fork, file creator on Mac OS

• Some names (e.g. command.com) are special

Organizing files:
single-level directory

• aka “flat namespace”

• Have you seen this? Napster!

Organizing files:
tree-based directories
• Directory as a special file

• System calls for creating and deleting

• What if not empty?

• Current directory

• Chdir() system call
• Absolute/relative paths
• Search path

Organizing files:
beyond trees

• DAG allows file and directory sharing, but:

• Absolute paths are not unique
• Deletion semantics
• Cycles are a danger

• Implementations:

• Symbolic (soft) links
• True (hard) links

Protection

• Protect users and system components from
each other through file access restrictions

• Operations:

• Low-level: read, write, execute, delete, list

• High-level: rename, copy, edit, print

• Policy: which ops, which users, which files

Access lists

• Alternative approaches:

• For each file/dir, list valid ops for each user

• For each user, list files that they can op

• Either list can be large, so:

• Group users: owner, group, universe

• Simplify operations: rwx (for files & dirs)

Bottom up
view

Head, cylinder, sector

Number
of

Heads

Number of Cylinders

Track / Sector

Block = Sector + Sectors-per-track *
 (Head + Cylinder * Tracks-per-Cylinder)

Disk Allocation

• Where to put blocks of file data?

• View disk as a contiguous array of sectors

• Ignore the hierarchy for now

• Files can be mapped as:

• Variable-sized, contiguous “portions”

• Fixed-sized, scattered “blocks”

Contiguous Allocation

foo

len=5

bar

len=3

Contiguous allocation
• Pros:

• Efficient direct and sequential access
• Minimal overhead for metadata

• Cons:

• Finding open slots
• External fragmentation ⇒ compacting

• “Outgrowing” the block

• Use “extent” to extend the file?

Linked allocation

foo

bar

Linked allocation

• Pros:

• No external fragmentation
• Unlimited growth

• Cons:

• Slow random access
• Overhead for pointers

• Keep the links close together: FAT

Linked allocation: FAT

2 3 5 4

E

O

F

6 7

E

O

F

FAT

foo bar

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Indexed allocation

index table

foo bar

0 1 2 3 4 5 6 7 8

0

2

5

6

7

Indexed allocation:

• Pros:

• No external fragmentation
• Efficient random access

• Cons:

• Link overhead (more than with linked)

• Outgrowing the index block:

• Chain, multiple levels, both

