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ABSTRACT 
 
 Spatial analysis has long been a valuable tool used within the criminal investigative 

process. This is especially true for serial offence cases where criminologists apply geographic 

profiling to model offender mobility and crime distribution patterns in order to estimate a 

criminal�s likely residence. Yet, traditional analytical methodologies have avoided the utilization 

of functional distance measures when modeling an offender�s journey-to-crime within an 

anisotropic landscape. By substituting straight-line Euclidean distances with travel path 

functional distance measures, the predictive utility and technological prerequisites associated 

with geographically profiling a localized serial offender was assessed using mathematically 

calibrated distance decay models. Both the travel-path and temporally optimized functional 

distance measures were calculated based on the impedance attributes stored within a linearly 

referenced transportation data layer of East Baton Rouge Parish, Louisiana.  Journey-to-crime 

distance decay algorithms were mathematically calibrated for �best fit,� based on the distribution 

of incidents obtained from a calibration sample of thirty-one simulated offenders. Functional 

distances measured for a series of incident locations attributed to a sample of four simulated 

serial offenders.  Using the calibrated distance decay function measured from the calibration 

sample, geographic profiles were created for each of the four simulated serial offenders.  A 

probability score was calculated for every point within the study area to indicate the likelihood 

that it contained the offender�s residence. Score surfaces estimating the likely residence of the 

sample offenders were calculated and compared to the actual, known residences in order to 

determine predictive value and procedural validity of functional distance metrics. Analyzed 

results revealed that the functional distance measures can serve as a substitute for traditional 

Euclidian distances when estimating the likely residence of a localized serial offender.
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CHAPTER 1. INTRODUCTION  
 
The criminal investigative process involves a variety of analytical techniques that support 

the apprehension and successful prosecution of an offender. Typical functions of a criminal 

investigation include crime scene processing, preservation of physical evidence, witness 

interviews, and suspect interrogations.  Depending on the complexity of the crime, more 

advanced investigative methodologies may be included.  A familiar and often popularly idealized 

technique is forensic analysis: a multi-disciplined collection of scientific techniques in which 

investigators attempt to coherently relate various elements of a crime in order to successfully 

prosecute an offender.  Forensics expands upon traditional crime scene techniques to support the 

scientific exploration of evidence to include the development of a criminal modus-operandi 

(MO), psychological and behavioral profile, ballistics, fiber analysis, DNA analysis, and 

geographic analysis, to name a few.  Of particular interest to this research is the application of 

geographic analysis for the successful mitigation of serial criminal offences. Specifically, this 

research will examine a new strategy for modeling serial offender behavior in order to increase 

the investigative utility and predictive capabilities of a geographically calibrated offender profile. 

Analyzing crime events using geography has long been a valuable resource for the 

criminal investigative process.  With records dating back as far as the 1830s (Harries, 1999), 

sociologists and criminologists have long understood the role geography has played as a 

fundamental component of crime.  By the early 1900�s, law enforcement began to realize the 

advantage of using wall-sized pin-maps that detailed the distribution of crime events.  By 

integrating these maps within their investigations, detectives were able to visualize and explore 

crime in relation to its surrounding landscape. As technology improved, newer practices and 

techniques for mapping crime developed.  But the spatial analysis of crime would not be fully 
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leveraged as a research tool until the computer-age; when analytical algorithms could be 

efficiently and repeatedly computed for large quantities of data. Yet, these techniques were 

generally limited to theoretical (and in many cases academic) applications, limited to only the 

largest and wealthiest jurisdictions. 

The full potential of geographic analysis was finally realized by the early 1990s, when 

advances in desktop computing allowed any investigators to not only visualize the occurrence of 

crimes, but also analyze criminal activity in a variety of contexts in which they occurred.  By 

using geographic information systems (GIS), discrete data points could be stored and analyzed 

relative to other intelligence assets. The added utility of combining spatial analysis, statistics, and 

report generation empowered criminal investigators with the ability to identify change, reveal 

patterns and trends, and model possible methods of mitigation.  To this day, law enforcement 

agencies have come to rely on geographic analysis to quickly analyze and disseminate 

information in order to provide meaningful and coherent investigation and apprehension 

strategies.  

Because crime is influenced by a number of complex conditions, the ability to map crime 

will vary according to a criminal�s taxonomy. As Harries (1999) pointed out, simple theft is 

influenced by factors that differ unmistakably from those associated with murder.  And just as a 

distinction should be made between the qualities of a mafia assassination and that of a domestic 

homicide, so too should like-crimes be investigated differently. Of particular interest to the 

criminologist is the phenomenon of the serial offender.  Serial crime incorporates more complex 

sets of psychological and ecological circumstances than any other criminal act.  It is the serial 

offender�s very nature that presents unique challenges for a criminal investigation.  As noted by 

Rossmo (2000), most crimes are solved by exploring the immediate relationships shared between 
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offender and victim.  However, serial offences often lack an obvious connection. As such 

specialized investigative strategies beyond traditional methodologies are almost certainly 

required for offender apprehension.  One such strategy is commonly referred to as profiling. 

The basic concept of a profile is to identify and develop offender characteristics based on 

the offence characteristics (Canter & Gregory, 1994).  The most commonly referenced criminal 

profile is the psychological, or behavioral, profile.  The objective of the behavioral profile is to 

generate a consistent set of offender personality traits based on the evidence obtained from a 

crime scene.  However, the ability to successfully apprehend a serial offender on such a profile 

alone has not been empirically demonstrated (Rossmo, 2000; Grubin et al., 2001).  As such, 

developments within criminology over the past two decades have led to more sophisticated 

investigative and analytical techniques that have demonstrated relative degrees of success.  Not 

surprisingly, geographic analysis is one such technique.  Coined by Louisiana State University 

Geographer Dr. Milton Newton in the mid-1980s as �geo-forensic� analysis, the concept aims to 

identify and characterize offender spatial behavior as it relates to the crime site (Newton & 

Swoope, 1987).  Today, this area of research is commonly referred to as geographic profiling. 

Geographic profiling is a decision support tool consisting of various investigative and 

analytical methodologies, both quantitative and qualitative, in which criminologists estimate the 

likely location of a serial offender�s residence based on the distribution of linked crime sites 

(Canter & Gregory, 1994; Rossmo, 2000; Godwin, 2003).  The geographic profiling concept 

extends beyond the traditional spatial classification schemes, such as hotspot and trend analysis, 

to provide more comprehensive methods for profiling criminal behavior.  These techniques 

include distance to crime research, demographical analysis, environmental psychology, 

landscape analysis, point pattern analysis, crime site residual analysis, and psychological 
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criminal profiling.  While a geographic profile is usually developed for serial crimes (such as 

rape, murder, arson, and robbery), certain circumstances exist when such analysis may be able to 

provide valuable insight for events involving multiple locations, or those events that demonstrate 

significantly unusual geographic characteristics (Rossmo, 2000).  Such applications could be 

utilized in a variety of offender-defender scenarios that can theoretically include military and 

anti-terrorism activities.  

 The ability to estimate the offender�s residence is a primary objective for any geographic 

profiling technique.  However, the process of developing a meaningful profile is seldom easily 

achieved.  As noted by Rossmo (2000), a serial offender�s residence would simply lie at the 

center of a distribution of crime sites if given idealized conditions.  Yet, serial crimes do not 

occur within ideal circumstances, and the conditions are rarely simplistic.  In reality, crimes 

scenes are often found to be distributed in complex spatial patterns, making it difficult to map 

trends. Contributing to the difficulties are the psychological and physical boundaries that, among 

other impedance factors, conspire to distort an already complex analytical investigation.  In order 

for a geographic profile to provide a meaningful output, specialized geo-analytical and 

environmental investigative techniques are combined to interpret these patterns.  One of the most 

significant techniques available to a criminologist is the journey-to-crime concept of the distance 

decay function - a graphical curve used to represent how the number of offenses committed by 

an offender decreases as the distance from his or her residence increases (Brantingham & 

Brantingham, 1984; Rossmo, 2000).  

 Rossmo (2000) is arguably one of the first researchers to incorporate distance decay 

models for geographically profiling serial offenders.  His research led to the development of a 

profiling model that was based extensively on the concepts of Environmental Criminology and 
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classical journey-to-crime techniques.  Called �Criminal Geographic Targeting� (Rossmo 2000), 

serial crime sites are analyzed using derivatives of an empirically calibrated collection of 

distance decay algorithms.  In applying the algorithm, locations surrounding linked crime sites 

are assigned a weight value that indicates the likelihood of being the offender�s residence.  Each 

location�s weight is assigned according to its distance from the crime scenes.  These models 

produce a density map, what Rossmo (2000) refers to as a probability surface which is used to 

develop and/or enhance investigative strategies.  Similar distance decay algorithms are utilized 

for various implementations of other readily available profiling applications such as CrimeStat II 

(Levine, 2002a), Dragnet® (Canter, 2003), and Rigel� CGT (Rossmo, 2003). 

 While the utility of a geographic profile as an investigative tool is obvious, its ability to 

accurately estimate a serial offender�s residence remains relatively inconsistent (Snook, 2000; 

Gore & Tofiluk, 2002). This can primarily be attributed to the complex association of 

environmental and psychological factors related to crime and associated spatial patterns (Canter, 

et al., 1983, 1984, 2000; Rossmo, 2000).  Traditionally, geographic profiling models measure 

crime patterns using standard Euclidean distances.  However, these measurements are 

consistently distorted by �real-world� factors such as street layout, traffic congestion, landscape 

features, psychological bias, and more (Rossmo, 2000).  For highly-mobile populations such as 

those of the United States (US) and Canada, these factors represent significant challenges that 

make the geographic analysis of crime difficult.  The profiling techniques that include distance 

decay, circle-theory, mean center, center of minimum distance, and other commonly used 

algorithms assume that travel and opportunity are equally uniform, i.e. isotropic (Berry, 1998; 

Rossmo, 2000; Levine, 2002a).  As a result, models derived from traditional Euclidean distance 

metrics fail to approximate the actual conditions in which crime patterns occur.  These 
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circumstances can best be demonstrated for two distinct travel structure characteristics: travel 

path and travel cost. 

 The commuter�s travel-path is a representation of an actual route one would take when 

commuting between an origin and destination.  By accommodating for both the structure of the 

transportation network and subjective bias of the commuter, the commuter�s travel-path can 

provide for a more accurate method of measuring the travel distance values required for 

geographic profiling models.  Yet, most geographic modeling applications rely on traditional 

Euclidean metrics when measuring the distances between two locations.  This can be 

problematic, as the contemporary urban and suburban landscape consists of a patchwork of non-

uniform (anisotropic) network of roads, highways, and interstates.  As a consequence, these 

networks have inherent impedance factors that are influenced by cultural, physical, and 

psychological characteristics (e.g. land use, laws and regulations, rivers, mountains, 

neighborhoods, etc.) that limit travel for certain directions and speeds (Barry, 2000; Rossmo 

2000). These factors significantly influence an individual�s subjective and objective 

considerations for travel.  As research from Rhodes and Conly (1981) revealed, one of the 

primary consideration for a commuter is the actual commuter path, or �wheeled distance,� of the 

road network.  Furthermore, a study conducted by the Transportation Research Board found that 

commuters consistently demonstrate a bias against routes that require left-hand turns at busy 

intersections which have been associated with high rates of collision (Brehmer et al., 2003).  

Accordingly, the reliance on straight-line Euclidean distance measures, often represented by 

�crow-flies� distances, fails to account for the actual commuter path between locations i and j 

(Figure 1.1A).  Distance values obtained for a commuter using Euclidean metrics would be 

highly suspect and misrepresentative of an actual commute between the two places (Rhodes & 
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Conly, 1981). To address this limitation, researchers developed an indirect Euclidean distance 

metric referred to as Manhattan distances (Figure 1.1B).  Although an improvement over 

traditional distance measures, it remains a limited solution. The metric is often unable to provide 

a realistic representation of the non-uniform transportation structures that characterize many US 

and foreign cities (Rhodes & Conly, 1981, Levine, 2000a).  In fact, research has consistently 

demonstrated that a primary consideration for movement in space is determined by travel-cost: 

the expense and effort necessary for one to commute between two or more locations 

(Brantingham & Brantingham, 1981; Berry, 1998; Rossmo, 2000).   

 As Rossmo indicated (2000), it is the psychological perception of the distance, not the 

actual measure that serves as a determining factor for estimating travel cost.  The impedances 

imposed by the physical and cultural landscape dictate a commuter�s expectations of travel.   
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Accordingly, commuters will operate within a behavioral space in which they know how best to 

travel (Felson and Clarke, 1998).  The same can be said of a serial offender, who will no more or 

less likely be expected to choose a convoluted path between two locations than a law-abiding 

citizen (Brantingham & Brantingham, 1981; Newton & Swoope, 1987).  An offender will 

optimize his/her travel with the same approach as an individual leaving her home for the grocery 

store: to travel in the most economical manner possible within the limits of the surrounding 

landscape and prevailing opportunity (Zipf, 1950).  Yet, most efforts to measure travel-time costs 

have typically relied upon centrographic techniques that demonstrate variations of the least-effort 

principle. Again, the assumption of an isotropic surface fails to represent the actual environment 

in which these locations exist (Berry, 1998; Rossmo, 2000).   

Consider this travel cost paradox illustrated in Figure 1.2:  A commuter must travel from 

location i (origin) to location j (destination).  The two available paths, a surface street (Figure 

1.2A) or a high-speed �beltway� (Figure 1.2B), will equally result in accomplishing the task.  As 

the figure illustrates, when selecting the route that uses the highway (Figure 1.2B), the commuter 

is able to travel from origin to destination in much less time when compared to traveling on the 

surface street (Figure 1.2A).  The distance traveled using the highway may be longer than the 

distance on the surface street, but the travel time is measurably less.  This example demonstrates 

how temporal distances can be used to identify an optimal travel path by accommodating a 

commuter�s subjective notion of cost.  As such, the perceived distance the offender is willing to 

travel can become a function the time it takes to commute to a destination, not the Euclidean 

distance measured between them.   
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for calculating functional distances, linearly referenced transportation data layers that contain the 

necessary impedance attributes are typically priced beyond the budgetary constraints for many 

cash-strapped law enforcement agencies. Furthermore, the advanced technological prerequisites 

needed to process many of the network-path calculations have only recently been achieved using 

relatively inexpensive workstation-class personal computers (PC).  As such, agencies that may 

have had the resources to invest in the costly data may not have the realistic technological 

capabilities to process the data, until now.  

This research will examine and assess, as a proof of concept, the predictive utility and 

technological cost of functional distance metrics when estimating the likely residence of a 

localized serial offender. By substituting straight-line Euclidean distance values with both travel-

path and temporally optimized (temporal-path) distance measures, this research theorizes that it 

is possible to develop an accurate model of an individual�s travel behavior within a realistic, 

anisotropic landscape. Travel-path functional distance measures are calculated based on the 

impedance attributes stored within a routable transportation data layer of East Baton Rouge 

Parish, Louisiana. The functional distances measured for a series of simulated serial offences 

will be modeled using a distance decay function empirically derived from a sample of like-

simulated offenders.  Probability surfaces estimating the likely residence of four simulated serial 

offenders will be calculated and evaluated against the offender�s known residence in order to 

determine predictive utility and procedural validity of functional distance metrics. 
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CHAPTER 2. REVIEW OF LITERATURE 
  

The occurrence of crime is the inherent outcome of a unique set of complex 

circumstances that can be characterized as both behavioral and environmental in nature.  While 

there are a number of intricate factors at play, an important dimension of any criminal 

investigation is the analysis of place.  As noted by Felson & Clarke (1998), crime occurs at a 

spatial and temporal intersection between both the offender and victim.  The ability to 

understand the geographic implications an offender�s spatial behavior leading up to the 

commission of a crime is considered to be just as important for solving a case as the physical 

evidence remaining at a crime scene.  Implementing the necessary techniques for identifying and 

exploring the geographic patterns possessed by a serial offence is the result of established 

research in ecological criminology. 

Perhaps one of the first successful uses of geographic analysis for the apprehension of a 

serial offender was applied by forensic scientist Stewart Kind (1987).  Kind analyzed the 

homicide locations of twenty victims of the �Yorkshire Ripper� in northern England between the 

late 1970s and early 1980s.  By estimating the center of minimum distance of each crime scene, 

weighted by time of day for each incident, Kind was able to accurately identify the community 

within which the offender resided at the time of the homicides.  The techniques associated with 

this type of centrographic analysis had been utilized by numerous serial criminal investigations: 

Police in Georgia used geographic analysis when investigating the �Atlanta Child Murders� in 

the early 1980s; LeBeau (1987) recognized that geo-statistical analysis could be utilized as an 

investigative strategy for serial rape cases in California; and Newton and Swoope (1987)  

demonstrated how the spatial mean between crime scenes of the �Hillside Strangler� could be 

used to develop an empirically derived investigative search strategy. While much of this work, 
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and other similar investigations, relied on intuitive investigative processes, the conceptual 

framework for these techniques had only recently been established by contemporary 

Environmental Criminology.  Brantingham & Brantingham (1981) theorized that geographic 

modeling techniques can be used to describe the spatial behavior of a criminal offender by 

simply examining the spatial distribution of linked crime scenes. As a result of their work, the 

Brantingham�s derived the �geometry of crime� concept: a modeling technique used to identify 

the criminal�s target selection, or hunting strategy, which examines the relationship between the 

distribution of offenders and targets within the context to the prevailing environment.   

An important characteristic for the geographic analysis of crime is the understanding that 

crime does not occur in random or unpredictable locations.  Rather, criminal offences occur in 

observable structures that are influenced by the landscape in which they occur, and the 

psychological factors that dictate the offender�s movement.  It is this maxim that makes 

geographic profiling a powerful investigative tool.  As noted by Newton and Swoope (1987), 

landscapes work.  That is, objects flow through landscapes in rational and predictable ways.  As 

such, any occupant of the land must adhere to the pattern that dictates their movement 

throughout its space.  Identifying an offender�s spatial pattern(s), and likely residence, can 

positively impact the investigative process by focusing limited resources in critical areas.  

Consequently, the ability to construct a meaningful geographic profile is dependent upon an 

investigator�s understanding of the geographic and ecological principles discussed in the 

following text. 

2.1  Perception of Distance and Space within Behavioral Geography 
 
 An individual�s perception of distance is unique.  How one perceives distance is 

influenced by numerous factors, both objective and subjective, that ultimately act to bias ones 
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movement within space.  As such, the ability to model human travel behavior represents a 

significant challenge when investigating serial crime.  Researchers often approach the analytical 

exploration of human travel behavior using models derived from the application of Location 

Theory.  This concept consists of various methodologies that explore the relationship between 

the perceived and actual landscape characteristics in order to identify the optimal location for any 

distribution of activities or populations (Newton & Swoope, 1987; Levine, 2002). Traditionally, 

Location Theory has been a critical component of the supply and demand models utilized by 

shipping companies (e.g. UPS�, DHL, US Postal Service®, FedEx®, etc.).  These models, 

founded by concepts in Economic Geography, look to maximize the placement of distribution 

facilities in order to minimize travel costs.  The significance of these applications for the 

criminologist is enormous.  As demonstrated by Kind (1987), when applied in reverse, it is 

possible to estimate a central location from which travel distance is minimized.  This application 

is a frequently used technique founded on Least Effort Principle.  Sometimes referred to as the 

nearness principle (Rossmo, 2000), the theory states that given a distribution of equally desirable 

locations, the closest destination is the one most frequently chosen (see also Zipf, 1950).  This 

condition, however, can only be demonstrated on an isotropic surface, where opportunity for 

success is equally distributed for any given direction. As demonstrated earlier, however, the 

geographic landscape is never isotropic. 

 The environment in which any commute is produced will have inherent impedances that 

are dictated by factors which ultimately limit travel for certain directions, distances, and speeds.  

As such, movement between locations will be easier in some directions than in others.  

Consequently, the straight-line distances measured between two locations may not correspond to 

the closest possible destination in terms of the actual travel path (Rhodes and Conley, 1981).  
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This represents a non-trivial paradox for any criminal investigation where the distance 

measurement is a critical element for analysis.  Both Canter (1994, 2000) and Rossmo (2000) 

proposed the use of an alternate distance measure known as the Manhattan metric.  The 

Manhattan distance metric (Equation 2.1) is an orthogonal distance algorithm used to enumerate 

travel costs for commutes between origin and destination on a uniformly arranged, grid-based 

road network often identified within urban environments. The Manhattan metric is defined as: 

where the Manhattan distance, d, is equal to the straight-line distance between two locations 

measured along the x-axis, plus the straight-line distance between two locations measured along 

the y-axis.  While an improved method for calculating distances, the exclusive use of the 

Manhattan metric may be problematic. As noted by Levine (2002a), Manhattan distances are 

often speculative measures that can lead to overestimated travel path distances when applied to 

locations were street networks are irregularly arranged.   

 Consideration for the wheel distance (Rhodes & Conley, 1981), or the actual travel path, 

is not the only factor associated with an individual�s perceived notion for a successful travel 

production.  All commuters express some measurable bias for specific routes (Brehmer et al., 

2003).  To accommodate this bias, Stea (1969) identified five influential factors associated with 

the perception of travel distance: 

• Attractiveness of both origin and destination; 
• The impedance between the origin and destination; 
• Familiarity of the route;
• The distance between origin and destination; 
• The condition of the route. 
 

    jijixy yyxxd −+−=                                                                                               (2.1)
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 As a method for quantitatively measuring these elements, the analyst can utilize temporal 

functional distance metrics.  As indicated by Rossmo (2000), the perception of distances as a 

function of time is often more important than the actual distance itself (see also Brantingham & 

Brantingham, 1981; and Berry, 1998).  Thus, by optimizing the actual travel path using the 

temporal distance value, criminologists should theoretically be able to accommodate for 

elements of the commuter�s subjective notion of optimized distance.   However, the analyst must 

be able to identify an actual commutable path between an origin and destination.  As such, if the 

least effort principle is to provide a meaningful approximation of an offender�s spatial behavior, 

it must incorporate both the objective (physical) and subjective (cognitive) factors identified 

above.  The concept of a criminal�s �mental map� supports this conclusion. 

 A mental map is an individual�s cognitive image of familiar locations that are formed 

through the every-day interaction one has with his or her surroundings (Brantingham & 

Brantingham, 1984).  As noted by Canter (1994), the mental map represents an individual�s 

subjective awareness of the features and spatial relationships that exist within his or her 

environment.  Rather than it being an exact picture, the mental map is a generalized concept of 

the landscape stored within the person�s memory � hierarchically categorized for various scales.  

As such, it is based entirely on the individual�s objective awareness and subjective perceptions 

and attitude towards a place (Brantingham & Brantingham, 1984).  The mental map postulate 

represents a significant concept for criminologists because it allows an investigator to explore the 

relationship a crime�s location has within the context of an offender�s awareness of target and 

awareness of location. 

 As demonstrated, the processes associated with the commission of a crime can reveal a 

wealth of information for an investigation.  The fact that a crime occurs at a particular location 
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indicates that the offender has some degree of knowledge of that location.  That knowledge is 

based in part on the offender�s mental map.  The information available within a mental map is 

characterized in two ways: actual knowledge of a place, and intellectual awareness of a place 

(Brantingham & Brantingham, 1981).  For example, an individual�s intimate understanding of 

home, the immediate neighborhood, and the route to the grocery store represents the 

environment in which the majority of his or her activities are carried out.  It is a place that is 

implicitly understood.  However, the individual that has never left his or her home-town can be 

aware of the general characteristics of another town without knowing how to travel within it.  It 

is a foreign place that is understood in the abstract. These two conditions represent the ecological 

concepts of the Activity Space and Awareness Space, respectively (Brantingham & 

Brantingham, 1981, 1984).  In order to extract information from these spatial characteristic, the 

criminologist must know how to interpret the subtle spatial relationships that exist between an 

offender�s activity space and the crime scenes. 

 Research demonstrates that most criminals spend the bulk of their daily lives in pursuit of 

non-criminal activities (Canter et al., 1994).  As such, their actions are inexorably tied to the 

confines of normal societal behavior.  For example, a person is presumably expected to work, 

eat, sleep, and recreate. The locations encompassing these acts are defined as activity nodes.  The 

implication is that the offender�s activity and awareness space is defined by the distribution and 

subsequent travel between activity nodes.  As such, it is likely that the offender will initiate a 

criminal act within the limits of his or her awareness space (Brantingham & Brantingham, 1981).  

This characteristic was empirically demonstrated by the Brantingham�s (1981) from a study of 

crime in Washington D.C. where it was found that the further an offender was from his or her 

residence the less likely he or she would commit an offence. 
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 By identifying the various elements that constitute the mental map, the criminologist can 

implement variations on the least effort principle to identify specific characteristics of the 

criminal�s spatial behavior.  As indicated by Rossmo (2000), individuals perceive their shared 

surroundings in similar ways.  As such, each person�s mental map will possess similar features 

based on shared experiences.  Landmarks, roads, malls, rivers and mountains, and other 

distinctive landscape characteristics and activity centers represent commonly perceived features 

of the environment.  As such, these elements can be used to identify unique spatial behavior 

characteristics expressed by both offender and victim. The body of research that examines 

criminal behavior within a geographical construct is commonly referred to as Environmental 

Criminology. 

2.2  Concepts in Environmental Criminology 
 
 Environmental Criminology consists of a number of theoretical concepts that provide a 

heuristic for understanding and predicting criminal offences. Theories such as Routine Activity, 

Rational Choice, Crime Pattern, and the Buffer Zone postulate each represent the broad approach 

Environmental Criminology provides for analyzing the operational, behavioral, perceptual, 

social, legal, cultural, and geographic factors of a crime (Rossmo, 2000).  Contemporary 

Environmental Criminology represents a paradigm shift away from traditional analytical 

techniques that examined offender characteristics, and toward the exploration of the ecological 

circumstances associated with a crime�s occurrence. As a result, Environmental Criminology 

provided the construct on which new techniques could be used to explore the unique 

characteristics of an offence.  By studying the relationship crime shares with place, the 

criminologist can identify how the immediate environment shapes the legal and illegal activities 

of both victim and offender.  As such, the ecological criminologist can explore patterns, test 
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concepts, and formulate investigative processes in the context of a crime�s immediate landscape.  

These concepts embody a research approach which Newton and Swoope (1987) referred to as the 

�Sociology of Crime.�  Prior to this ecological construct, investigative techniques focused 

exclusively on quantitative analytical methodologies that explored aggregated patterns and trends 

within an objective space. By incorporating the qualitative assets of the immediate environment, 

the criminologist can identify subjective characteristics that may reveal an offender�s unique 

perception of his or her surroundings (Canter & Gregory, 1994). 

 The value of identifying a criminal�s spatial behavior can only be measured by the ability 

of a criminologist to extract some meaning from it.  If the patterns inferred from a series of 

criminal acts do in fact describe the spatial behavior of a serial offender, how can they be used to 

mitigate further offences?  In exploring the elementary characteristics of a crime, Felson and 

Clarke (1998) demonstrated that there must be a juxtaposition of three key elements to support 

the commission of a crime:  

• A willing offender;  
• A suitable target;  
• A location that is perceived to be absent of a capable guardian. 
 

Known as Routine Activity theory, the concept permitted an investigator to explore the 

characteristics of predatory crime by dissecting it into its constituent elements (Figure 2.1).  Most 

Routine Activity theory analysis begins by assuming the presence of a willing offender.  As 

such, more effort can be focused on examining the relationship that exists between the victim 

and crime scene(s). 

The concept of a target, while integral for the occurrence of a crime, is not entirely a 

significant spatial element in terms of geographic analysis.  This is because potential targets can 

be distributed across numerous locations, referred to by Rossmo (2000) as the �target backcloth.�  
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of Offender and Victim Activity Space 

Figure 2.1 Routine Activity Theory (Rossmo, 2000) 

However, it is the absence of a capable guardian which represents the non-random, geographic 

circumstances from which crime occurs.  As such, the location of the offence represents the 

shared environment where the criminal�s awareness space intersects the target backcloth 

(Brantingham & Brantingham, 1981, 1984). Spatially, this intersection implicates a location 

where the offender is comfortable enough to commit the offence (Canter & Gregory, 1994).  As 

such, Routine Activity theory supports the concept that crime opportunity can manifest itself in 

the normal activities of everyday life.   

While Routine Activity theory does support observations that criminal opportunity can 

exist anywhere within the offender�s awareness space, an offender does not necessarily choose 

crime sites randomly.  Although any given target may be selected by chance, the process of 

selection is spatially structured whether the offender realizes it or not (Rossmo, 2000).  As 

presented earlier, the landscape in which objects and events exist is ultimately dictated by 

numerous objective and subjective conditions.  When explored geographically, the processes 

used for target selection will actually reveal patterned structures that describe the offender�s 

objective space, a concept known as Crime Pattern theory.   
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 Another concept of Environmental Criminology is the Rational Choice theory.  As 

demonstrated in Routine Activity theory, target selection occurs wherever the awareness space of 

an offender overlaps the awareness space of a suitable target (Brantingham & Brantingham, 

1981).  Therefore, one can infer that the inherent environmental structure of an offender�s 

established activity space will ultimately control where a crime occurs. That is, target selection 

becomes a dynamic process dictated by the spatial interactions and conditions between offender 

and target spaces.  Accordingly, the occurrence of a crime represents a location within the 

offender�s awareness space.  However, it must be noted that potential targets are not considered 

an abstract entity within the offender�s awareness space.  Instead, research suggests that the 

perceived relationship between target and the environment must be assessed by an offender and 

deemed an acceptable opportunity before a crime can occur (Brantingham & Brantingham, 1984; 

Canter et al., 1993, 1994; Rossmo, 2000).  This process represents the theory of Rational Choice; 

which postulates that criminal behavior is an outcome of decisions that are influenced by rational 

consideration of the efforts, rewards, and costs associated with the crime (Brantingham & 

Brantingham, 1984). As such, Rational Choice suggests that the criminal�s decision to commit a 

crime will be assessed based on the perceived benefit and opportunity for success.  This also 

suggests that a criminal can learn from past experiences in order to develop new strategies and 

improve his or her decision making skills (Canter et al., 2000). 

  Canter and Gregory (1994) extended the concepts of Crime Pattern and Rational Choice 

by applying the theories to analyze the spatial characteristics exhibited by forty-five serial rapists 

in the United Kingdom (UK).  Their observations revealed a hierarchical approach to target 

selection whereby crime scene locations exposed the offender�s target selection preferences, or 

hunting area.  Their research found that the occurrence of rape could be differentiated as either 
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inside or outside the offender�s activity space.  A majority of crime scenes (86%) were found to 

occur inside the offender�s activity space.  These offences were often characterized as 

premeditated attacks typically committed by offenders with previous criminal history. Canter 

classified this type of localized offender as a �marauder.�  Conversely, a minority of offences 

(14%) were found to occur outside the offender�s activity space. These offences were 

characterized as opportunistic, and often the result of little to no planning.  Canter defined this 

type of mobile rapist as a �commuter.�    

 Canter and Gregory�s findings confirmed a predominant characteristic identified by the 

Brantingham�s (1981) which suggested that the majority of criminal acts are spatially dependent 

upon proximity to the offender�s activity nodes.  As the offender moves further away from his or 

her activity nodes, the occurrence of criminal activity decreases. Concordant findings were 

obtained by Rhodes and Conly (1981) whose research observed reluctance by criminals to travel 

far from their residence.  Furthermore, LeBeau (1987) notes that property crime commutes tend 

to be further than personal crime travel.  All told, the empirical evidence supports the concept 

that criminal behavior is influenced by least effort principle.  In fact, Canter and Godwin (1997) 

observed that US serial offenders often disposed of their victim�s bodies closer to their activity 

nodes as the series of offences progressed.  Because the commission of crime is tied to its 

proximity to an offender�s activity nodes, Canter and Gregory (1994) proposed that target 

selection characteristics could be used to define an area whereby an offender perceives a balance 

between maximum opportunity and minimum risk.  Canter would refer to this area as the 

criminal�s safety zone.  

The Brantingham�s (1984) identified the region as the offender�s Buffer Zone; an area 

surrounding a particular activity node, most notably the residence, from which little to no 
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criminal activity will be observed.  Newton and Swoope (1987) proposed this characteristic as 

the �coal-sack effect� whereby the offender, either intentionally or otherwise, avoids committing 

an offence in particular areas surrounding his or her residence.  Presumably, such an area would 

represent an elevated level of risk associated with operating too close to the home.  Notably, the 

Buffer Zone is seldom observed for spontaneous and/or passion crimes (LeBeau, 1987).  

Conversely, research suggests that such a zone will most likely occur for predatory offences 

which can be characterized as pre-meditated (Canter & Larkin, 1993).  A specific consideration 

for the existence of the buffer zone is that it may not always be applied around the offender�s 

residence.  Referred to by Newton and Swoope (1987) as the criminal�s �haven,� this particular 

activity node could represent any single or shared (i.e. home and work) location in the criminal�s 

routine activity space. The idea of a safety zone, however, can be misleading in that some 

criminal activity may exist if the offender perceives conditions and circumstances to be favorable 

for the commission of a crime (Rossmo, 2000).  This rational was supported by Canter and 

Godwin (1997) for US serial offender body dump sites. Other examples can include peeping, 

stalking, and other illegal surveillance activities. 

 Support for the existence of buffer zone-like features can be observed quantitatively.  

Rossmo (2000) suggests that there may be a positive linear relationship between the number of 

potential targets and the distance an offender is willing to travel from the haven.  Accordingly, 

when combining the linear increase in opportunity with the decrease in travel desire, a 

criminologist should be able to observe a buffered distance decay function (Rossmo, 2000).   

This application was revealed by Canter and Larkin (1993).  Using regression equations, the 

researchers were able to approximate a one-kilometer buffer zone around the havens of UK serial 

rapists.  Rossmo (2000) notes that such zones also existed for similar studies of US and UK 
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serial killers (see also Canter and Godwin, 1997); and Levine (2002b) cites similar 

characteristics for various offences in the US.   Such a linear increase, however, assumes an 

equally available distribution of opportunities and targets.  As noted by Gore et al., (2001, 2002), 

making assumptions about such a homogeneous distribution can be problematic, potentially 

distorting the models effectiveness when estimating offender travel behavior.  However, 

anisotropic environments can be accommodated within available modeling applications by 

incorporating the various qualitative constructs thus far presented.  An offender�s hunting 

ground, target selection, spatial travel preferences, and buffer zone can be estimated using 

available geographic modeling applications.  As proposed by this thesis, these elements can be 

modeled by calculating the measurable travel characteristics expressed by the distribution of a 

serial offender�s known, linked crime scenes.  To accomplish this task, criminologists utilize one 

of the most significant modeling applications available: journey-to-crime. 

2.3  Journey-to-Crime Modeling 
 
 Prior to the availability of geographic profiling applications, criminologists exploring the 

geo-spatial relationships of serial offences typically relied on the proven analytical algorithms 

associated with journey-to-crime modeling.  For years, the journey-to-crime approach has been 

used to estimate the likely point of origin of a serial offender based on the properties associated 

with the distribution of crime incidents (Levine, 2002a).  As a modeling technique, journey-to-

crime is established on research that shares much of its core analytical functionality with 

traditional travel demand models developed for transportation planers (Biemborn, 1995).  It uses 

the measured distances between known crime sites and an offender�s known residence in order to 

identify travel behavior. These measures are statistically aggregated and typically plotted to 

illustrate the percentage of crime for a given distance unit. These techniques have traditionally 
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been implemented by analysts to provide an empirical foundation for quantifying the travel 

characteristics of a given community�s criminal population.  Many contemporary criminologists 

utilize some variation of journey-to-crime model results in order to obtain or verify specific 

criminal spatial characteristics.  These characteristics provide a basis for developing new 

analytical processes and mitigation techniques.  In terms of its descriptive statistical capabilities, 

journey-to-crime models are dependent upon numerous conditions, including the scale of 

observation.  As noted by Ratcliff (2001), traditional journey-to-crime techniques were founded 

from sociological research developed from the Chicago School of the 1920s.  Using the Burgess 

zonal model, journey-to-crime characteristics were analyzed at a macro level (Harris & Lewis, 

1998).  However, the predictive capability of this technique is notably suspect due to the high-

levels of data aggregation and ease of misinterpretation (Gore et al., 2002).  Contemporary 

methods, however, utilize a micro level, intra-urban approach to modeling offender travel 

characteristics (Gore et al., 2001, 2002).  At this scale, residence-to-offence (origin to 

destination) travel characteristics reveal the inherent spatial patterns associated with an 

offender�s travel behavior within an ecological construct (Brantingham & Brantingham, 1981, 

1984; Biemborn, 1995, Anselin et al., 2000).  Some of the more commonly utilized algorithms 

implemented for journey-to-crime include: mean and median distance measures, medial circles, 

mobility triangles, and distance decay algorithms, to name a few (Rossmo, 2000).  Each 

approach is associated with its own unique qualities.  Selecting the most appropriate modeling 

application will depend entirely on the characteristics of the environment in which a crime 

occurs; usually requiring a trial-and-error approach (Levine, 2002a). Understanding the 

characteristics of the various journey-to-crime models can aid in the decision making process.  

As such, brief overviews of these techniques are provided below. 
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 The mean and median analytical techniques are founded on the centrographic models 

discussed earlier.  These models essentially identify the optimal location for a given distribution 

of events where the travel distance is minimized for all locations. It must be noted, however, that 

the mean and median techniques often result in a limited interpretation of travel behavior. This is 

due to their susceptibility to spatial outliers and assumption of isotropic surfaces.  Furthermore, 

these techniques often aggregate offenders into single groups, thus assimilating their unique 

spatial characteristics; resulting in average travel distances for an entire population at the 

expense of an individual distinctiveness.  The second technique, Medial Circles, utilizes circle 

theory to define an area around the occurrences of each offence in order to identify and develop a 

list of likely suspects.  Each circle�s radius is defined by journey-to-crime measures of like-crime 

types.  While accommodating for uniqueness of the different crime types, it often fails to account 

for suspects that may offend and or reside outside the circles� radii.  The third approach, Mobility 

Triangles, examines the relationship between offender residence, target location, and crime scene 

in order to solve crime.  While this approach demonstrates value for modeling offender-target 

spatial behavior, it over-emphasizes the importance of the target�s location, which may or may 

not be a factor for offender mobility.  This is easily demonstrated by the characteristics of auto 

theft and narcotics cases, both of which demonstrate dynamic behavioral characteristics whereby 

target selection and criminal opportunity are not easily predicted and often spontaneous.  The 

fourth, and most effective technique for journey-to-crime analysis, is the distance decay 

algorithm. 

 Distance decay algorithms, like many geographic analytical measures, are quantitatively 

rooted in center of gravity functions based on Isaac Newton�s fundamental law of attraction 

(Equation 2.2).  As cited by Levine (2002a), traditional Newtonian gravity models calculate the 
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attraction, F, between two bodies, M1 and M2, separated by a distance, D. The equation appears 

below: 

where g, represents the gravitational constant.  The term, �distance decay� characterizes how the 

attraction between two bodies decreases as the distance between them increases. The concept 

characterizes how individuals typically prefer to produce short commutes rather than long trips 

for the normal travel activities of their every day lives (Harries, 1999).  This qualitative concept 

demonstrates how journey-to-crime is also associated with Least-Effort Principle. Transportation 

planners typically use distance decay functions within their mathematical models that simulate 

human travel characteristics (Biemborn, 1995; Levine 2002a).  In terms of its usefulness for 

modeling criminal mobility, distance decay can be used to represent how a criminal offender 

travels within his or her awareness space.  As cited earlier (see Section 2.2), contemporary 

literature has observed a prominent distance decay effect whereby criminal activity decreases as 

the distance from the offender�s residence increases.  Brantingham & Brantingham (1981) cite 

research from the 1950s which observed that 40% of Houston homicides occurred within one 

block of the offender�s residence; and 74% of the total occurred within 2 miles.  Capone and 

Nichols, (1976) found that personal robberies generally occurred close to the offender�s 

residence, while property theft occurred further away.  This differentiation between personal and 

property offences was also observed by LeBeau (1987), who found that most personal crime 

offenders, serial rapists, perpetrated offences within approximately two miles of their haven, 

where as property crime offenders traveled further away.  Similar results were obtained by 

Canter and Larkin (1993) who found that the amount of distance decay was more pronounced for 
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sexual assaults than for other offences.  These findings were further supported by a Federal 

Bureau of Investigation (FBI) report (Warren et al., 1995) which indicated that the first attack in 

a serial homicide was most likely to occur closest to the offender�s home.  Based on these and 

other empirical studies noted earlier, it is generally accepted that journey-to-crime behavior can 

be described by these basic characteristics (Rossmo, 2000):  

1. Crime occurs in relatively close proximity to an offender�s haven, often within one mile 
of the offender�s residence (McIver, 1981, Rossmo 2000). 

 
2. Criminal offences follow some type of distance decay pattern, where the number of 

crimes decreases as the distance from the offender�s residence increases (Brantingham & 
Brantingham, 1984). 

 
3. Property crime distances are often observed to be longer than personal/violent crime 

distances (Capone and Nichols, 1976). 
 

4. Personal offences typically demonstrate a buffer zone effect where little to no activity is 
observed surrounding the offender�s haven (Brantingham & Brantingham, 1984; LeBeau, 
1987; Newton & Swoope, 1987; Canter & Larkin, 1993).   

 
As noted by Capone and Nichols (1976), the average distance an offender is willing to travel will 

vary according to the crime type, method of offence, time of day, and value of the target (see 

also Felson and Clarke, 1998).   

 The theoretical construct from which these journey-to-crime characteristics were derived 

are found within the context of Environmental Criminology discussed earlier.  Accordingly, 

these characteristics are best understood as they relate to the combination of Least-Effort 

Principle and Rational Choice theory.  Just as an individual will likely their optimize travel long 

to purchase a gallon of milk, an offender will likely optimize the commit an offence.  However, 

journey-to-crime modeling is bound by certain assumptions and limitations.  First, the distance a 

criminal is willing to travel is conditioned upon the perceived notions of success and benefit to 

one�s self, and the awareness of other opportunities.  As demonstrated by Rational Choice 



 28

theory, an offender�s journey-to-crime will ultimately be based on availability of a suitable 

target, opportunity for success, and perceived level of risk (Brantingham & Brantingham, 1981, 

Felson and Clarke, 1998).  And while, these patterns will reveal observable geographic structures 

whereby the offender confines his or her activities to known areas, they cannot preclude the 

possibility that an offender�s journey-to-crime will increase, or decrease, over time.  

 Variability associated with the distance a criminal is willing to travel represents another 

observable condition for journey-to-crime.  As suggested by Canter and Larkin (1993), as an 

offender�s criminal career matures, the offender�s activity and awareness spaces increase.  Thus, 

the offender�s willingness to travel further away from his haven(s) intensifies.  In circumstances 

such as these, marauding characteristics that may have been assigned to a static offender must be 

reconsidered in favor of those of a commuter.  However, this concept could also be applied in 

reverse.  Canter proposed that as the serial offender becomes more confident in his or her 

abilities, the target selection pattern may become less specific, and thus moves closer to the 

haven. This bold (or lazy) behavior, associated with criminal maturity, could correlate with 

Canter�s (1993) observation of increased violent behavior as offences moved closer to the haven.  

In their research of 54 US serial killers, Canter & Godwin (1997) observed that as the series of 

offences progressed, the location of body dump sites moved closer to the offender�s residences. 

This finding supports the Environmental Criminology concept that criminal acts increasingly 

become a part of the offender�s daily life. Numerous circumstances can provide reasonable 

explanations for the change in target selection pattern.  However the condition from which 

journey-to-crime measures a distance the offender will travel is ultimately defined by the 

offender�s subjective interpretation of his or her activity space.   
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 This third condition proposes that the journey-to-crime distance is a perceived notion that 

is not likely measured by the offender.  As demonstrated earlier (Figure 1.2), when taking the 

interstate to commit a crime as opposed to a congested surface street, the actual distance traveled 

may be further than the distance the offender perceived.  In this sense, the time traveled between 

destinations using the interstate was characterized by less impedance, fewer starts, stops, and 

turns that would normally be associated with a surface route. Consequently, distance can be 

perceived differently by different offenders, dependent upon route selection.  As such, journey-

to-crime models should be calibrated for homogeneous populations which will more often 

perceive like-conditions within similar contexts. Accordingly, a serial rapist is less likely to 

perceive distances, and likewise target opportunity, in the same manner as a serial burglar.  

However, this cannot preclude that either criminal type could change their method of operation. 

 A final condition for journey-to-crime is related to the taxonomy of the serial offender 

examined.  Discussed in greater detail later, journey-to-crime models assume that the serial 

offender operates from a static activity node. However, certain circumstances exist in which the 

offender may not operate from a static haven.  Noted by Rossmo (2000), convicted criminals 

tend to be less residentially stable than non-criminals, and psychotics have been observed to be 

particularly nomadic.  Canter and Larkin (1993) found that while most sexual offenders were 

marauders, a significant number were identified as commuters.  As noted by Newton (1987), the 

ability to develop a meaningful geographic estimate of a serial offender�s haven is dependent 

upon the mobility characteristic of the offender.  Because most serial offences go undiscovered 

(or lack the necessary association to a crime series) by an investigation, a collection of linked 

crime sites can be difficult to achieve.  Consequently, a too-small sample of criminal features can 

reduce the overall effectiveness and investigative reliability of the analysis.   Furthermore, the 
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operational characteristic of a mobile activity node can further hinder the investigative 

capabilities of geographic analysis, as demonstrated by both the �D.C. Serial Snipers� and �South 

Louisiana Serial Killer� cases during 2002 and 2003. 

2.4  Distance Decay Functions 
 
 In an effort to understand the underlying significance of distance decay effect for 

criminal activity, various theoretical models have been suggested based on existing migration 

algorithms and intervening opportunity theory; which are founded on the ecological context of 

Sir Isaac Newton�s gravity function (Levine, 2002a).  Rengert (1981) developed a mathematical 

equation that defined journey-to-crime based on a modified general opportunities model (Gore et 

al., 2002; Levine 2002a):   

where the probability, P, that an offender from zone i, committed a crime in location j is related 

to the product of the enumerated number of trips produced (emissiveness) from the origin, Ei, 

and the number of potential targets (attractiveness) at the destination, Vj, for travel cost, f(dij) 

(Levine, 2002a).  Basically, this model theorized that the probability an offender would commit a 

crime at a given location is entirely dependent on both the production cost, what Rengert called 

emissiveness, and the attractiveness for that destination.  Rengert�s cost value is an undefined 

functional distance metric that is, presumedly, a straight-line Euclidean measure of the distance 

between origin and destination. While not empirically defined, the hypothetical results of his 

model were compared against observed burglaries in Philadelphia, PA in order to measure its 

effectiveness.  As noted by Gore et al. (2002), the theoretical value of Rengert�s model is that it 

can be used to predict crime patterns for locations that have empirically quantified the observable 

travel production and zone attractiveness; essential components used within travel demand 
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models.  Conceptually, the model presents a sound foundation for modeling offender hunting 

behavior by quantifying the production from the origin, attractiveness of the destination, and cost 

of the commute.  By allocating offender trip behavior according to origin, destination, distance, 

mode, and path, this formulation stands out in its ability to account for the available opportunity 

a particular destination has over another potential destination.  In doing so, it addresses the 

elements of routine activity theory and intervening opportunities, making the model more 

complete.  To operationalize the formula, as Levine (2002a) states, consideration must be made 

for the method of travel.   

 Because gravity formulas have traditionally been utilized by journey-to-crime models, 

Levine (2000a) cautions that, as the distance between locations decreases, the gravity equation�s 

denominator will approach infinity thus making it suspect for crimes that are dispersed over short 

distances (see Equation 2.1).  Fortunately, a number of alternative functions are available that 

can effectively measure the observable distance decay characteristics of a criminal�s journey-to-

crime. Brantingham and Brantingham (1981) suggested a buffered normal function could be 

used to describe a criminal�s distance decay following the hypothetical Buffer Zone.  However, 

Rhodes and Conley (1981) observed that a negative exponential distance decay curve exhibited 

the best fit when used to characterize the distribution of events relating to serial burglars, 

robbers, and rapists.  Levine (2000a) provides a detailed list of various theoretical and 

mathematical modeling functions used by transportation researchers that include Linear, 

Negative Exponential, Normal, Lognormal, and Truncated Negative Exponential distance decay 

curves, among others (Figure 2.2).  Each function possesses various characteristics that can be 

utilized by journey-to-crime models.  For example, the Normal, Lognormal, and Truncated 

Negative Exponential are algorithms that characterize how the spatial distribution of criminal 
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activities reaches a peak a certain distance away from the haven before exhibiting a decay as the 

distance from the origin increases.  This type of function, most notably the Truncated Negative 

Exponential, is often used to describe the presence of the Brantingham�s proposed buffer zone 

effect. 

Only recently have researchers investigated the effectiveness of the various different 

distance decay formulae for estimating the offender�s haven (Canter et al., 2000). While Levine 

(2002a) provided a comparative evaluation of the different models utilized within the CrimeStat® 

software, the results failed to overwhelmingly endorse any particular algorithm. Citing the 

additional research by Taylor, Snook, and Bennell (2002), Levine (2002a) acknowledged that no 

significant difference was observed in measuring the effectiveness of either the negative 

exponential or truncated-negative exponential functions for estimating offender residency.  In 
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some instances, research has suggested that distance decay may actually work in reverse.  

According to Godwin�s (1996) findings, the further American serial killers traveled from their 

haven, the greater the frequency of murder.  While these findings appear to be unique, it does 

place credence on the suggestion that the current models are overly simplistic (Levine, 2002b). A 

consistent criticism for distance decay is that they fail to directly accommodate for intervening 

opportunities. As Levine (2002b) notes, the attractiveness exhibited by a destination should be 

enumerated in order to provide a more realistic model of human behavior. Furthermore, most 

mathematical distance decay functions assume isotropic landscapes, a characteristic that has been 

demonstrated as being impractical. As such, empirically describing a criminal�s journey-to-crime 

provides for a more adequate method of modeling offender behavior.  As it will be demonstrated 

later in this thesis, the distance decay observed for most crime trips are irregular, and are more 

appropriately modeled using calibrated distance functions. In fact, most modeling techniques 

used today incorporate some variation of a calibrated negative exponential function due to its 

mathematical stability as distance measures approach zero, and its observed fit for given 

distributions of criminal journey-to-crime.    

 As it has been demonstrated continuously throughout this research, the process of 

modeling human spatial behavior involves quantifying various, complex subjective and objective 

characteristics that are shared between the offender, target, and environment. As such, the 

interaction between the various elements involved in the commission of a crime requires a 

combination of sophisticated algorithms which incorporate special processes capable of 

integrating various concepts of Environmental Criminology within models used by journey-to-

crime. Given the difficulties associated with modeling serial target selection, a more 

comprehensive theory of journey-to-crime should incorporate some enumeration of the 



 34

subjective biases attributable to an offender (Brantingham & Brantingham, 1981; Rengert, 1981, 

see also Levine, 2002a).  By most estimates, geographic profiling applications can better model 

these elements.  

2.5  Geographic Profiling 
 
 As established earlier, the distribution and associated patterns of linked crime sites are 

clues left by an offender that describe the geographic behavior associated with a criminal.  Such 

analysis represents a primary application of contemporary Environmental Criminology: the 

process of exploring the relationship crime shares with target and place in the context of the 

immediate landscape.  Accordingly, these clues represent the elements of how an offender�s 

perceives his or her immediate awareness space and the distribution of potential targets 

(Brantingham & Brantingham, 1984).  For each successive offence, these clues can be examined 

and combined, refining the investigators understanding of the offender�s travel behavior.  As 

noted by Cantor and Gregory (1994), understanding the unique characteristics of where an 

offender has been will ultimately lead to the discovery of where the offender will be.   

Accordingly, exploring the geographic hunting strategies of an unknown serial offender, defined 

by the distribution of linked crime sites, can provide valuable resources for the successful 

apprehension of the perpetrator (Rossmo, 2000; Levine 2002a). When combined with the geo-

statistical modeling capabilities of a GIS, these techniques form the basic analytical 

methodologies associated with modern geographic profiling (Harries, 1999). 

Geographic profiling is a decision support tool used by law enforcement to make 

estimates about the likely location of a serial offender�s haven (Rossmo, 2000; Godwin, 2003).  

By providing an empirical foundation for identifying offender characteristics, geographic 

profiling is capable of producing intelligence resources not before thought possible.  In many 
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ways, it extends beyond the theoretical constructs of Environmental Criminology to support the 

actual criminal investigation by augmenting existing strategies and creating new opportunities 

for offender apprehension. Law enforcement can use geographic profiling models to maximize 

limited resources and create investigative strategies that focus on those locations that possess 

significant likelihood of being a part of an offender�s hunting area (Canter et al., 2000).  In 

certain circumstances, geographic profiling can also be used as a forensic tool capable of 

verifying the existence of a serial offender.  As noted by Newton & Swoope (1987), the regional 

patterns of �normal� criminal offences can be used to identify anomalous patterns of a serial 

offence.  Canter (2000) supports this as well, noting that linkage techniques augmented by 

geographic analysis can reveal the existence of unique offender signatures or distinctive MO�s 

that innately describe serial offences. 

Like journey-to-crime models, geographic profiling works on the assumption that a 

relationship exists between crime locations and the activity nodes within the offender�s 

awareness space (Rossmo, 2000).  As such, that relationship can be modeled on some form of 

distance decay function.  This represents the conceptual framework for a geographic profile, a 

process that incorporates behavioral analysis and mobility studies (Levine, 2002a). The various 

techniques applied can be categorized into two distinct methodologies, both qualitative and 

quantitative, that build upon the theoretical construct of Environmental Criminology and the 

descriptive statistically techniques of journey-to-crime modeling.  Qualitative methodologies 

incorporate analyses that examine the sociology of criminal activities (Brantingham & 

Brantingham, 1984; Newton & Swoope, 1987).  This approach combines the various theories of 

Environmental Criminology by providing a process from which inferences can be made about an 

offender�s behavior, the target, and the elements of an attack based on the distribution 
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characteristics of the various crime sites (Newton & Swoope, 1987; Canter et al., 2000; Godwin, 

2003).  The ecological analysis developed from these methodologies creates a picture of how the 

offender understands his or her activity space in context to his or her cognitive map 

(Brantingham & Brantingham, 1984).  Quantitative methodologies build upon the basic 

qualitative typologies above, to provide mathematical models that focus on the statistical 

relationships of a spatial distribution of crime events. Accordingly, these techniques provide an 

empirical foundation and scientific basis for developing an offender profile (Canter et al., 2000).  

As cited earlier, the approach uses the journey-to-crime mathematical models to examine the 

characteristics associated with human travel behavior (Beimborm, 1995).  As such, the 

predominant quantitative model used by geographic profiling applications is the distance decay 

algorithm discussed earlier.   

As the primary objective for creating a geographic profile, the ability to effectively 

estimate the likely residence, or haven, of the serial offender requires the integration of a 

complex set of ecological parameters and analytical models that can accommodate for various 

subjective and objective conditions.  Of course, there are many techniques available that can 

generate geographic profiles.  Rossmo (2000) notes that journey-to-crime estimates, mental map 

interpretations, Thiessen polygons, and other analytical approaches can be, and have been, 

successfully applied for the geographic analysis of crime. Quite possibly the first application of 

geographic analysis for the detection and apprehension of a serial offender was developed by 

Louisiana State University Geography professor, Milton Newton.  Geoforensic Analysis, as it 

was referred to, was developed in order to provide an empirical foundation for making estimates 

about the haven of a �localized� (marauding) offender based on the characteristics of linked 

crime sites (Newton & Swoope, 1987).  Using geographic centers to model the distribution of 
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linked crime sites, Newton and Swoope created a geographic profiling technique which utilized a 

search radius that decreased with each new crime site.  The model was created in four steps 

(Newton & Swoope, 1987): 

1. A quadrilateral study area is defined by the distance measured between the latitudinal and 
longitudinal most extents of the known, linked crime sites.  Practically, the area 
represents hundreds of square kilometers of which any location within the area might be 
the offender�s haven. 

 
2. The geographic mean for each location is plotted on a map in successive order to 

represent the approximation of the haven 

where the X  represents the mean of all of the crime sites x-coordinates, and Y  
represents the mean of all crime sites y-coordinates for each crime scene according to its 
sequence, i in the total population of crime locations, N.   

 
3. A search radius of decreasing size, centered on the predicted haven, is based on the 

assumption that the predicted X  and Y  ought to move closer to the haven with each 
successive offence.   The search radius, R,  is measured by 

where the square-root for the product of the study area, Axy, represented by the distance 
measured between the furthest extents of the x and y coordinates, divided by π.  In order 
to reduce the size of the search radius after each successive offence, the radius value is 
divided by the total number of crime sites, N-1. 
 

4. Finally, after the fourth or fifth offence, a map is created to illustrate the predicted 
locations of a serial offender�s residence based on the geographic mean calculated using 
the sequential distribution of each crime scene.  Surrounding each successive location is a 
iteratively refined search area, a circle described by the algorithms calculating search 
radius. 

 
 Newton points out that the geo-forensic analysis of the dispersing localized serial 

offender requires a minimum collection of data characteristics; the location of each event (within 

100 meters), the chronological order of each event, and the professional support of the criminal 
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investigative process to ensure proper linkage between cases (Newton & Swoope, 1987).  An 

element not directly calculated within the equation is the area surrounding the predicted offender 

haven that lacks various clues and/or elements of a crime, the so-called �Coal-Sack Effect.� Like 

the proposed buffer zone, it is observed as an absence of offences observed on the resulting map.  

Furthermore, Newton references another significant pattern whereby the primary streets and 

network arterials that lead into the Coal-Sack Effect intersect near the estimated haven.  Newton 

and Swoope (1987) note that the analyst conceptually facing outward from the estimated haven 

can connect the routes with those believed to be used for by the offender. 

 Clearly, Newton and Swoope�s geo-forensic process demonstrates an intuitive process 

whereby the criminologist can explore the ecological factors that dictates how an offender can 

travel within his or her environment.  In fact, this author was able to develop a computer 

program, a script, of the geo-forensic model.  Because of the intuitive approach and simplistic 

implementation, the algorithm can be utilized for any jurisdiction. Furthermore, it provides a 

systematic approach for identifying the likely haven of the serial offender by iteratively 

examining the role of each successive crime site.  However, there are a number of problems with 

the process.  Most importantly, the search radius assumes an isotropic surface whereby any 

location within the radius has an equal opportunity for being the offender�s residence.  While 

Newton does acknowledge the significant impact the prevailing landscape has on the 

commission of a criminal act, there is no attempt to accommodate for such an anisotropic surface 

when estimating residency.  Because the algorithm uses simplistic descriptive statistics, it is 

susceptible to spatial outliers and edge effects. Considering the circumstances discussed earlier, 

the criminal who offends at various distances near and far from their activity space can 

ultimately distort the search radius values, resulting in search areas that become increasingly 
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larger after each iteration.   As such, the search parameter, which in itself can be considered a 

form of distance decay, is not empirically defined, and is, thus, pragmatic in conception.  Finally, 

the algorithm does not provide a measure to address attraction that any particular location may 

have for the offender.  As Routine Activity theory purports, criminal opportunity can exist for 

intervening locations.  The search area defined by the algorithm only infers opportunity based on 

the distribution of incidents. Despite the shortcomings, the model is a useful tool for 

investigations looking to identify new, or support existing strategies for mitigating serial crime. 

 Canter and Gregory (1984) expanded on the modeling framework created by Newton and 

Swoope, and the concepts established by Environmental Criminology to demonstrate how a 

simple geographic model can be used to indicate the residence of a serial rapist.  Referred to as 

the Circle Hypothesis, the researchers were able to accurately identify the residence of rapists by 

using the distance between the two furthest crime scenes as the diameter for a series of circles 

placed around first offence crime sites.  An average search area of 19 km2 was predicted by the 

model, which demonstrated its ability to assign priorities to preexisting suspect lists and utility as 

a geographic modeling technique.  However, the researchers admit that this technique was not 

precise enough to predict the likely residence of an offender (Canter & Gregory, 1984).   The 

model was unable to account for those locations that fall outside the circle.  As a result, the 

technique assumed that the only potential offenders are localized marauders, and as such exclude 

those potential locations outside the circle where a commuter offender may be present (Canter et 

al., 2000).  Despite the initial limitations, Canter and fellow researchers were able to develop an 

advanced application that became known as Dragnet®. 

 The Dragnet® geographic profiling application, developed by Canter�s Centre for 

Investigative Psychology in Liverpool, UK, addressed the limitations associated with Circle 
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Hypothesis to include the distance decay and buffer zone concepts identified by research in 

Environmental Criminology.  In doing so, Canter et al. (2000) proposed that each location 

around a crime site could be assigned a weighting value, its B-value, indicating the likelihood of 

it being the offender�s residence.  Taking the research developed by Rhodes and Conley (1981), 

Canter et al., (2000) proposed the use of a family of negatively exponential decay functions:  

where Y is the likelihood of an offender living at a particular location, α is an arbitrarily constant 

used to calibrate the values, x is the distance of that location from the offence site, β is the 

exponential coefficient, and N is the number of β values used to estimate the sensitivity of the 

model.  This new strategy provided a method for assigning an investigative search strategy using 

an easily applied five-step process (Canter et al., 2000; see also Levine, 2002a): 

1. A study area is defined by a rectangle 20% larger than the farthest extents of the known 
linked crime sites.  A matrix of 13,300 grid cells is imposed over the study area. 

 
2. A distance decay coefficient is selected, β, for the distance term, x, to determine the 

likelihood that any location within the study areas is the estimated home base of the serial 
offender.  The model uses a family of negative exponential decay equations (see Equation 
2.5) where the function number increased from 1 (β=10) to 19 (β=1/10) in order to 
represent a broad selection of various distance decay curves that may be observed within 
a sample (Figure 2.3). 

 
3. The measured distances for each cell to incident pair, x, is divided by a normalization 

parameter that adjusts all distances to a comparable range.  Because no two offenders will 
hunt for targets in the same way, two normalization parameters are used to adjust for 
different perceived activity areas: (a) Mean inter-point distance (MID), used to give equal 
weight to all distances (isotropic); and (b) the QRange, an index used to account for 
orientation and variability within landscapes (anisotropic).   

 
4. For each grid cell, the measured distance to the incidents is applied to the negative 

exponential function.  A coefficient, α, is assigned to calibrate the function between 0.0 
and 1.0 (to rank success), and model the effects of a buffer zone. The normalized 
likelihoods are summed for each incident to provide a prioritized search strategy. 

 

 xeY βα −=           β=1/10, 1/9, 1/8� 1, 2, 3� 10     (N=19)                      (2.6)
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Figure 2.3 Negative Exponential Functions: (1) β = 10; (2) β = 1/10 (Canter et al., 2000) 

5. Finally, a search cost index is defined by enumerating the proportion of the study area 
that needed to be searched in order to find the offender.  For example, if 30% of the 
defined area had to be searched before identifying the suspect(s), then .30 would reflect 
the cost.  

 
 Canter et al., (2000) provided additional capabilities to the algorithm in order to model 

the presence, or absence, of a buffer zone.  To model the zone, areas represented with constant 

B-values of 0 (buffer zone), or 1 (no buffer zone), are placed in front of the exponential function. 

For example, �steps� are used to model the presence of a buffer zone, areas surrounding the 

haven where criminal activity is non existent (B-value = 0); and �plateaus� represent the absence 

of a buffer zone (B-value = 1), an area surrounding the haven where there is the highest 

likelihood of criminal activity.  After a given distance, to a maximum of 4 units, the distance 

decay curve continues, represented by the family of negative exponential equations (Canter et 

al., 2000).  
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 In their analysis of 79 serial killers, the researchers were able to locate 100% of the 

offenders within the defined search area.  Detailed examination of the results found that the 

QRange normalization parameters provided the most cost effective search.  QRange produced a 

mean search cost of 0.11, or a search of 11% of the original study area before finding offender 

residency.  Additional research cited by Levine (2002a) demonstrated that for three sample 

populations of burglars, rapists, and murderers, more than half of the offender�s residences were 

successfully identified by Dragnet® within 15% of the defined search area. 

 As noted by Levine (2002a), Dragnet® has both strengths and weaknesses that must be 

considered by investigators.  Because the model is relatively easy to implement, and because it 

provides a consistent process for analyzing offender patterns, it is highly beneficial to law 

enforcement agencies as an investigative search strategy.  Furthermore, it provides a stable 

quantitative platform on which to model behavior, a process that is significantly more 

sophisticated than the earlier developed Circle Hypothesis.  However, the quantitative model 

used, negative exponential, is provisionally defined and lacks empirical calibration (Levine, 

2002a).  While the formula can be adapted (i.e. flexible) by implementing 19 possible 

computations according to the exponent, β, the function may not be the most suitable model for a 

given population. As cited earlier, most distance decay functions assume isotropic surfaces. As 

such, the model may only fit well for certain locations, failing in other. While the coefficient is 

used to ensure that the B-values never exceed 1.0 (to rank the potential costs), Gore et al. (2002) 

and Levine (2002a) note that the calibrated costs are susceptible to distortion as the population of 

incidents increases.  As such, the coefficient value should be calibrated to a known sample 

population.  Finally, the modeling algorithm, like its predecessors, fails to accommodate 

attraction and intervening opportunities that may exist between the offender�s residence and 
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incident location (Levine, 2002a).  While opportunity is inferred by the distribution of incidents, 

the same opportunity will not exist for different municipalities. As such, the model will need to 

be recalibrated for each jurisdiction in which it is used.   Notwithstanding these problems, 

Dragnet® is a powerful resource available to law enforcement in need of decision support 

strategies for the investigation of serial offenders.  Dragnet® represents significant advances for 

the application of geographic profiling. As an investigative tool, the Dragnet® objective to 

develop a search strategy sets it apart from many of its contemporaries.  

Another approach to the profiling construct was developed by Dr. Kim Rossmo of Simon 

Fraser University and the Vancouver Police Department, Canada.  In demonstrating the practical 

application of geographic modeling, Rossmo�s concepts and techniques focus attention on the 

processes that lead to the specific identification of an offender�s haven.  By incorporated the 

subjective and objective elements of a crime defined in Environmental Criminology, Rossmo 

(2000) developed a process in which geographic models were used to develop probability 

surfaces indicating the likelihood of an offender living at a particular location.  Called Criminal 

Geographic Targeting (CGT), the algorithm utilizes distance decay functions to describe the 

criminal hunting process expressed by a serial offender as he or she traveled between haven and 

crime scene.  The mathematics applied by CGT, similar to that of Dragnet®, represents the 

formulations defined by the Brantingham�s (1981) which proposed a criminal�s hunting strategy 

using an empirically defined distance decay curve that incorporates the theoretical buffer zone 

surrounding the estimated residence of the offender (Levine, 2002a).  In using an empirically 

defined distance decay algorithm, each location surrounding a crime can be assigned a weighted 

value that indicates the likelihood of that place as being the residence of the offender.  The model 
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has four steps that generate a probability surface which estimates where the offender likely lives 

(Rossmo, 2000; see also Levine 2002a):  

1. A rectangular study area defines a 40,000 pixel grid within which all crime locations are 
contained.  These locations represent various crime-related sites, such as the target 
encounter, target disposal site, and any additional sites known to be linked to the 
offender.  

 
2. For each grid cell, Manhattan distances are measured to each crime site. 
 
3. For each Manhattan distance measured from the grid cell to an incident location, two 

functions are evaluated:  
 

If the Manhattan distance (Equation 2.1) is less than a specified buffer zone radius, B, 
then: 

If the Manhattan distance (Equation 2.1) is greater than a specified buffer zone, B, then: 

where P is the probability of offender interaction for grid cell, i; n is the incident number 
summing to the total, C; Φ is a weighing factor; k is an empirically determined constant; 
g is an empirically determined exponent; f is an empirically determined exponent. 
 

4. The values are summed over each grid cell to produce a final score for each point.  The 
higher the score, the greater the probability that the cell contains an offender�s anchor 
point. 

 
 Unlike the Dragnet® model developed by Canter�s group, the CGT model is capable of 

estimating offender residency for incidents that occur inside and outside a defined buffer zone. 

The probabilities estimated for inside (B ≤ |xi�xn| +|yj�yn|) and outside (B > |xi�xn| +|yj�yn|) the 

buffer zone requires coefficient, k, and exponents, f and g, that are empirically determined.  

However, Rossmo does not provide insight into how these values are calculated, nor if the values 
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are used for each estimation.  They are, presumably, empirically enumerated from a population 

of known offender travel behavior (Levine, 2000).  For locations inside the buffer zone, the 

model uses a curvilinear function designed to fit an increasing distribution of criminal activity as 

the distance from the haven increases.  For those locations outside the buffer zone, CGT uses a 

classical gravity function characterizing a distance decay curve. 

 The preferred output is a three-dimensional surface model indicating the likelihood of an 

offender residing at a particular location.  As a probability surface, every cell of the grid is 

calculated so that it can be represented as an isopleth map, referred to as a jeopardy surface 

(Rossmo, 2000). Modeling the offender search area using the mathematics of a gravity model is 

consistent with the concepts proposed by Environmental Criminology. As mentioned earlier, the 

model is unique in that it distinguished two types of travel behavior � inside and outside the 

offender�s buffer zone (Levine, 2000a).  Furthermore, like Dragnet®, CGT provides a systematic 

approach for modeling the travel behavior of a serial offender in order to estimate the likely 

haven.  However, the model does present some problematic elements that may distort its ability 

to accurately provide haven estimations. 

 The first problem, as noted by Levine (2000a) is the reliance on Manhattan distance 

metrics.  As discussed earlier, the metric is a speculative measure that can lead to overestimated 

travel path distances when applied to locations were street networks are irregularly arranged.  

Additionally, the mathematical stability of the inverted distance decay becomes instable as the 

distance between grid-cell and incident approach zero. Also, the model makes no attempt (apart 

from the Manhattan metric) to accommodate for an anisotropic surface.  As such, it assumes that 

travel impedance is uniform for every direction. And finally, there is no attempt to address 

intervening opportunities or quantify attraction that any particular location may provide for the 
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offender�s hunting behavior.  Like the previous models, the distribution of incidents infers 

opportunity and attraction without specifically quantifying it. 

Building upon the conceptual framework of Canter�s Dragnet®, Dr. Maurice Godwin 

developed Predator®, a geographic profiling application that predicts offender residences, 

presumedly, using smallest space analysis (SSA) to represent where an offender resides. 

However, very little published information has been identified regarding how Predator® 

implements the models. According to Godwin�s web site (2003), the application appears to 

explore the distribution of crime events from angular positions, modeling criminal commutes by 

employing two location-allocation theories utilizing mean inter-point and straight-line distances 

between crime sites.  Based on these parameters, it appears the Predator® attempts to identify the 

point of minimum distance between distributions of crime sites measured by the unit-less SSA 

(Godwin and Canter, 1997). 

According to Godwin (2003) the advantage of Predator is that it can measure the angular 

position of a crime.  Noting results from an on-going research of approximately one hundred 

serial killers, Godwin (2003) observes that crime locations were found to occur between 90 and 

145 degrees from the offender�s residence.  As such, this can significantly support how a 

criminologist can direct its investigative strategies. Godwin further notes that, unlike 

contemporary geographic profiling applications, Predator® does not assume a Buffer Zone but 

will allow for it when analyzing initial target-offender interaction.   

Contemporary techniques and the application of geographic profiling are further 

championed and enhanced by the contributions and research efforts of dozens of practitioners 

and scholars that include Snook (1999), Gore et al. (2001, 2002).  Research continues, 

integrating the theoretical concepts and modeling techniques from various fields in order to 
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improve the fundamental application of estimating an offender�s haven.  These efforts have 

brought about the development of a group of significantly powerful profiling applications that 

are available for law enforcement agencies around the world.  While the most influential 

techniques include those already discussed (Dragnet®, CGT, and Predator®), many other 

analytical methodologies and software applications are gaining popularity, each providing 

significant value to the investigation of serial crime.  

Some research suggests that the concept of a geographic profile should be considered 

separate from other forms of geospatial criminal investigative analyses (Rossmo, 2000; Levine 

2002a).  The argument proposes that geographic profiling incorporates sophisticated quantitative 

and qualitative components that set it apart from the more statistically descriptive approach like 

that of journey-to-crime.  However, it is this author�s position that segregating the very tools that 

ultimately serve the same application is a mistake. The objective of any geographic investigation 

of crime is to provide a model that can be used to mitigate, and ultimately apprehend, an 

offender. Levine notes (2002a) that understanding the psychological process associated with an 

offender�s spatial behavior does not necessarily produce better predictions of the haven. 

Continuing, Levine notes that quantitative models are often provide a more suitable framework 

for predicting human activity than qualitative models (Levine, 2002a).  Accordingly, Rossmo 

(2000) lists a number of techniques that have been successfully applied as a geographic profile, 

including temporal distribution analysis, journey-to-crime estimates, mental map interpretation, 

and Thiessen polygons.  These and other subjective and objective methodologies (see Gore et al., 

2002; Levine, 2002a, and Snook 2002) demonstrate success because of their application to the 

investigative process can be customized to fit the needs of a case (Rossmo, 2000).  However, 

both Newton (Newton & Swoope, 1987) and Rossmo (2000) warn that the most appropriate 
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interpretation of a geographic profile is best provided by an investigator capable of integrating 

qualities of the offender�s characteristics with the quantitative output.   Whether the model 

incorporates complex ecological elements of Environmental Criminology, or quantitative 

analytical algorithms of journey-to-crime, the ultimate function of a geographic profile remains 

the same: to provide a process whereby law enforcement is able to extract offender 

characteristics from offence characteristics. To do this, methodologies must effectively 

demonstrate flexible approaches to problem solving, capable of meeting the demands of the 

investigation. As such, geographic profiling should be perceived as a heuristic program for 

geographically modeling criminal behavior.   

2.6  Characteristics of a Serial Offender 
 

Rossmo (2000) warns that not all crime can be geographically profiled. Many different 

factors and ecological elements must be considered before the construction and subsequent 

interpretation of a geo-profile takes place. Research by Newton & Swoope (1987), Canter et al., 

(1993, 1994, 2000), and Rossmo (2000) demonstrates that those criminal characteristics most 

suitable for geographic analysis typically possess numerous linked crime sites. Accordingly, 

geographic profiling is primarily constructed for serial crimes, which include serial murder, 

serial rape and sexual assault, serial arson, serial robbery, serial exposures, kidnapping, and other 

crimes that possess unusual spatial characteristics (Rossmo, 2000).  This is because the 

distribution of multiple, linked crimes scenes provide the necessary elements for determining the 

patterns attributable to a single personality (Canter et al., 2000).  As such, Rossmo (2000) 

provides a series of basic conditions that are used to determine the utility of a geographic profile:  

• A series of linked crimes must have occurred; 
• There must be a minimum of five crime sites within that series; 
• The investigation warrants the effort and associated expense needed to produce a profile.
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Assessing the suitability for a geographic profile begins when an investigation is 

reasonably certain that a serial offender is present.  In a process commonly referred to as linkage 

analysis, investigators attempt to connect various crime scene elements to a single offender 

through the forensic exploration of evidence (Canter et al., 2000).  DNA testing, fiber analysis, 

and ballistics represent a small fraction of the numerous techniques available to the 

criminologist.  Once linked, the investigation must attribute each individual crime to a series.  

However, this does not necessarily confirm the acts of a serial offender.  In fact, the event 

associated with multiple crimes could be entirely circumstantial, which would no longer 

correspond to a notion of serial offender.  Therefore, what defines a serial offender?  Most of the 

definitive research on the subject of serial crime is devoted to serial murder, but can likely be 

applied to other serial offences.  Though arguably simplistic, most experts agree that a serial 

offender can be defined as an individual (or a collective group of individuals) who (Holmes & 

Holmes, 1998; Hinch & Hepburn, 1998): 

• Commits an offence on two or more occasions over a period of time, characterized by 
cooling-off intervals between each event; 

• Commits offences that lack a perceptible relationship with his/her target; 
• Chooses targets that lack a perceptible relationship with each other; 
• Commits offences with similar M.O. and patterns; 
• Commits offences that occur in different geographic locations; 
• Commits offences that appear to possess a psychological component;
• Commits offences that appear to only have symbolic value. 

 
Arguably, various elements of the list could be added or removed with relative justification. 

However, these components represent the underlying subjective and objective characteristics of 

what defines an offender who commits either personal or property crime. 

Once confirmed, a closer examination of the serial offender is needed in order to assess 

fitness for profiling. Supported by his research, Newton and Swoope (1987) proposed that serial 

offenders be classified based on the mobility and psychological qualities of their crimes. The 
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researchers argued that classifying offenders according to type is important because it provides a 

foundation for distinguishing serial crime from other crimes. As such, classification supports the 

criminologist by identifying the most appropriate investigative strategy based on the pattern of 

observable offences. Newton proposed that serial offenders be divided into broad categories: 

�mobile� (geographically transient) and �static� (geographically stable) (Newton & Swoope, 

1987; see also Holmes & Holmes, 1998). 

Mobile offenders commit crimes over large areas that cross cultural and psychological 

boundaries. These offenses predominantly occur outside the offender�s awareness space and 

involve complex hunting strategies.  A specific characteristic of a mobile offender is that his or 

her hunting area lacks a definable anchor point from which the offender operates (Rossmo, 

2000).  Conversely, static offenders commit crimes within a confined area, usually bounded by 

psychological barriers and landscape features.  Furthermore, static offenders typically operate 

within their awareness space as they travel between activity nodes. As such, the offender will 

likely have an anchor point (the haven) from which to operate. These characteristics have been 

observed and are supported by numerous published findings.  For example, in their study of 

serial rapists, Canter and Larkin (1993) classified an offender as either a commuter - an offender 

who operates outside his/her awareness space; or marauder - an offender who operates within 

his/her awareness space.  Holmes & Holmes (1998) cites research by Hickey (1997) that 

classified serial murder based on the mobility characteristics of the offender:  

• Local Killers � murders who offend within a certain urban area or single state; 
• Traveling Killers � offenders who commit murders while moving through or re-locating 

to other areas; 
• Place-Specific Killers � offender who kill within their own home, workplace or other 

significant site.
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As noted by Rossmo (2000), the primary assumption of a geographic profile is that the 

offender�s haven lies within the distribution of crime sites. Accordingly, mobility characteristics 

represent a critical element for providing effective geographic profiles.   For every crime site that 

can be attributed to a serial offender, the geographic profile�s accuracy increases. Accordingly, 

both Rossmo (2000) and Newton (Newton & Swoope, 1987) propose that a minimum of five 

distinct locations be identified for analysis. This is primarily due to the ecological relationship an 

offender shares with his or her environment.  For instance, when a localized serial offender 

(marauder) hunts within his or her activity space, he/she does so within a culturally, 

psychologically, and geographically homogeneous landscape. As such, that landscape upon 

which the offender basis his or her movement is contextually the same.  Therefore, the ability to 

model that offender�s movement between his or her activity nodes is more easily achieved 

because there are little variations in the limiting factors that control movement. Conversely, the 

dispersed serial offender (commuter) hunts across various cultural and psychological 

environments that result in a collection of continuously complex, heterogeneous landscapes. The 

activity space in which the commuting offender travels is not contextually consistent, and will 

often lack definable activity nodes.  It possesses dissimilar land-use policies, geographic 

features, cultural constructs, and so-on.  As a consequence, the ability to model offender 

behavior across heterogeneous ecologies is severely handicapped.  Any geographic profiles 

created for a non-localized offender will be founded on a diluted collection of crime sites that 

will most likely lack meaningful patterns due to the variability associated with the mobility 

limiters.  In this instance, geographic profiles developed for commuter-type serial offenders 

represent processes more inline with intellectual speculation (best guess) rather than empirical 

pattern identification. 
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CHAPTER 3. MATERIALS AND METHODS 
 

As demonstrated throughout this thesis, the primary function of a geographic profile is to 

estimate an offender�s likely residence.  This is achieved by effectively modeling an offender�s 

spatial behavior during his or her journey-to-crime.  These models are estimates derived from the 

patterns associated with the spatial distribution of crime sites. The characteristics of those 

patterns describe the complex spatial relationship an offender shares with his or her environment.  

As more information is added to the geographic profiling process, the crime patterns begin to 

define the activity space in which the offender travels � the offender�s geoprofile.  By integrating 

the theoretical concepts of Environmental Criminology, the analytical resources of GIS, and 

modeling algorithms used in transportation research, the criminologist can use the geoprofile to 

enhance investigative strategies and possibly identify the offender�s haven.  Accordingly, police 

departments have used geographic profiles to leverage existing resources more effectively by 

prioritizing suspect lists and concentrating patrol efforts for those districts that likely possess the 

offender�s estimated activity nodes.  Despite the advantages a geographic profile provides for 

law enforcement agencies, a number of factors remain unexplored which may contribute to a 

profile�s utility (Snook, 2000; Levine, 2002a).  

While it is clear that geographically profiling serial crime offers numerous advantages 

over the more traditional and intuitive center-of-gravity techniques (see Chapter 2), 

contemporary quantitative methodologies remain somewhat limited in their ability to accurately 

model offender mobility. The journey-to-crime modeling algorithms integrated within 

contemporary geographic profiling applications consistently fall short in their ability to 

effectively accommodate the objective and subjective qualities of a commuter�s travel path.  This 

is because most modeling algorithms traditionally use straight-line (crow-flight) Euclidean 
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distance measures.  Consequently, any interpretation of an offender�s commute within their 

activity space is fundamentally flawed because Euclidean models operate on the assumption that 

impedance is uniform for every direction.  As such, the models cannot accommodate for the 

inherent distance-variations exhibited by a particular transportation network.  A travel route 

selected by a commuter is almost always determined by a variety of subjective and objective 

conditions and circumstances that are not easily quantified.  As demonstrated by the least effort 

principle, commuters will optimize their travel in the most effective means possible.  

Accordingly, it has been observed that commuters will avoid those routes that are overly 

congested, unattractive, unfamiliar, and too long (Stea, 1969).  Therefore, an individual�s actual 

travel path will likely be selected and optimized according their subjective perceptions of the 

actual landscape.  The process of calculating the actual travel path and temporally optimized 

travel production is achieved utilizing function distance measures. 

Of particular interest for this research is the application of functional distance measures 

as technique for enhancing the predictive effectiveness of a geographic profile.  In the context of 

mobility, a functional distance is a metric used to represent the quantitative distance calculated 

between two locations (points), weighed by the subjective and objective qualities of the 

anisotropic landscape between them (measured by impedance).  Contemporary methods for 

measuring distances through urban environments has been traditionally achieved using 

Manhattan distance measure, discussed earlier (Chapter 1).  While it has demonstrated an ability 

to accommodate for travel within a grid-based network of roads, Manhattan distances are often 

characterized as providing exaggerated values which overestimate distances (Levine, 2002a). 

Furthermore, Manhattan distances are often unable to provide a realistic representation of the 

non-grid transportation network that describes many US and foreign cities.  Based on the 
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assumption that a commuter will optimize travel production for distance and time, this thesis 

proposes that the application of functional distances measures derived from actual travel-paths 

available can be used as an effective alternative for geographically profiling serial crime.   

The most direct process for calculating functional distances is achieved using network 

path analysis applications available for most contemporary GIS software packages.  However, 

these complex functions are known to be computer intensive.  As a consequence, network path 

analysis functions are susceptible to application and system failure when executed on systems 

that do not meet the minimum technical requirements established by the software publisher.  

Given the number of computations that will be required for this or any similar application, the 

operating environment will likely be a critical factor for success.  As such, an optimal computer 

configuration will be a determining factor for success when modeling functional distance 

measures.  

Addressing the limitations associated with the conventional use of straight-line Euclidean 

distance metrics, the practical significance of this thesis will examine the predictive utility and 

technological prerequisites for using functional distance metrics when estimating the likely 

residence of a localized serial offender.  For the purposes of comparative review, a test sample of 

simulated serial offenders will be geographically profiled using a standard (un-customized) 

workstation-class personal computer (PC).  The simulated offender�s haven, the sample subject�s 

residence, will be estimated using straight-line and Manhattan Euclidean, as well as the travel-

path and temporal-path functional distance measures. The predictive utility of these methods will 

be assessed in two ways.  First, the distance between the estimated residence and actual 

residence will be calculated to assess the spatial accuracy (in Euclidean distances).  Second, a 

more meaningful measure will calculate the geographic profile�s search cost, defined as the 
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extent of the total study area that must be searched in order to identify the offender�s residence.  

Upon examination of the results, this thesis proposes to demonstrate that:  

1. Travel-path functional distance measures can be used to effectively predict an offender�s 
residence.  By accommodating the anisotropic structure of a transportation network, 
modeling an individual�s likely journey-to-crime (Travel-Path) provides for a more 
realistic representation of a commuter�s distance than either straight-line Euclidean or 
Manhattan distance measures. 
 

2. Travel-path functional distance measures can be optimized using temporal cost values 
calculated for all available travel paths. By modeling mobility using the temporal 
impedance values attributed to all proposed travel-paths, an optimal commuter route 
(Temporal-Path) can be predicted and attributable to subjective notions of cost savings. 
 

3. The technological prerequisites necessary to accomplish these modeling techniques can 
be achieved using contemporary workstation-class computer technology, popularly 
available GIS and statistical software packages, and appropriately attributed 
transportation data resources. 

 
3.1  Modeling Environment 

 
In order to complete a comparative analysis, it is necessary to identify an appropriate 

modeling environment upon which this investigation will proceed. Accordingly, different 

geographic profiling modeling systems were examined in order to identify a suitable technique 

for this research.  Available methodologies varied from simplistic spatial distribution algorithms 

such as center-of-gravity, Circle Hypothesis, and Thiessen polygons, to more sophisticated 

models that included variations on the quantitative and qualitative methodologies found in CGT, 

Dragnet®, CrimeStat® journey-to-crime, and others mentioned earlier.  For the purposes of this 

investigation, an optimal geographic profiling model should meet the following criteria:  

• Demonstrate the fundamental utility of a geographic profile; 
• Demonstrate the ability to quantitatively model functional distance measures; 
• Provide a meaningful output that can be assessed for accuracy. 

 
While it can be argued that there are a limited number of models which are suitable for 

analyzing the distribution of serial crimes, it has been generally accepted that distance decay 
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functions represent the most effective technique for modeling criminal mobility characteristics. 

As examined in Chapter 2, the distance decay algorithm establishes that the number of crimes 

committed by an offender is inversely proportional to the distance from his or her residence, or 

haven. Working on the assumption that a relationship exists between crime sites and an 

offender�s haven, distance decay models make statistical predictions about the likely location of 

the offender�s activity nodes. Such predictions are based on the functions that provide the �best 

fit� for the observed journey-to-crime characteristics of a known sample of offenders.  

Furthermore, distance decay models utilized by traditional journey-to-crime analysis 

were functionally based on the Newtonian gravity model (see Equation 2.2).  A significant 

problem attributed to the traditional techniques is that as the distance between locations 

decreases, the mathematical function approaches infinity. Accordingly, criminologists developed 

more sophisticated models that incorporated various complex functions to ensure mathematical 

stability and provide improved performance.  Because the distance decay observed for human 

travel behavior is consistently irregular (influenced by numerous subjective and objective 

factors), selecting an appropriate model requires a pragmatic approach whereby the criminologist 

selects a function based on trial-and-error.  Consequently, little research has been published 

comparing the measurable effectiveness of any particular function for any particular type of 

crime data (Canter et al., 2000).  For this investigation, three distance decay functions were 

selected: logarithmic, negative exponential and truncated negative exponential.  These three 

functions were selected based on their ease of implementation and ability to represent the 

fundamental utility of contemporary journey-to-crime models utilized within geographic 

profiling applications. While a number of other decay functions could theoretically be utilized by 
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this investigation, no attempt was made to determine whether or not any one function performed 

better than another.  Such analysis is reserved for future investigations. 

In order to obtain the �best fit� distance decay function, each model is mathematically 

calibrated according to travel characteristics obtained for the study area.  When applied using 

journey-to-crime techniques, the calibrated distance decay functions are used to mathematically 

assign weight values for all locations within a study area.  These weights essentially form a 

density surface whereby the criminologist can make interpretations (i.e. a profile) about an 

offender, based on those areas predicted as being a part of their activity space.  The applications 

that best matches the requirements listed above include the CrimeStat® II journey-to-crime 

routine by Ned Levine and Associates (2002a), and Kim Rossmo�s Rigel� CGT (2000).  

However, as a proprietary software application associated with specialized prerequisites, 

including minimum training requirements (the Geographic Profiling Under-Study Program), the 

Rigel � CGT application is placed beyond the economic resources available for this investigation 

(Rossmo, 2003). Accordingly, the no-cost and easily accessible CrimeStat® II application is 

selected as an appropriate alternative for this research.  Accommodating for the complex 

mathematical and network-path modeling required to complete this analysis, additional 

applications are needed, which include:  

• ESRI® ArcView® GIS 3.3 
• ESRI® Network Analyst Extension 1.0b for ArcView®  
• SPSS® 11.0 for Windows 
• Microsoft® Excel® XP (v.10.0) 
• Microsoft® Access® XP (v. 10.0) 

 
All applications are executed using Microsoft® Windows® XP Professional, Service Pack 1 

operating system on an Intel ® Pentium® 4m, 1.70GHz PC workstation with 384 MB of RAM. 
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3.2  Test Subjects 
 

The sample data typically utilized for an investigation of this nature would normally 

incorporate crime data specific to both the study area and type of serial offence investigated.  As 

Levine (2002a) notes, geographic profiling models should be calibrated for the unique 

parameters that characterize specific criminal offences for specific jurisdictions. However, the 

acquisition of such data can be quite difficult, as noted by Canter et al. (2000).  Not surprisingly, 

this research was unable to obtain an adequate sample of serial offence data for its study area in 

Louisiana. However, an alternative approach was used for obtaining the sample data needed to 

complete this proof of concept.  To secure the necessary data, a travel-diary and commuter 

survey was distributed among various individuals of differing age, sex, race, education, and 

social status (Appendices A & B).  This alternative approach proved to be advantageous as it 

allowed this investigation to validate the conceptual procedures needed to analyze the research.  

Using a controlled sample of simulated offenders ensured that all data collected represented the 

actual travel behavior of an individual participating in a routine activity; data points would be 

valid; and test subjects could be interviewed for supplemental information (e.g. travel survey).  

These are critical elements that cannot be guaranteed to be as accurate when obtaining data from 

incarcerated offenders, who often provide exaggerated and often false statements (Hinch & 

Hepburn, 1998, Canter et al., 2000). 

The decision to use non-criminal data is supported by concepts published in popular 

literature. Canter et al. (2000) note that the process of geographic profiling can be applied to any 

series of activities that posses geographic locations. As noted earlier, a major concept of 

Environmental Criminology theorizes that crime is an integral component of an individual�s 

routine activities carried out in their daily lives (Felson & Clarke, 1998). Accordingly, 
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Brantingham & Brantingham (1984) note that crime can be expected to emerge from an 

offender�s non-criminal activities; as opportunities present themselves. Appropriately, the 

process in which a criminologist investigates a crime, therefore, incorporates the examination of 

how an offender interacts with their environment. Demonstrated consistently throughout this 

research are the concepts that reveal how humans consistently express predictable patterns of 

movement. Therefore, the processes and the decisions associated with movement cannot be 

expected to differ drastically, regardless of the nature (criminal or non-criminal) of an 

individual�s activity.  As Newton notes, the geographic habits expressed by a serial offender are 

no more or less disorderly than those exhibited by anyone else (Newton & Swoope, 1987).  So 

long as a relationship exists between a point representing an origin and a point representing a 

destination, a geographic profile can be modeled using some form of distance decay function 

(Rossmo, 2000). 

Meeting the requirements detailed above, a sample of law abiding residents of East Baton 

Rouge Parish, Louisiana were asked to provide a travel diary for ten commuter destinations 

(Appendix A).  Each destination is assumed to represent a location routinely visited by the 

offender. As such, the destinations serve as activity-nodes that will define the test subject�s 

routine activity space. Ten locations were selected in order to ensure a sufficient number of 

incidents from which to build a profile.  An eleventh location, the residence (origin), was also 

recorded in order to measure accuracy and used for calibration. Thirty-five of the seventy-three 

individuals polled submitted a response.  The participating subjects consisted of 13 women and 

22 men of varying age, race, and social status. All collected location information was stored 

within a Microsoft® Access® database, and categorized according to residence and destination.  

To reduce bias associated with multiple activity nodes, subjects were asked to provide only those 
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locations in which they chose to travel from their residence.  Each subject could include any 

desirable destination, so long as it met the following criteria:   

• Include only those destinations within East Baton Rouge Parish; 
• Include only those destinations in which a reasonable alternative existed (to ensure choice 

of destinations); 
• Exclude destinations related to work/school (to prevent multi-node, home locations); 
• Exclude all locations contained within a multiple-destination commute (e.g. a chain); 
• Minimize redundant destinations. 
 

Of the 385 total records, 384 contain valid addresses (35 residences, 349 destinations).  

Valid records are address matched using the ESRI® ArcView® GIS 3.3 and a transportation data 

layer discussed in the next section.  X and Y point coordinates are calculated for the Universal 

Transverse Mercator (UTM) coordinate system, North American Datum 1983 (NAD83), Zone 

15 using meter (Cartesian) and minute (temporal) distance units.   

 Additionally, subjects were asked to complete a commuter survey to describe their 

driving behavior (Appendix B).  Results are used for assessment against mobility characteristics 

observed in this research, and will be discussed in the next chapter. 

3.3  Data Sets 
 
 Three data sets were used for this investigation: a transportation network from which to 

measure functional distances; test subjects from which to generate a geoprofile; and the study 

area encompassing the offender�s activity space and likely residence.   

 Geographic Data Technology�s Dynamap® Transportation road network (GDT-

Dynamap®) is used for both geocoding addresses and network path analysis.  Published in 2002, 

the GDT-Dynamap® data provides a full range of addresses which are appropriately segmented 

for geocoding, as well as including the impedance values (speed limit, direction, and time) 

necessary for the network path analysis used to calculate functional distances.  
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For the purposes of generating a geographic profile, test subjects were organized into two 

groups: a calibration group and test group.   In order to establish a sufficient representation for 

the travel patterns of like commuters, the calibration group must be large enough to ensure 

reliable calibration parameters.  Accordingly, thirty-one of the thirty-five sample subjects were 

randomly selected to represent the calibration group (Calibration-Sample) of simulated serial 

offenders from which to empirically derive the most appropriate distance decay models.  X and 

Y coordinates representing each sample�s residence (origin) and ten incident locations 

(destinations) were captured and stored within the Microsoft® Access® database.   

The remaining four sample subjects were assigned to represent the test group (Test-

Sample) of simulated serial offenders.  The X and Y coordinates for each of the Test-Sample 

point representing the ten simulated incident locations (destinations) were stored inside a 

database and mapped within the East Baton Rouge study area. The coordinates representing the 

Test-Sample residence were used to assess accuracy, thus excluded from the geographic profile 

model. 

A study area representing the urbanized portion of East Baton Rouge Parish was defined 

using the United States Census Bureau�s (2001) TIGER® Census 2000 data product.  Though it 

does not encompass the entire parish, the study area represents the majority population, 91%, of 

all parish residents. This approach was necessary to provide a balance between providing a large 

enough study area while ensuring consistent computer performance. Preliminary evaluation of 

the network path functions utilized for this research demonstrated the software�s tendency to 

become unstable, perform inconsistently, and subsequently rendering the computer system 

unusable (system-crash) when calculating travel paths for large study areas. Accordingly, a 

reduced study area was determined to provide the most consistent results. 
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3.4  The Geographic Profile Procedure 
 

The modeling process used to develop a geographic profile is founded on the conceptual 

application of both the CrimeStat® II (Levine, 2002a) journey-to-crime routine and the CGT 

(Rossmo, 2000) geographic profiling model.  The procedure estimates residency by statistically 

comparing the spatial distribution of the Test-Sample incident locations, with the journey-to-

crime patterns exhibited by the Calibration-Sample.  Once calculated, a density surface 

indicating the likely residence is created and mapped for the East Baton Rouge study area.  Each 

location within the study area is scored according to its likelihood of being the Test-Sample�s 

residence.  The entire geographic profiling procedure is composed of two parts.  First, a 

calibration routine identifies an optimal distance decay function based on the travel 

characteristics exhibited by Calibration-Sample of simulated serial offenders.  The second part 

integrates the calibrated decay function within journey-to-crime routines in order to estimate the 

residency of the four Test-Sample subjects.   The resulting geoprofile is mapped for the study 

area and used to illustrate the probability surface and offender�s likely residence. 

3.4.1  Calibration Routine 
 

The process for calibrating a distance decay function uses the traveled distances 

measured between each origin and destination stored within the Calibration-Sample data set. The 

origin represents the test subject�s residence while the destination represents the test subject�s 

simulated incident location. The calibration routine is executed in six steps (Levine, 2002a): 

1. 340 matched origin-to-destination (O-D) records were obtained from the Calibration-
Sample database.  The 340 records (31 origins, 309 destinations) are reviewed to ensure 
that X and Y coordinates for both the origin and destinations were properly referenced.  

 
2. O-D data were imported into ArcView® GIS 3.3 as an event theme of point features.   

Both straight-line and Manhattan distances between each origin and destination were 
measured using the journey-to-crime routine included within the CrimeStat® II software 
package (Levine 2002a).   Travel-path (meters) and temporal-path (minutes) functional 



distances were calculated using Shortest Network Path (SNP) functions available with the 
ESRI® Network Analyst extension.  Impedance values used to define the network path 
parameters were calculated from the GDT-Dynamap® road data network.  

 
3. Calculated travel distances were collected and stored within the Microsoft® Access® 

database according to metric.  Cartesian measures were converted from meters to miles, 
while temporal measures were calculated in minutes.  For each metric, values were 
grouped into distance intervals (referred to as bins).  To accomplish this, the distance 
between each origin and destination were sorted in ascending order.  Next, a frequency 
distribution was applied for each O-D distance, and grouped into .50 mile (Cartesian) and 
.858 minute (temporal) bins.  Both the .50 mile and .858 minute intervals were chosen to 
ensure computer stability when executing the SNP routines.  The .858 minutes distance 
interval represents the time it would take to travel .50 miles at the averaged speed limit of 
35 miles per hour (calculated as the average network speed measured for each SNP 
utilized).   

 
4. Frequency intervals measured in step-3 are converted into relative frequencies by 

dividing the frequency values for each interval by the total number of incidents, N, and 
multiplying by 100.  Second, the distance intervals are adjusted to the mid-point of each 
bin in order to provide a better representation for the bin�s contribution for the 
distribution (McGrew & Monroe, 1993). 

 
5. Using SPSS® 11.0 and Microsoft® Excel®, a series of univariate regression equations are 

executed to model each frequency as a function of the distance.  In order to compare 
various types of activities, the percentage of incidences within each frequency (Pcti) 
interval is used as the dependent variable.  Three equations are mathematically calibrated 
to obtain the �best fit� for the given distributions. Figure 3.1 illustrates the three functions 
utilized by this investigation. 

 
Logarithmic 
 
A distance model that describes how the occurrence of crime will gradually decrease as 
the distance from the offender�s haven increases.  The logarithmic function 
mathematically calculates a best-fit curved line that describes the rate of change as the 
data decreases quickly and then levels out.  It uses the equation: 
))ln(( ii dBAPct •+=                        (3.1)
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where Pcti is the likelihood that an incident will occur at a particular location, i, dij is the 
distance between each reference location and each crime location, j,  and A and B are 
estimated by regression.  This function has a tendency to return negative values, which 
can become problematic for journey-to-crime models that have distances which exceed 
the parameters of the calibration data set. While not directly utilized by many of the 
commercially available geographic profiling applications, it does represent an easily 
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implemented model available within most statistical software packages.  This function 
does not assume a buffer zone around the offender�s residence.  
 
Negative Exponential  
 
A slightly more complex function, this model describes how the occurrence of crime is 
highest near the offender�s haven and drops off at a constant rate with distance. The 
mathematical expression is: 

where Pcti  is the likelihood that an incident will occur at a particular location, i, dij is the 
distance between each reference location and each crime location, j,  e is the base of the 
natural logarithm, A is the coefficient, and C is the exponent.  This function is most 
similar to the Dragnet® model, except that the coefficient is mathematically calibrated for 
the observed distribution. Like the logarithmic function above, it assumes no buffer zone 
around the offender�s residence. 
 
Truncated Negative Exponential  
 
This is a complex function consisting of two distinct decay equations: linear and 
exponential.  For locations in close approximation to the residences, a positive linear 
function is defined (Equation 3.3).  Starting at zero (the haven) and increasing to a peak 
distance, Max d.  Next, the function follows a negatively signed exponential function, 
declining quickly as the distance increases (Equation 3.4).       

where dij is the distance from the haven, B is the slope of the linear function, A is the 
coefficient for the negative exponential function, and C is the exponent.  This function is 
the closest approximation to the CGT model examined earlier (equations 2.7 and 2.8).  
Furthermore, this model can be used to approximate the often observed Buffer Zone 
effect surrounding an offender�s residence. 
 

6. Once completed, each mathematically calibrated distance decay function can be utilized 
with the journey-to-crime routine detailed in the next section. 

 

idC
i eAPct •−•=                         (3.2)

                        Linear:   ii BdAPct +=    for dij ≥ 0 and dij ≤ Max dij      (3.3)

Negative Exponential:  idC
i eAPct ⋅−⋅=    for dij > Max dij           (3.4)
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Figure 3.1 Mathematical Calibration Algorithms 

3.4.2  Journey-to-Crime Routine 
 
  Using the destination locations stored within the Test-Sample data set, residences are 

estimated based on the mathematically calibrated distance decay function defined for the 

observed travel patterns of the Calibration-Sample. When applied for each incident, the 

calibrated function mathematically assigns a value for each point within a study area. Called a 

�probability-score,� the values are used to indicate the likelihood that any location within the 

study area is the offender�s likely residence.  The procedure is executed in five steps:  

1. A study area was constructed from a rectangular matrix consisting of 16,875 grid cells, 
each measuring 368.86 meters (0.23 mile) wide. The rectangular grid was clipped to 
match the TIGER® 2000 Baton Rouge Urban Area polygon.  The result was a study area 
constructed of a grid consisting of 3,445 cells.  The .23 mile cell size was used to ensure 
computer stability when executing the SNP routines.  
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2. Both Euclidean and functional distances are measured from each grid cell centroids to 
each Test-Sample incident location. The straight-line Euclidean and indirect Manhattan 
distance values are calculated using the journey-to-crime routine within CrimeStat® II.  
To measure the functional distances, SNP analysis routines are executed using ArcView® 
GIS with the Network Analyst 1.0b extension.  Each SNP optimizes the commute for 
distance (travel-path) and time (temporal path).  In order to accommodate for one-way 
access, distances are only measured from the grid cell to each incident location.  
Impedance values used to define the network path parameters are calculated from the 
GDT-Dynamap® road data network.  

 
3. All three mathematically calibrated distance decay functions are applied to each grid cell-

incident pair.  The modeled values are summed for each incident.  The straight-line 
Euclidean and indirect Manhattan models were calculated within the CrimeStat® II 
journey-to-crime routine.  For functional distance measures, the mathematically 
calibrated distance decay functions are applied using both Microsoft® Access® and 
SPSS®.   

 
4. For each grid cell-incident pair, a numerical value (probability-score) is calculated to 

indicate the likelihood that an offender resides at a given cell.  Each value is summed 
over all incidents to indicate the peak likelihood.  

 
5. A density map of each grid cell�s probability score is created, indicating the likelihood 

that a particular location is the offender�s residence. 
  

The density surface estimating the likely offender�s residence is represented by a density 

map, termed a geoprofile (Rossmo, 2000).  Each grid cell is assigned a z-value (probability 

score) representing the estimated likelihood for the straight-line and Manhattan Euclidean, and 

both travel and temporal path functional distance measures.  The highest scored grid cell 

represents the estimated residence (peak likelihood).  Because a variety of modeling functions 

will be examined, it is necessary to measure each technique�s effectiveness based on its ability to 

prioritize a cost-effective search area from which to identify the individual�s residence (Canter et 

al., 2000).  Effectiveness is assessed in two distinct ways: the error-distance and search-cost.  

Contemporary journey-to-crime models assess error by measuring the distance between the 

predicted and the actual residence.  Error-distance provides a good measure for assessing a 

geographic profile�s spatial precision.  For this investigation, the straight-line distance between 
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Figure 3.2 Geographic Profiling Metric Calibration Matrix 

the grid cell representing the peak likelihood and the grid cell representing test subject�s actual 

residence (hit-score) is measured.  The second method estimates accuracy by identifying the 

proportion of the area that must be searched in order to successfully identifying the individual�s 

residence. This search cost is determined by calculating the hit-score percentage: the ratio of the 

total number of grid cells with a probability score equal-to or higher-than the hit-score, to the 

total number of grid cells (Rossmo, 2000).  A low hit-score percentage indicates a more accurate 

prediction.  The hit-score percentage is the best measure of a geographic profile�s predictive 

utility. As such, all measures of success will be assessed using the hit score percentage. Figure 

3.2 illustrates the association of the various calibration models and distance matrices utilized by 

this investigation. 

3.5  Determining the Best-Fit Distance Decay Model 
 

The three distance decay models utilized by this investigation were mathematically 

calibrated in order to provide a �best-fit� for the given distribution of stored incidents. Because 
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mathematical models will inherently demonstrate variable degrees of predictability, some 

measure of success was needed in order to identify the validity, reliability, and utility of the 

profiling models used. Using SPSS® 11.0, the coefficient of determination, R2, is calculated to 

measure the strength of the regression relationship.  R2 measures how well a model will fit a 

given distribution by evaluating the extent in which the independent variable, X, can account for 

the variation in the dependent variable, Y: 

where Σye
2 is the total explained variation of Y, and Σy2 is the total variation of Y (McGrew & 

Monroe, 1993).  As a descriptive measure between 0 and 1, R2 is interpreted as the percentage of 

variation in the dependent variable that is explained by the independent variable.  Analysis of 

variance (F statistic) is used to evaluate the statistical significance of R2. 
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CHAPTER 4. RESULTS AND DISCUSSION 
 

An examination of the results obtained for this study demonstrates that functional 

distances are an effective metric for developing geographic profiles.  Using both Euclidean and 

functional distance measures, twelve geoprofiles were created for each of the four Test-Sample 

data subjects using three unique decay models.  As it will be discussed below, the residences of 

three out of the four test subjects were more precisely identified by geoprofiles created with 

functional distance metrics than those created with Euclidean metrics.  For the purposes of 

comparative review, each geoprofile is first arranged according to distance metric, and then 

according to journey-to-crime modeling technique.  First, the frequency distributions used to 

calibrate the modeling algorithms will be examined to illustrate the key characteristics that 

distinguish Euclidean from functional distance metrics.  Next, the top performing geoprofiles 

will be presented in a manner that seeks to clarify the underlying assumptions and overall 

effectiveness of each metric used.  Assessing the predictive utility of each metric is achieved by 

calculating the distance-error and the cumulative search-cost.   Finally, a summary of this 

investigation�s technological requirements will be compiled in order to identify an optimal 

operating environment from which to perform similar analysis. 

4.1  Frequency Distributions by Metric 
 

Figure 4.1 illustrates the frequency distribution for each distance measure calculated from 

the Calibration-Sample data set.  Exhibited for each metric, a significant percentage of all 

destinations, approximately 60%, occur within the first 3.75 miles (the adjusted mid-point 

between 3.5 and 4.0 mile distance bins), or 3.86 minutes (the adjusted mid-point between 3.43 

and 4.29 minute distance bins), from the origin.  Figures 4.1A and 4.1B reveal two peak 

frequencies within the 3.75-mile range, or between 4.0 and 8.0 minutes in Figure 4.1C.    As  the 
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Figure 4.1 Frequency Distributions By Metric: (A) Euclidean Distances, (B) Travel-

Functional Distances, (C) Temporal-Path Functional Distances. 
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distance intervals become larger, there is a general decrease in activity for each distance 

distribution.   Additionally, there appears to be a third peak located approximately 7.75 miles 

(the adjusted mid-point between 7.5 and 8 mile bins), or approximately 9.86 minutes (the 

adjusted mid-point between 9.44 and 10.296 mile bins), from the origin which is represented by 

a 6% activity spike. These results correspond significantly with Environmental Criminology 

research results which indicates that the majority of human activities are performed within a 

close proximity to their residence (see Chapter 2, Section 2.1 and 2.2). 

By inspection, it is clear that the three frequency distributions illustrated in Figure 4.1 

illustrate that the maximum cumulative distance traveled by subjects of the Calibration-Sample 

data set varies according to metric.  As illustrated in Figure 4.1A, the measured straight-line 

Euclidean distance from the origin to the furthest destination is approximately eleven miles.  As 

expected, this measure falls short of the maximum travel-path distance calculated to be 

approximately twelve miles (Figure 4.1B), or seventeen minutes (Figure 4.1C), from the origin.  

These differences clearly demonstrate that, for members of the Calibration-Sample group, the 

distance an individual is willing to travel is not necessarily measured effectively when using 

straight-line Euclidean metrics. 

Another observed characteristic is that the frequencies calculated using the Euclidean 

distance metric (Figure 4.1A) exhibit the smoothest distribution of activities when compared to 

the two functional metric distributions. The implication for geographic profiling is that the 

intermediate travel productions observed for the functional metrics are unidentified within 

distributions measured using Euclidean metrics.  While key activity nodes remain identifiable for 

all metrics, Euclidean distance measures are unable to account for those destinations that could 

theoretically provide insight into the activities of a serial criminal.    
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Another observation is the �roller-coaster� (or serpentine) characteristic exhibited by each 

of the distributions.  The cyclical arrangement of very pronounced peaks and troughs can be 

attributed to the small calibration sample size.  These characteristic may also be attributed to the 

0.5 mile (.858 minute) distance interval chosen for this investigation.  Furthermore, the pattern 

may be an artifact of the Baton Rouge commercial landscape.  What ever the cause of this 

condition, some valuable information can be extracted.  For example, each distribution exhibits 

an observed increase in frequencies within the immediate vicinity of the origin.  As expected, the 

frequency decreases as the distance from the origin increases.  When modeling criminal 

behavior, the initial increase in activity near the origin, followed by a general decrease is 

typically attributed to the proposed Buffer Zone effect (see Chapter 2).  

 The Buffer Zone represents a condition whereby an offender will intentionally avoid 

committing crimes within relative proximity to his/her residence for the purpose of avoiding 

suspicion.  Given that the Calibration-Sample group consists of law-abiding citizens, it is 

unlikely that a deliberate buffer-zone would be purposefully constructed for the normal, every-

day activities of the individuals sampled.   Therefore, some other characteristic is responsible for 

the cyclical increase-decrease in activity.  One logical explanation is related to the spatial 

frequency of phenomena shared between the distribution of residential and commercial land-use 

zones.  The observed peak frequencies quite possibly represent activity centers which have been 

dispersed in a predictable distribution around residential neighborhoods, i.e. commercial zoning.  

Another possible explanation could relate to both the compact size of East Baton Rouge Parish, 

as well as the possibility that the sample subjects coincidently live within relative close 

proximity to activity centers. What ever the cause, this characteristic serves this investigation as 
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a pseudo Buffer Zone.  As it will be demonstrated below, this effect can be modeled with some 

degree of success by using the truncated negative exponential function.  

4.2  Journey-To-Crime Calibration Models 
 

As detailed in the previous Chapter, three distance decay functions were selected to 

model the frequency distributions observed in Figure 4.1.  These functions included logarithmic, 

negative exponential and truncated negative exponential. Using SPSS® 11.0 for Windows, the 

functions were individually regressed for each distribution, thus mathematically calibrated to 

produce a �best fit� model of the provided distributions.  Models were organized according to the 

three distance metrics used for this investigation: straight-line Euclidean, travel-path functional 

and temporal-path functional (see also Table 3.1, Chapter 3).  Calibrations were not specifically 

required for the Manhattan metric as it measures distances as a function of Euclidean distances 

between two points. As such, the Manhattan metric uses the same calibration decay model as the 

straight-line Euclidean (Equation 2.1, Chapter 2).  The results of these three models are 

presented in Figures 4.2 � 4.4.  For each model, the coefficient of determination (R2) is observed 

to lie between a minimum of 0.542 to a maximum of 0.771, and is considered to be highly 

significant (F < 0.05).     

4.2.1  Euclidean Distance Decay Model 
 

Figure 4.2 illustrates the frequency distribution measured by the straight-line Euclidean 

distances metric. The frequency distribution observed for this model is characterized by a 

decreasing series of three peaks and two troughs with elevated activity approximately located at 

1.25-miles, and again at 3.75-miles from the origin. The logarithmic model demonstrates a 

shallow curvilinear component for the first 1.5 miles before becoming a more gradual decay. The 

steep negative exponential model appears to over-estimate much of the first 4.0 miles of the
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Figure 4.2 Calibrated Distance Decay Algorithms for Euclidean Distance Metrics 

Logarithmic 
 

y = -2.8241Ln(x) + 8.8101   R2= 0.5415, [F=.0001] 
 

Negative Exponential 
 

y = 25.636e-0.4211x     R2 = 0.5687, [F=.0001] 
 

Truncated Negative Exponential 
 

              Linear:    y = 9.5661x 
Negative Exponential:    y = 38.714e-0.4744x  
                                                         R2= 0.5980, [F=.0008] 
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Figure 4.3 Calibrated Distance Decay Algorithms for Travel-Path Functional Distance Metrics 

Logarithmic 
 

y = -3.018Ln (x) + 8.7517   R2= 0. 6997, [F=.0000]
 

Negative Exponential 
 

y = 12.424e-0.247x     R2 =0.7706, [F=.0000] 
 

Truncated Negative Exponential 
 

               Linear:   y = 9.4137x 
Negative Exponential:   y = 18.676e-0.2546x  
                                                         R2= 0.7105, [F=.0008] 



 76

CALIBRATED DISTANCE DECAY FUNCTIONS
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Figure 4.4 Calibrated Distance Decay Algorithms for Temporal-Path Functional Distance Metrics 

Logarithmic 
 

y = -2.6731Ln(x) + 9.8617   R2= 0.6202, [F=.0000] 
 

Negative Exponential 
 

y = 14.14e-0.1569x     R2 =0.7652, [F=.0000] 
 

Truncated Negative Exponential 
 

             Linear:    y = 2.818x 
Negative Exponential:    y = 37.078e-0.1862x  
                                                         R2= 0.7121, [F=.0000] 
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distribution before underestimating the remaining frequencies.  Of the three models applied to 

the distribution, the truncated negative exponential provides the best statistical fit (R2 > 0.5980).  

Represented by the blue line (solid), the linear portion of the function overestimates most of the 

first observed peak frequencies, while the negative exponential component provides a better fit 

for distances beyond 1.75-miles. Geoprofiles created from these models were automatically 

generated using the CrimeStat® II Journey-to-crime routine. 

4.2.2  Travel-Path Distance Decay Model 
 

Figure 4.3 illustrates the frequency distribution measured by the actual travel-path 

distance metric.  Like the Euclidean frequency distribution of Figure 4.2, the pattern is 

characterized by a decreasing series of peaks and troughs with elevated activity approximately 

located at 1.75 miles, and again at 4.25 miles from the origin. The logarithmic model appears to 

underestimate the distribution within the first four miles, whereby it appears to overestimate the 

distribution through the remainder.  However, the logarithmic function exhibits a rate of decrease 

that is very similar to the general decay observed for approximately the first 4.25 miles. The 

mathematically calibrated negative exponential function (red, dashed line) is observed to provide 

the best statistical fit (R2 > 0.7706) across the whole distribution. However, the linear component 

of the truncated negative exponential model can better represent the steep increase in frequency 

between 0.75 and 1.25 miles while matching a similar decay rate.  Geoprofiles using travel-path 

models are manually constructed for each grid cell using Microsoft® Access® and ESRI® 

ArcView® GIS. 

4.2.3  Temporal-Path Distance Decay Model 
 

Figure 4.4 illustrates the frequency distribution exhibited by the temporally optimized 

travel-path (temporal-path) functional distance metric.  Similar to the distribution characteristics 
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observed for the previous two models, the distribution pattern is characterized by a decreasing 

series of peaks and troughs with a maximum occurrence of destinations at approximately 4 

minutes from the origin.  The logarithmic function appears to underestimate the distribution 

between the 2nd  and 4th minute from the origin, whereby it appears to provide a good estimation 

until approximately the 11th minute.  Of the three decay functions implemented, the negative 

exponential model (red, dashed line) statistically provides the best fit across the whole 

distribution (R2 > 0.7652). While possessing a relatively strong coefficient of determination, the 

truncated negative exponential model appears to over-estimate nearly all frequency measures. 

Once again, geoprofiles created with these values are manually constructed for each grid cell 

using Microsoft® Access® and ESRI® ArcView® GIS.  

4.3  Assumptions 
 
 Specifying conditions attributed to this investigation, the following assumptions have 

been made when developing a geographic profile: 

• All travel production originated from the sample subject�s residence; 
• A relationship exists between each incident location and a sample subject�s residence, 

which can be modeled using some form of distance decay function;
• Members from both sample groups have optimized their travel when commuting from 

their residence to each destination. Such optimization can be measured in terms of the 
commuted distance (miles) and time of travel (minutes). 

 
4.4  Best Performing Geoprofiles 
 

Reviewing the parameters established in Chapter 3, all geoprofiles used for this research 

consists of a density surface map of 3,445 grid cells representing the Urban Area of East Baton 

Rouge Parish, Louisiana (US Census Bureau, 2000).  Each grid cell is assigned a z-value 

(probability-score) indicting the likelihood that it is the Test-Sample�s residence.  Probability-

scores are determined for each Test-Sample by measuring the distance between each grid cell 



 

SAMPLE ID

1 

2 

3 

4 

  

and each incident location.  The distances (Euclidean and functional) are modeled according to 

the mathematically calibrated distance decay algorithms discussed in Section 4.2.  

Assessing the predictive utility of a geographic profile is ultimately measured by an 

investigator�s ability to prioritize an efficient search area from which to identify an individual�s 

residence (Canter et al, 2000).  As noted earlier, such a strategy can be developed by evaluating 

accuracy in two distinct ways: the error-distance and search-cost.  Error-distance will measure 

the straight-line distance between the grid cell representing the predicted residence (peak 

likelihood) and the grid cell representing test subject�s actual residence (hit-score).  Search cost 

is determined by calculating each geoprofile�s hit-score percentage: the ratio of the total number 

of grid cells with a probability-score equal-to or higher-than the hit-score (the probability-score 

assigned to the actual residence), to the total number of grid cells (Rossmo, 2000).  A low hit-

score percentage indicates a more accurate geoprofile. Between the two methods, the hit-score 

percentage is a better measure of a geoprofile�s predictive utility because it identifies the amount 

of effort a criminal investigation would require to successfully identify the test subject.  

Accordingly, this investigation will assess precision using the hit-score percentage.  

Assessing the generated geoprofiles based on the parameters detailed above, Table 4.1 

illustrates the most precisely modeled geographic profiles by Test-Sample ID.  Each geoprofile is 
Table 4.1 Geographic Profiling Results: Best Performing Geoprofiles 
 

 METRIC MODEL HIT SCORE % SEARCH COST 
MILES2  

ERROR 
DISTANCE 

      
Temporal Path Truncated Negative 

Exponential 1.11% 2.00 2.72 

Travel Path Truncated Negative 
Exponential 0.53% 0.97 0.73 

Manhattan Truncated Negative 
Exponential 1.31% 2.36 1.32 

Travel Path Truncated Negative 
Exponential 0.56% 1.02 1.94 

  AVERAGE: 0.88% 1.59 1.68 
79



 80

organized in ascending order according to Test-Sample ID, and lists the metric and calibration 

model used.  As detailed in the table, geoprofiles created with functional distance measures more 

precisely predicted the residences for three of the four Test-Samples. Cumulatively, these top 

performing geoprofiles were able to identify all of the actual residences within a mean error-

distance of 1.68 miles, for an averaged search cost of 0.88% (approximately 1.6 miles2) of the 

181.01 square-mile study area of East Baton Rouge Parish.  Figures 4.5 � 4.8 illustrate a density 

map for each of these top performing geoprofiles. 

 Upon examination of these results, some key characteristics can be observed. First, all of 

the geoprofiles listed in Table 4.1 were modeled using the truncated negative exponential 

function.  This observation corresponds to the findings indicated in Section 4.2 whereby the 

truncated negative exponential model consistently provided a best statistical fit for each 

frequency distribution.  This finding also supports the earlier observation (Section 4.1) that some 

kind of Buffer Zone is affecting the frequency of activities based on a regular distribution of 

activity nodes.   This suggests that the journey-to-crime model selection has a significant impact 

on the way travel distances are represented when generating a geographic profile. A second 

observation notes that the travel-path functional distance metric performed well, providing the 

best residency estimation for Sample ID 2 and 4.  A third observation notes that the temporal-

path functional distance measure did not perform as well as expected. A number of 

circumstances may account for this and will be addressed later in the discussion.  Accordingly, 

the results obtained for this investigation clearly demonstrate that functional distance metrics can 

be used to create effective geographic profiles. 

While Table 4.1 illustrates that three of the four best performing geoprofiles were created 

using functional distance metrics, a more detailed examination of the geoprofiles generated for
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Figure 4.5 Geographic Profiling Results: Best Performing Geoprofiles � Test-Sample 1 
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Figure 4.6 Geographic Profiling Results: Best Performing Geoprofiles � Test-Sample 2 
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Figure 4.8 Geographic Profiling Results: Best Performing Geoprofiles � Test-Sample 4  
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this investigation is in order, for the purpose of clarifying the underlying characteristics and 

overall effectiveness of each metric used. Accordingly, the following text will present in detail 

all twelve geoprofiles generated by this investigation (4 test subjects x 3 modeling metrics = 12 

geoprofiles), organized by metric.  Cumulative scores will also be presented in order to assess 

the overall effectiveness of the metric examined. 

4.5  Geographic Profiles by Euclidean Metric 
 

The geoprofiles using both straight-line and Manhattan Euclidean distance metrics 

identified all four Test-Sample residences within a mean error-distance of 1.78 miles from the 

predicted location, representing a cumulative search cost of 4.15% (approximately 7.51 miles2).  

The sections detailed below examine independently calculated results for both the straight-line 

and Manhattan Euclidean distance measures, which are organized in Table 4.2 and 4.3. 

Table 4.2 Geographic Profile Results 
Direct Path Euclidean Metric 

MODEL SAMPLE ID HIT SCORE % SEARCH COST 
MILES2  

ERROR 
DISTANCE 

LOGARITHMIC    
 1 8.27% 14.97 1.8 

 2 15.15% 27.43 2.71 

 3 3.16% 5.73 1.65 

 4 2.29% 4.15 2.41 
NEGATIVE EXPONENTIAL     

 1 7.69% 13.92 1.63 

 2 3.51% 6.36 1.87 

 3 3.08% 5.57 1.65 

 4 2.06% 3.73 0.99 
TRUNCATED NEGATIVE EXPONENTIAL    

 1 5.98% 10.82 2.61 

 2 2.76% 4.99 0.98 

 3 1.48% 2.68 1.29 

 4 0.72% 1.31 1.63 
    

   AVERAGES: 4.68% 8.47 1.77 

 



 

4.5.1  Straight-Line Path Distances  
 
 As detailed in Table 4.2, geographic profiling models using straight-line Euclidean 

distances measures identified all four residences of the Test-Sample data set within a mean error-

distance of 1.77 miles from the predicted locations, representing a cumulative search cost of 

4.68% (approximately 8.5 miles2) of the total study area.  Highlighted in bold is the model that 

provided the best prediction in terms of search cost. 

4.5.2  Manhattan Distance  
 
 Geoprofiles generated using Manhattan distance metrics cumulatively performed the best 

overall, accounting for the most precisely predicted residences.  As detailed in Table 4.3, all four 

residences of the Test-Sample data set were geographically profiled within a mean error- 

distance of 1.79 miles from the predicted locations, representing a cumulative search cost of 

3.62% (approximately 6.6 miles2) of the total study area.  The model that provided the most 
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Table 4.3 Geographic Profile Results 
Manhattan Euclidean Metric 

SAMPLE ID HIT SCORE % SEARCH COST 
MILES2  

ERROR 
DISTANCE 

   
1 9.20% 16.66 2.45 
2 3.60% 6.52 1.87 
3 2.44% 4.41 1.67 
4 1.80% 3.26 2.41 
    
1 8.74% 15.82 1.63 
2 2.06% 3.73 1.18 
3 2.44% 4.41 1.67 
4 1.68% 3.05 2.41 

PONENTIAL    
1 8.16% 14.76 2.45 
2 1.13% 2.05 0.97 
3 1.31% 2.36 1.32 
4 0.87% 1.58 1.49 

    

 AVERAGES: 3.62% 6.55 1.79 
86
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exact prediction in terms of search cost is highlighted in bold.  The map provided in Figure 4.7 

illustrates the results of the Manhattan Euclidean distance metric for Test-Sample 3, modeled 

with the truncated negative exponential function. 

4.6  Functional Distance Measures 
 

Geoprofiles using functional distance metrics identified all four Test-Sample residences 

within a mean error-distance of 1.73 miles from the predicted location, representing a cumulative 

search cost of 4.53% (approximately 8.2 miles2). The sections detailed below examine the 

independently calculated results for both the travel-path and the temporal-path functional 

distance measures, which are provided in Table 4.4 and 4.5. 

4.6.1  Travel-Path Distances  
 
 As detailed in Table 4.4, residences of the Test-Sample data set were geographically 

profiled within a mean error-distance of 1.66 miles of the predicted locations, representing a 

Table 4.4 Geographic Profile Results 
Travel-Path Functional Distance Metric 

MODEL SAMPLE ID HIT SCORE % SEARCH COST 
MILES2  

ERROR 
DISTANCE 

LOGARITHMIC     
 1 8.62% 15.61 1.48 

 2 1.96% 3.54 0.91 

 3 5.81% 10.51 1.67 

 4 2.34% 4.24 2.41 
NEGATIVE EXPONENTIAL     

 1 8.24% 14.91 1.48 

 2 1.62% 2.93 1.2 

 3 5.81% 10.51 1.65 

 4 1.68% 3.05 2.41 
TRUNCATED NEGATIVE EXPONENTIAL    

 1 6.79% 12.28 2.64 

 2 0.53% 0.97 0.73 

 3 4.12% 7.45 1.43 

 4 0.56% 1.02 1.94 
    

   AVERAGES: 4.01% 7.25 1.66 

 



 

cumulative search cost of 4.01% (approximately 7.25 miles2) of the total study area.  The model 

that provided the best prediction in terms of search cost is highlighted in bold.  The geoprofile 

maps provided in Figure 4.6 and 4.8 illustrates the results using the travel-path functional 

distance metric measured for Test-Sample 2 and 4, respectively; both modeled using the 

truncated negative exponential function. 

4.6.2  Temporal-Path Distances 
 
  As detailed in Table 4.5, all four residences of the Test-Sample data set were 

geographically profiled within a mean error-distance of 1.80 miles of the predicted locations, 

representing a cumulative search cost of 5.06% (approximately 9.16 miles2) of the total study 

area.  The model that provided the best prediction in terms of search cost is highlighted. The 

geoprofile map provided in Figure 4.5 illustrates the results using the temporal-path functional 

distance metric measured for Test-Sample 1, and modeled using the truncated negative 

exponential function. 
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Table 4.5 Geographic Profile Results 
mporal-Path Functional Distance Metric 

SAMPLE ID HIT SCORE % SEARCH COST 
MILES2  

ERROR 
DISTANCE 

   
1 9.87% 17.87 1.48 
2 1.96% 3.54 0.91 
3 7.46% 13.50 1.67 
4 2.45% 4.43 2.41 
    
1 9.51% 17.22 1.48 
2 3.60% 6.52 2.13 
3 7.28% 13.18 1.65 
4 1.60% 2.90 2.06 

PONENTIAL    
1 1.11% 2.00 2.72 
2 7.19% 13.02 2.57 
3 7.12% 12.88 0.5 
4 1.60% 2.90 2.06 

    

 AVERAGES: 5.06% 9.16 1.80 
88
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Table 4.6 Geographic Profiling Results: Cumulative Results by Metric 
 

METRIC MODEL AVG. HIT 
SCORE % 

AVG. SEARCH COST 
MILES2  

AVG. ERROR 
DISTANCE 

     

Direct Euclidean Truncated Negative Exponential 4.68% 8.47 1.77 

Manhattan Truncated Negative Exponential 3.62% 6.55 1.79 

Travel-Path Truncated Negative Exponential 4.01% 7.25 1.66 

Temporal Path Truncated Negative Exponential 5.06% 9.16 1.80 
          
 AVERAGE: 4.34% 7.86 1.76 

 

4.7  Further Discussion  
 

A number of key observations have been made from these results which support the 

proposition that functional distance measures be effectively used when creating a geographic 

profile. First, in terms of obtaining the most precise estimation of residency, functional distance 

metrics provided the three most accurate geoprofiles (Table 4.1).  Additionally, travel-path 

functional distance measures ranked second in predictive performance when compared to the 

results obtained for each metric (Table 4.6).  However, temporally optimized functional 

distances did not perform as well as anticipated.  Upon examination of Table 4.5 (see also Table 

4.6), temporal-path distance measures were observed to have the lowest predictive performance 

of all three metrics examined.  It must be noted, however, that the degree of precision measured 

for all metrics (48 total geoprofiles) varied marginally; where search-cost estimates ranged from 

a low of 0.56% to a high of 15.15% (mean = 4.34%, standard deviation = 3.32).  There are a 

number of possibilities that could explain the poor results exhibited by temporal-path 

geoprofiles, including sample size, and path analysis techniques.   The small sample size used by 

this investigation clearly had an impact on results, as indicated by the variations exhibited for all 

frequency distributions.  As such, the calibrations used for this investigation are assumed to 

provide only a marginal representation of the travel characteristics of East Baton Rouge Parish.  
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Accordingly, future research should include larger calibration and test sample groups for 

different locations.  Another possible source of error attributed to the temporal-path�s poor 

performance may relate to network path analysis. 

As detailed in Chapter 3, Shortest Network Path (SNP) analysis was used to derive the 

functional distance measures (travel-path and temporal-path) for both the Calibration-Sample 

and Test-Sample data sets.  Despite its name, the SNP routines may not necessarily take the 

shortest network path when optimizing time. This is primarily attributed to the fact that SNP 

routines are not flexible decision systems. That is, SNP routines make measurements based on 

the specific parameters indicated by the impedance characteristics (speed, distance, and 

direction) associated with the underlying road network.  The implication is that a route calculated 

by an SNP routine may not be as optimized as a route taken by an individual who will often 

behave outside of these parameters.  

This can be explained by examining Figure 1.2 (Chapter 1), where two routes are 

available to the commuter.  When optimizing travel-time, the commuter is expected to take the 

beltway to reach the destination (Figure 2.1B).  For this example, the commuter simply exits the 

beltway, and arriving at the destination. However, network path analysis may interpret the path 

quite differently. For this circumstance, SNP will follow the specific parameters of speed, 

direction, and distance when optimizing the route.  Referring back to Figure 1.2, the SNP path 

may be forced to exit the highway to the right of the preferred destination, whereupon it will 

travel away from the destination before turning around 180 degrees before completing the 

commute.  While the path may remain temporally optimized when compared to the alternative 

route, it will inherently require more time to travel.  As a result, the distance measure for such a 

route is no-longer a realistic representation of the actual commute.   
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Yet another possible explanation for the poor results of the temporal-path model may be 

attributed to the commuters surveyed for this investigation.  Specifically, test subjects simply 

may not have optimized their routes based on time.  For most circumstances, a travel production 

will present a commuter with an opportunity to select either a direct route (which will result in a 

long production) or an optimized route (which will result in a short travel production).  The route 

a commuter selects is ultimately dependent upon two conditions: 1) awareness of the optimal 

route; and 2) an individualistic perception of the route. To some degree, traffic congestion will 

impact a travel production, but is considered a subjective element for this research as the 

commuter is afforded the opportunity to avoid congestion by traveling at a different time.  The 

awareness of a route is a condition of the commuter�s mental map: a concept discussed in 

Chapter 2 which states that a commuter bases his or her travel primarily on their direct and 

indirect knowledge of the immediate surroundings.  In terms of optimizing a route, if the 

commuter is unaware of alternative paths to a destination � the path is not selected.  For 

conditions when the commuter is aware of alternate routes, he or she will choose to take or avoid 

the alternate routes based on conditions set-forth by Stea (1969) (see also Section 2.1).  As 

Rossmo (2000) recognized in an examination of trail systems, individuals do not simply follow 

the shortest path.  Instead, they minimize their travel effort.  Existing routes may not be the most 

effective, but optimizing travel using an undesirable route requires that the commuter disregard 

inherent biases.  As such, a compromise between convenience and distance is made.   

Whatever the condition of reason, the commuters surveyed for this investigation most 

likely did not optimize their travel production. This is supported by the commuter survey 

(Appendix B) which indicates that approximately 60% of the participants in this investigation 

would not necessarily choose to temporally optimize their commute when traveling to their 



 

ROUTE SELECTION 
TRAV

OPTIM
ROU

  

DIRECT PATH (8.6%) ALWAYS

INDIRECT PATH (8.6%) MOSTLY

COMBINATION (82.9%) SOMETIME

 RARELY 

    

selected destinations (Table 4.7).  Instead, the participants indicated a preference to travel a 

direct route to their destination even when provided an opportunity to optimize. Consequently, 

this negates a primary assumption of this investigation, that the temporally optimized route is the 

preferred path for each travel production.  As such, this may provide an explanation as to why 

travel-path functional distance measures performed better than temporal-path.   

 A second observation from this investigation is made with regard to the truncated 

negative exponential model.  While no attempt was made by this investigation to identify those 

distance decay models that could provide the best possible performance, the analysis for this 

investigation finds that the truncated negative exponential model consistently perform the best 

for both travel-path and temporal-path functional distance measure.  Conversely, the logarithmic 

model performed the worst of the three.  As discussed in Sections 4.1 and 4.2, there are a number 

of reasons that can explain this finding.  It is likely that the dynamic nature of the model (i.e. the 

combination of both linearly increasing and exponentially decaying models) may have provided 

the advantage needed to accommodate the various spatial characteristics attributed to the data.   

A third observation from this investigation is made with regard to the size and resolution 

of the study area.  As noted by Barry (1998), both network and grid-based analyses such as 

journey-to-crime, consistently struggle with the effects of artificial edges.  For this investigation, 
Table 4.7 Commuter Survey Results 
 

EL 
IZED 
TE 

TEMPORAL OPTIMIZED
ROUTE 

CONGESTION 
AVOIDANCE CONVENIENCE 

   

 (2.9%) ALWAYS (8.6%) UNFAMILIAR ROUTE (14.3%) CLOSE (62.9%) 

 (20%) MOSTLY (31.4%) FAMILIAR (54.3%) FAR (37.1%) 

S (62.8%) SOMETIMES (48.6%) DIFFERENT TIME (31.4%)  

(14.3%) RARELY (11.4%)   
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only the urbanized area of East Baton Rouge Parish was selected to serve as the study area for 

the journey-to-crime routines.  As a result, portions of the Parish were excluded from analysis, 

potentially eliminating locations that may have influenced the geoprofile�s results.  For two test 

subjects, destinations were positioned outside the study area (Figure 4.9).  While the models 

were able  to  account for  the location�s  influence over the entire distribution,  many of  the grid  
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Figure 4.9 Potential Edge Effects When Using Artificial Boundaries 
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cells attributed to the points were lost, and not calculated for the final results. Conversely, 

portions of the Parish that are un-inhabitable (i.e. lakes and rivers) were not excluded from the 

analysis.  It is not clear to what extent this may have influenced the results. 

Additionally, the large grid cell size used by this investigation, .23 miles, may have 

permitted false network connections when calculating distances; whereby the centroid of a grid 

cell may have been aligned with an inappropriate network feature segment (such as a park�s path, 

a farm road, or other competing paths of different directions).  In such a circumstance, a path 

could have been selected that would not accurately represent a realistic condition of travel, thus 

altering distances used by both the calibration and journey-to-crime models.   

 Of course this last observation is a consequence of the technological limitations placed on 

this analysis.  As stated earlier, the technological pre-requisites for this investigation has only 

recently been achieved for �off-the-shelf� resources.  And while the operating environment from 

which these results were obtained can be considered typical, the technological costs remained 

high.  Numerous tests had to be performed in order to identify the analytical parameters that 

produced results without a hardware or software malfunction or instability.  As a result, the study 

area utilized for this research had to be reduced from a rectangular area consisting of over 35,000 

grid cells, to a study area consisting of 3,445 grid cells clipped to match the shape of the 

urbanized area of the parish.   

 As stated earlier, each geographic profile was generated using an Intel Pentium 4, 

1.2GHz PC-Workstation computer, utilizing 384 MB of RAM memory, operating on the 

Microsoft® Windows® XP Professional operating system.  Given the large processing capacity 

attributed to the computer, SNP analysis routines used to calibrate the thirty-one test subjects 

(340 points) � a process that measured the distance between each of the 3,445 grid cells and the 
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340 Calibration-Sample points � required approximately one-hour and forty-five minutes to 

complete.  The SNP analysis routines used to measure the distance between each of the ten Test-

Sample destination points to the 3,445 grid cells required approximately one-hour to complete 

for each test-subject.  Clearly, a more accurate geographic profile would result if analyzed over a 

much-higher resolution investigative surface.  However, the investigation must weigh the error 

and potential inaccuracies associated with large grid cells, to the technological requirements 

needed to develop better models.   Fortunately, hardware and software technology is increasingly 

becoming more powerful.  Since the origination of this investigation, processor speeds have 

doubled, approaching 3.5GHz processor speeds in a relatively short timeframe.  As such, the 

reader can anticipate an environment in which these functions become common-place, if not 

antiquated. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 
 

The last one hundred years of the criminal investigative process has been marked by a 

steady increase in the use of geographic mapping applications to display, analyze, and model 

criminal activities.  Beginning in the early 1900s, few criminologists and sociologists were 

interested in exploring crime spatially, relying on wall-sized pin maps to survey the occurrence 

of crime as it related to the prevailing environment.  Today, GIS is used by thousands of law 

enforcement agencies across the U.S., and around the world, to model real-time trends and 

predict criminal activity using personal computers and hand-held devices. Technology has 

empowered the criminal investigator by providing a meaningful method of disseminating 

sophisticated geographic information using intuitive processes.  In no other aspect of the criminal 

investigative process has the relevance of geospatial information been more profound than for 

localized serial offences. 

Serial crime incorporates a complex set of psychological and ecological phenomena that 

requires specialized investigative tools and strategies that extend beyond the traditional criminal 

investigative processes.   Geographic profiling provides such a strategy.  By utilizing the existing 

intelligence/evidence obtained from traditional investigative strategies, geographic profiling 

examines the characteristics associated with the distribution of crime scenes in order to obtain 

key characteristics of an offender�s spatial behavior.  Building upon the theories established in 

Environmental Criminology, geographic profiles attempt to identify key components of an 

offender�s behavior by analyzing the quantitative and qualitative relationship the criminal and 

his/her targets share with the immediate landscape.  In doing so, these characteristics emerge that 

are used to identify how the offender perceives his/her environment, and how the offender 

behaves within their activity space.  When coupled with journey-to-crime modeling techniques 
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used to quantitatively describe the travel behavior of criminals, geographic profiling can be used 

by the criminologist to develop new, and enhance existing, investigative strategies and 

potentially predict the offender�s residence, or haven.  

Geographic profiles are created by applying a variety of geo-analytical techniques that 

model travel behavior.  One of the most significant techniques available to the criminologist is 

the distance decay model used to quantitatively measure an offender�s journey-to-crime.  By 

measuring the distance decay from any point on a map to each crime scene, the geographic 

profile can make estimates about where an offender initiated his/her travel.  However, a number 

of circumstances conspire against the predictive effectiveness of such analysis. One such 

handicap is the distance measure used to model journey-to-crime. Traditionally, geographic 

profiling models measured crime patterns using straight-line Euclidean distance measures. Yet, 

these measurements are consistently distorted by various physical and psychological factors that 

ultimately handicap the model�s ability to accurately predict offender residency.  Accordingly, if 

a geographic profile is to become an effective investigative tool, it must be able to accommodate 

for the anisotropic landscape in which crime occurs.   

In an effort to address these issues, this thesis proposed, as a proof of concept, two 

alternative distance measures to accommodate both the physical and psychological elements 

associated with travel: the actual travel-path, and the perceived travel cost in terms of time. 

Using processor intensive network path analysis functions, both travel-path and temporal-path 

distances measured the wheel-distance (miles) and travel time (minutes) between the origin and 

destination locations stored within both a calibration sample and test sample data set.  This 

investigation proposed two theories.  First, by measuring distance according to the travel-path 

(the wheel distance), a modeling application would more accurately account for the inherent 
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impedance factors which ultimately dictate the direction and route an individual can travel when 

commuting between two locations.  Second, in accounting for the least effort principle, the 

temporal-path measures the time it would take for an individual to travel between an origin and 

destination when optimizing the commute to conserve time.  To test the theory, the residence of 

four test sample subjects were estimated using geographic profiling models created with straight-

line Euclidean, Manhattan, and both the travel and temporal path functional distance measures.  

Each resulting geoprofile was assessed for error-distance (used to determine spatial precision) 

and search-cost (the area that needed to be searched in order to identify the residence). 

5.1  Conclusions 
 

Upon final examination of the results obtained from this proof of concept, there are a 

number of conclusions that have been identified.  First, functional distance measures can be used 

to produce accurate geographic profiles.  When modeled using both travel-path and temporal-

path functional distance metrics, all four residences of the sample population of simulated serial 

offenders were successfully identified within an averaged error-distance of 1.73 miles from their 

estimated locations (Tables 4.4 and 4.5).  More significantly, the average hit-score was 

calculated to be 4.53% of the total study area, or a search cost of 8.21 miles2 of East Baton 

Rouge Parish (Tables 4.4 and 4.5). These values performed quite well when compared to the 

cumulative average error-distance of 1.76 miles, and an average hit-score percentage of 4.34%, 

or 7.86 miles2 (Table 4.6).  Of the two functional distance metrics, travel-path measures 

performed the best, predicting each test subject�s residences within an average error distance of 

1.66 miles, or 4.01% of the total study area, approximately 7.20 miles2 (Table 4.6).  

 A second conclusion finds that, for any distance metric, model selection is the most 

critical component for determining the overall effectiveness of a geographic profile.  
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Specifically, journey-to-crime models using the truncated negative exponential function 

consistently performed better than either the negative exponential and logarithmic functions (see 

Table 4.1).  Though discussed in detail in Chapter 4 (Section 4.7), a few possible reasons for this 

can be attributed to the inherent travel characteristics of the sample data sets, the structure of the 

model (a combination of linear and negative exponential functions), the land use characteristics 

of East Baton Rouge Parish, and the limited sample size of the calibration and test data sets.    

Third, temporal-path functional distance measures do not significantly improve a 

geographic profile�s effectiveness.  Of the four metrics used, temporal-path functional distances 

produced the least accurate predictions, averaging an error-distance of 1.96 miles, or 5.06% of 

the total study area (approximately 9.20 square-miles).  While temporal-path values were not 

significantly different from the travel-path value (see Table 4.5 in Chapter 4), this unexpected 

result may be attributable to a number of key characteristics already identified by this research. 

The most significant factor is that the law-abiding residents surveyed for this investigation did 

not optimize their travel productions according to time.  When given the opportunity to select 

between a commute optimized for distance (travel-path) and a commute optimized temporally 

(temporal-path), the majority of those surveyed chose to take the most direct travel path (see 

Table 4.7).  The implication to the criminal investigative process is unclear.  Because the sample 

data sets included only those origins and destinations of law abiding citizens, no conclusive 

statement can be made for the actual travel behavior of a serial criminal, and thus warrants 

further investigation. 

Fourth, the size of the study area is a significant factor for reducing error. As noted 

earlier, network and grid-based analyses consistently struggle with the effects of artificial edges.  

Because only the urbanized area of East Baton Rouge parish was selected to serve as the study 
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area, a large portion of the parish was excluded from the analysis.  As such, the exclusion of 

potentially valuable portions of the study area most likely would have altered the outcome of 

these results.  For two test subjects, destination locations were positioned outside the study area 

(see Figure 4.9).  While the models were able to account for the location�s influence over the 

distribution, many of the grid cells attributed to the points were lost, and not calculated for the 

final results. To what extent this may have influenced the results is undetermined. 

Furthermore, grid cell resolution played a significant role during the network path 

analysis routines.  As indicated in Chapter 3, because technological limitations restricted the 

analysis to a grid cells size of 0.23 miles,  false network connections are certain to have occurred. 

That is, the centroid of a given grid cell may have been improperly associated with a particular 

road or path, or may have randomly selected any one of the possible feature segments that 

intersected the cell.  In such a circumstance, a path could have been selected that would not 

accurately represent a condition of travel, thus altering distances used by both the calibration and 

journey-to-crime models.   While the size of the study area and resolution of the grid cells were 

selected as a direct result of the technological limitations of the investigation, it is clear that these 

parameters are a significant factor for the effective application and predictive ability of a 

geographic profile.   

A final conclusion of this investigation notes that the technological prerequisites needed 

to complete the processor-intensive network path analysis functions can be achieved using �off-

the-shelf� computer and software resources, without the expense of a customized configuration. 

And while the processing time was extensive, in one instance lasting over two-hours, the results 

presented by this thesis demonstrate the feasibility of applying functional distance measures to 

future investigations. The only significant expense that remains is the acquisition of an 
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appropriate transportation network data set compatible with the chosen GIS platform.  As a 

strategy for obtaining this data, law enforcement organizations are encouraged to participate with 

local and municipal governments that may have the data, or would be willing to entertain a 

cooperative partnership to acquire the data.  Such collaborative relationships are common, easy 

to implement (politically), and should be encouraged in order to offset the expense of the data 

sets needed to obtain the desired information. 

5.2  Recommendations  
 

No matter how effective functional distance measures are for enhancing the predictive 

capabilities of a geographic profile, the true value of any criminal investigative technique can 

only be assessed by its practical application.  This research found that functional distance 

measures can be successfully calculated and integrated within a geographic profile using easily 

off-the-shelf technology as well as conventional statistical and GIS software applications.  While 

this research is inherently a theoretical construct, the process of geographic profiling of modeling 

criminal behavior to identify the haven remains the same.  Accordingly, the processes executed 

by this research can be easily applied to a serial criminal investigation without a great deal of 

effort.  And as would be the case for any modeling application, reliability is only as good as the 

assumptions made, the techniques utilized, and the meaningful interpretations derived.  

Accordingly, more needs to be done if this research is to find a practical application.  Briefly 

discussed below are some recommendations that may aid in this objective. 

The findings of this research clearly demonstrate that measuring functional distances 

within geographic profiling is theoretically founded and procedurally sound.  However, a larger 

sample must be employed to demonstrate this conclusively.  At best, these conclusions serve 

only as hypothesis for future studies. Only by modeling a large sample of like-serial criminals 
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can this methodology be assessed accordingly.  Never-the-less, the results and conclusions 

presented here are done so as a feasibility study and proof of concept to initiate the first steps 

necessary to achieve that goal.   

Another recommendation of this research can be attributed to the operational techniques 

used by this investigation.  A significant amount of time was needed to successfully perform the 

network path analysis functions needed to obtain the functional distance measures.  For study 

areas that incorporate larger and higher resolution (more dense) distribution of grid cells, the 

computations could, theoretically, require more than 24 hours of processing.  Once completed, a 

grueling series of calculations between various statistical, GIS, and database software 

applications are executed. Complicating the situation even more, additional software becomes 

necessary, solely for the purpose of managing the output.   The tediousness of these processes 

become magnified when it is intentionally repeated for the purpose of recalibration (required 

every few years), or created anew for each individual police jurisdiction.  Therefore, if a 

geographic profile is to distinguish itself from other investigative techniques, it must demonstrate 

its utility as a cost-effective tool that can be easily implemented in a meaningful and intuitive 

way.   Clearly, the complexities associated with the manual implementation of the methods 

presented in this research do not meet these criteria.  Accordingly, a geographic profiling 

applications enhanced by functional distance measures must be accessible as a package, 

combining all the necessary functions, models, and techniques within one, intuitive interface 

capable of providing a meaningful output.  

A third recommendation serves as a cautionary note for the criminal investigative 

process.  As discussed in Chapter 3, the effectiveness of a geographic profile is dependent upon 

the primary assumption that the crime sites associated with a localized serial offender share a 
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direct relationship with the offender�s activity space. However, investigators looking to utilize 

the enhanced resources of functional distance measures must also accommodate a second 

assumption, that the offender will optimize his or her travel when commuting between residence 

and crime scene.  Only by certifying these two assumptions can the criminologist expect to 

develop an effective geoprofile. But no matter how many assumptions are made, or how similar 

an offender�s travel behavior matches that of a law-abiding citizen, the predictive effectiveness 

of a geographic profile remains vulnerable to the vagaries of the serial offender�s behavior.  

Because geoprofile models are calibrated to the spatial behavior of like-offenders, a serial 

criminal that demonstrates a-typical travel characteristics/patterns will likely lead an 

investigation in the wrong direction.  Only the insight of an experienced investigator can 

determine if the pattern is typical or not, and thus the effectiveness of the tool.   As such, 

geographic profiling must be considered a supplement to existing techniques, not a substitute. 

5.3  Further Topics of Study 
 

The combined efforts of the Brantingham�s, Newton, Canter, Rossmo, Levine, and 

countless others have been instrumental for the development of contemporary geographic 

profiling techniques.  The extensive body of work established by these researchers continues to 

expand and inspire others to develop new techniques and strategies that will ultimately enhance 

its application.  As the very nature of this thesis indicates, new methodologies are continuously 

being proposed and tested for validity.  While there are numerous quantitative and qualitative 

techniques that can be applied to this study, three specific areas of research stand-out in their 

potential to utilize functional distance measures: competing destination and intervening 

opportunities; transportation modeling between traffic analysis zones; and micro-level 

geographic profiling of offender probability surfaces.   
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As demonstrated by both Rational Choice and Crime Pattern theory (Chapter 2), criminal 

activity occurs in specific (i.e. non-random) locations, specified by the various objective and 

subjective characteristics attributed to that location.  Research examining how individuals 

perceive their geographic surroundings indicates that spatial information is cognitively stored 

and processed within hierarchical structures.  How these structures are evaluated represents a 

critical component for the decisions an individual will make as he or she travels from one 

location to another (Curtis, 1995).  By incorporating this concept of spatial choice within 

geographic profiling models, it may be possible to account for how a criminal evaluates and 

selects a potential crime site.  Of the various formulations available, competing destination 

models has been proven to be an effective method for quantifying an individual�s spatial choice 

(Fotheringham, 1988). Characteristics that include distance, path, availability, size, and spatial 

configuration (i.e. how much information is available for a particular area) can be enumerated 

within a journey-to-crime model, quantifying how an offender evaluates the prevailing landscape 

when initiating a crime.  Such a model would represent a more comprehensive foundation for 

understanding offender hunting behavior and site selection.   

 Evaluating the quality of a destination can also be achieved by using travel demand 

models.  However, these techniques are notorious for their limited ability to accommodate for 

spatial choice.  As Levine (2002a) notes, existing travel demand models utilized by 

transportation planners are overly simplistic measures that are not capable of accommodating the 

variety of conditions and circumstances that are observed for �real life.�  Briefly discussed in 

Chapter 2 (Section 2.4), the probability that an offender will commit a crime at a particular 

location is conditionally dependent upon an individual�s assessment of both the travel cost and 

the attractiveness for that destination when compared to any intervening opportunities (Stouffer, 
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1940, Guldmann, 1999).  Any travel model that can allocate offender trip behavior according to 

origin, destination, distance, mode, and path will stand out in its ability to account for the 

available opportunity a particular destination has over another potential destination.   

 Accommodating for these travel characteristics are techniques that expand on existing 

transportation modeling algorithms to look at criminal journey-to-crime between traffic analysis 

zones (TAZ), a GIS data layer available through the U.S. Census Bureau.   Criminologists can 

use transportation models to look at the aggregated volume of crime trips produced-by and 

attracted-to each TAZs in order to estimate how journeys-to-crime are allocated according to 

origins, destinations, distances, and the routes between them (i.e. network path).  Trip-production 

(origin) and trip-attraction (destination) values are calculated from variables associated with each 

zone (i.e. demographics, income, land use, etc).  Each trip is then distributed to every other zone 

using an empirically calibrated distance decay model.  As such, a zone with a large number of 

trip-productions will receive a greater number of trip-attractions (which decreases with distance).  

The resulting calibration measure represents the predicted travel attractiveness between each 

origin zone and each destination zone.  Those values are assigned to particular network routes 

using shortest network path algorithms.  In the context of geographic profiling, it identifies the 

most likely zone from which the perpetrator originated, and the commute most likely used based 

on the attractiveness of that zone.  As noted by Levine (2002a), because these models are 

simultaneously calculated over the entire field of study, all intervening opportunities are 

accounted for within the model. 

 Another possible topic of study is the utilization of offender residency probability 

surfaces (ORP), and incident based ORP surfaces for predicting the likely perpetrator by 

assessing the rank of potential offenders from a police-generated suspect list.  Proposed by 
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researchers Gore and Tofiluk (2002), the process utilizes various distance decay curves to model 

the aggregated travel behavior of a sample group of like offenders for a given area.  The distance 

decay models are used to rank the suspect list as an investigative time-savings strategy.  Gore 

and Tofiluk�s (2002) results find that incident based distance decay curves (distance decay 

curves applied to a defined hot spot of criminal activity) have an advantage over traditional 

journey-to-crime decay curves because they are not affected by sub-structural or domain 

characteristics usually attributed to models that extend over a large urban area.  Incorporating 

these methods within a geographic profiling routine may enhance the results obtained for this 

investigation by improving predictive accuracy and reducing the time needed to perform the 

processor intensive network path analysis.  

 All told, the findings of this thesis support the utility of functional distance measures for 

the criminal investigation of a serial crime.  Despite the small sample size, the results of this 

investigation demonstrated the theory�s conceptual validity as well as the procedures suitability.  

As illustrated in Figures 4.5 � 4.8, the mere fact that each geoprofile density surface was able to 

illustrate the underlying structure of the East Baton Rouge urban landscape is in itself a clear 

indicator that functional distance measures can model an individual�s travel behavior.  

Accurately identifying three out of four residences within 0.73% (1.33 miles2) of the total study 

area provides the proverbial �icing on the cake,� demonstrating that these metrics can perform.  

However, the extent from which a geographic profile�s effectiveness is enhanced for predicting 

the residence of a localized serial offender remains uncertain, and exists as the subject of future 

research. 
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APPENDIX A 
TRAVEL DIARY QUESTIONNAIRE 

 
If you live in East Baton Rouge parish, please provide, with confidence, ten 
(10) locations within East Baton Rouge parish in which you CHOSE to travel 
from your home.  Examples can include gas stations, grocery stores, a mall, a 
park, a friend’s house, bar/restaurants, etc. 
 
Please limit your list for only those places in which you wanted to travel. 
Examples must NOT include work related places or those locations that you 
would not have normally chosen to travel from your residence (for example: a 
store near a friend’s house). Preferred destinations are those that you would 
normally use to complete routine activities from your home. 
 
The logic behind these CHOSEN locations is that you could have opted to visit 
some other destination that would fulfill the same need. But, for what ever 
reason, you selected one location over another (due to its attractiveness, 
convenience, etc.). 
 
Finally, please provide your home address. 
 
To participate, please include the following: 
List 10 locations you recently drove to, anywhere in East Baton Rouge parish.  
Provide your home address last.  

Below are answers to frequently asked questions: 
 
- Provide a street address.  If unknown, cross-streets will do. 
- Provide the place name, especially if it can help determine the location 
(i.e. Albertsons on Bluebonnet). 

- Must be in East Baton Rouge parish. 
- Can be any place in which you would normally travel from your residence. 
- Can be a friend’s house, gas station, grocery store, fitness center, etc.  
- Keep redundant instances to a minimum. 
- Best if those locations are not in a chain (i.e. do not include those 
destinations where you traveled from one place to another to another). 

- Cannot be work, or school related. 
- Do not include unique locations that do not have alternatives (Examples 
include a circus, concert, Mardi Gras parade/ball, or other unique 
location). 

 
 Location Name Address Description 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

11   RESIDENCE 
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APPENDIX B 
COMMUTER SURVEY 

 
To complete the survey, please choose the answer that BEST describes a 
condition of your driving/travel behavior. You may indicate your answer 
(a,b,c,d,e) next to the question. 
 
Please note that these questions only refer to trips to locations within this 
parish.  Please do not consider long-distance travel in this survey. 
 
1) How often do you drive? 

(a) Daily 
(b) Every other day 
(c) A few times a week 
(d) Rarely / only as needed 
 

2) How many destinations do you typically make on an average commute/drive? 
(a) One 
(b) Two 
(c) Three 
(d) More than three 

 
3) When you drive to a location, is distance (miles) to destination a factor 

in planning the commute? 
(a) Always  
(b) Most of the time 
(c) Some of the time 
(d) Rarely 
(e) Never thought about it 

 
4) When you drive to a location, is the time (minutes/hours) to destination a 

factor in planning the commute? 
(a) Always 
(b) Most of the time 
(c) Some of the time 
(d) Rarely 
(e) Never thought about it 

 
5) I consider myself a/an 

(a) Defensive driver 
(b) Aggressive driver   

 
6) Do you consider traffic/congestion a problem? 

(a) Yes 
(b) No 

 
7) If given the opportunity to avoid congestion, you would: 

(a) Take a less-congested and familiar alternate route 
(b) Take a non-congested and unfamiliar alternate route 
(c) Travel at a different time 
(d) Accept the congestion 
(e) None of the above 
 

8) Considering your driving preferences, how would you categorize your 
driving style: 
(a) Direct path traveler (fewest turns, often use major arteries) 
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(b) Indirect path traveler (many turns, often use "back-streets") 
(c) Hybrid (combination of A and B, depending on traffic conditions) 
(d) Other 

 
9) When choosing between two super markets to purchase equally available 

products, you would most likely: 
(a) Travel to the closest market, with slightly higher prices 
(b) Travel further to the market with slightly cheaper prices 

 
10)  How many licensed drivers reside at your address? 

(a) One 
(b) Two 
(c) Three 
(d) More than three 
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Having earned his Bachelor of Science degree in geography from Louisiana State University in 

1994, Mr. Kent initiated his career as a systems analyst for a Microsoft Solutions Provider before 

his experience with information technology could be applied with the Louisiana State Land 

Office.  Following the three years employed as a Geographic Information Systems (GIS) analyst, 

Mr. Kent accepted the position he currently holds as the systems administrator and data manager 

for the Louisiana Geographic Information Center (LAGIC).  As the LAGIC Data Manager, Mr. 

Kent serves the Louisiana GIS Council and the Louisiana geospatial community by providing 

support for, and access to, many of the state�s valuable spatial data assets. 

  


	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. REVIEW OF LITERATURE
	2.1 Perception of Distance and Space within Behavioral Geography
	2.2 Concepts in Environmental Criminology
	2.3 Journey-to-Crime Modeling
	2.4 Distance Decay Functions
	2.5 Geographic Profiling
	2.6 Characteristics of a Serial Offender

	CHAPTER 3. MATERIALS AND METHODS
	3.1 Modeling Environment
	3.2 Test Subjects
	3.3 Data Sets
	3.4 The Geographic Profile Procedure
	3.4.1 Calibration Routine
	3.4.2 Journey-to-Crime Routine

	3.5 Determining the Best-Fit Distance Decay Model

	CHAPTER 4. RESULTS AND DISCUSSION
	4.1 Frequency Distributions by Metric
	4.2 Journey-To-Crime Calibration Models
	4.2.1 Euclidean Distance Decay Model
	4.2.2 Travel-Path Distance Decay Model
	4.2.3 Temporal-Path Distance Decay Model

	4.3 Assumptions
	4.4 Best Performing Geoprofiles
	4.5 Geographic Profiles by Euclidean Metric
	4.5.1 Straight-Line Path Distances
	4.5.2 Manhattan Distance

	4.6 Functional Distance Measures
	4.6.1 Travel-Path Distances
	4.6.2 Temporal-Path Distances

	4.7 Further Discussion

	CHAPTER 5. SUMMARY AND CONCLUSIONS
	5.1 Conclusions
	5.2 Recommendations
	5.3 Further Topics of Study

	REFERENCES
	APPENDIX A�TRAVEL DIARY QUESTIONNAIRE
	APPENDIX B�COMMUTER SURVEY
	VITA



