
13-th IEEE International Conference on Peer-to-Peer Computing

Information Propagation in the Bitcoin Network
Christian Decker,⇤ Roger Wattenhofer†

⇤ETH Zurich, Switzerland cdecker@tik.ee.ethz.ch

†Microsoft Research wattenhofer@microsoft.com

Abstract—Bitcoin is a digital currency that unlike traditional

currencies does not rely on a centralized authority. Instead Bit-

coin relies on a network of volunteers that collectively implement

a replicated ledger and verify transactions. In this paper we

analyze how Bitcoin uses a multi-hop broadcast to propagate

transactions and blocks through the network to update the ledger

replicas. We then use the gathered information to verify the

conjecture that the propagation delay in the network is the

primary cause for blockchain forks. Blockchain forks should be

avoided as they are symptomatic for inconsistencies among the

replicas in the network. We then show what can be achieved by

pushing the current protocol to its limit with unilateral changes

to the client’s behavior.

I. INTRODUCTION

Bitcoin is the first truly decentralized global currency sys-
tem. Like any other currency, its main purpose is to facilitate
the exchange of goods and services by offering a commonly
accepted good. Unlike traditional currencies however, it is not
issued by a state or even a single authority.

Since its inception in late 2008, Bitcoin has enjoyed a rapid
growth, both in value and in the number of transactions. Its
success is mostly due to innovative use of a peer-to-peer
network to implement all aspects of a currencies lifecycle,
from creation to its transfer between users. This is the funda-
mental difference from previous research, which concentrated
on building systems that rely on either a centralized issuer [5],
[16], [18] or creating inter-user credit [9]. These systems
required users to trust the original issuer, which was still used
to eventually clear transactions.

Bitcoin has often been compared to cash as transactions are
near-instantaneous and non-refundable. However Bitcoin goes
beyond the scope of cash, allowing truly global transactions,
processed at the same speed as local ones. It offers a public
transaction history and it introduces many new and innovative
uses such as smart properties, micropayments, contracts and
escrow transactions for dispute mediation.1

Bitcoin is slowly growing into becoming a possible alterna-
tive to the US Dollar or the Euro as more and more businesses
start accepting bitcoins for their products and services. The
fact that Bitcoin is still around indicates that the underlying
principles are sound. Nevertheless, there is some room for
improvement.

The main problem Bitcoin sets out to solve is the distributed
tracking and validation of transactions. For this, the network

1See https://en.bitcoin.it/wiki/Contracts

needs to reach a consensus about the balances of the accounts
it tracks and which transactions are valid. Bitcoin achieves
this goal with guarantees which are best described as eventual
consistency: the various replicas may be temporarily inconsis-
tent, but will eventually be synchronized to reflect a common
transaction history.

As transactions are validated against the replica states, any
inconsistency introduces uncertainty about the validity of a
given transaction. Furthermore, an inconsistency may jeopar-
dize the security of the consensus itself. This may facilitate
an attacker that attempts to rewrite transaction history.

In this work we analyze Bitcoin from a networking perspec-
tive, i.e., how information is disseminated or propagated in the
Bitcoin network, we identify key weaknesses as well as the re-
sulting problems. In particular, we analyze the synchronization
mechanism which fails to synchronize the information stored
at the ledger with a non-negligible probability. This problem
not only causes a prolonged inconsistency that goes unnoticed
by a large number of nodes, but also weakens the system’s
defenses against attackers. We then propose some changes to
the current protocol that, while not a solution to the intrinsic
problems of the communication model used by Bitcoin, may
mitigate them.

II. BITCOIN

In this section we give a general overview about Bitcoin,
adding the details that will be needed later in this paper.
Depending on the context, the name Bitcoin may refer to any
of the following three parts of the Bitcoin ecosystem:

• Bitcoin, the system: the abstract protocol first introduced
by Nakamoto in the original publication [14];

• bitcoins or BTC, the currency unit;
• bitcoind, the reference implementation. Written by

Nakamoto as a proof-of-concept implementation,
bitcoind still remains the most used Bitcoin client.

In this work we focus on the system and its protocol, in
particular on how information is disseminated on the network.
In Bitcoin two distinct types of information are disseminated:
transactions and blocks. Transactions are the primitives that
allow the transfer of value, whereas blocks are used to syn-
chronize state across all nodes in the network.

Unlike traditional currencies, like the US Dollar or the
Euro, Bitcoin does not rely on a centralized authority to
control the supply, distribution and verification of the validity
of transactions. Bitcoin relies on a network of volunteers, to

978-1-4799-0521-8/13/$31.00 ©2013 IEEE



13-th IEEE International Conference on Peer-to-Peer Computing



 


















Fig. 1. The first real transaction F4184F. It claims the 50 bitcoins output
from transaction 0437CD7 and creates two outputs of 10 and 40 bitcoins
respectively. Those outputs are then later claimed by transactions EA44E9
and A16F3CE.

collectively implement a replicated ledger. The ledger tracks
the balance of all accounts in the system. Each node keeps a
complete replica of the ledger. It is crucial for the replicas of
the ledger to be in a consistent state across all nodes at all
times as the validity of transactions is verified against them.

A. Transactions

At an abstract level a transaction transfers bitcoins from one
or more source accounts to one of more destination accounts.
An account is in essence a public-/private-keypair.2 An address
derived from the public key is used to identify the account. To
transfer bitcoins to an account a transaction is created with the
address of the account as destination. To send bitcoins from
an account, the transaction has to be signed with the private
key associated with the sending account.3

Instead of aggregating the balance of each account, the
ledger tracks outputs that transferred the bitcoins to the ac-
count. An output is a tuple of a numeric value in bitcoins and
a condition to claim or spend that output. Hence, the balance
of an account is the sum of the numeric values of all unspent
outputs for that account.

Transactions are identified by the hash of their serialized
representation (tx message). A transaction claims some outputs
by providing a proof of ownership. The references to the
claimed outputs along with the proofs of ownership form what
is called an input to the transaction. The transaction may then
specify one or more new outputs as destination.

Outputs are the fundamental unit of information that is
tracked in the ledger and their status has to be consistent across
all replicas. For a transaction to be valid the following criteria
must be fulfilled by the outputs they claim and create:

• An output may be claimed at most once;
• New outputs are created solely as a result of a transaction;
• The sum of the values of the claimed outputs has to be

greater or equal than the sum of the values of the newly
allocated outputs.

As transactions are broadcast through the network the state
of the ledger replicas changes. When a node receives a new
transaction, it is verified and committed to the local replica.
Over time the various replicas of the ledger at different nodes
may become inconsistent:

2Bitcoin currently uses ECDSA for the signatures.
3The described method to send bitcoins to an account and claiming them

by providing a signature is only one of the possible scenarios. We limit the
description to this method as it is the most commonly used method.

• A node might receive a transaction that transfer coins
from an account, but it did not yet receive the transaction
that made those coins available to the account;

• Two or more transactions might attempt to transfer the
same coins multiple time. This is called a double spend-
ing attack.

Double spending attacks have a direct impact on the
consistency of the ledger replicas. During a double spend,
whether intentional or by mistake, two or more transactions
attempt to simultaneously claim the same output. The real
world equivalent of double spending attacks would be a user
that submits multiple transactions to her bank, spending the
available balance multiple times. While in this case the double
spend attempt would be recognized by the bank and would not
result in a transfer, in Bitcoin this contradiction is harder to
resolve. A node receiving the first transaction will verify it and
commit it to its ledger replica. When the node later receives
the other transactions, the validation fails as the output has
already been spent. As there is no guarantee that all nodes
receive the conflicting transactions in the same order, the nodes
will disagree about the validity of the conflicting transactions
and any transaction that builds on top of them by claiming
their outputs.

B. Blocks

In order for the ledger replicas to remain consistent a
common order over the transactions has to be agreed among
the nodes. Agreeing on a common order of transactions in a
distributed system is not trivial. Bitcoin solves this problem
by tentatively committing transactions and then synchronizing
at regular intervals by broadcasting a block created by one
of the nodes. A block b contains the set of transactions T

b

that the node which created the block has committed since
the previous block. The block is then distributed to all the
nodes in the network and each node receiving it will roll back
the tentatively committed transactions since the last block and
apply the transactions from the current block.

At this point all the nodes have agreed on the validity of all
the transactions in the block. Transactions that were committed
as part of the block are confirmed and do not have to be
reapplied. The transactions that have been rolled back will
then be validated again and reapplied on top of the new base
state. Transactions that are now invalid because they conflict
with transactions committed as part of the block are discarded.

The node that created the block effectively imposes its
view of the changes since the previous block. However, the
decisions of the block creator are limited. The node cannot
forge any transactions as long as the underlying public-
/private-key cryptosystem is secure. The block creator may
only decide in which order transactions arrived and whether
to include transactions in its block.

To determine which node may impose its view the nodes
attempt to find a solution to a proof-of-work [7] with a given
probability of success. The proof-of-work consists in finding a
byte string, called nonce, that combined with the block header

2



13-th IEEE International Conference on Peer-to-Peer Computing

results in a hash H
b

with a given number of leading zero-
bits, or target. As cryptographic hashes are one-way functions,
finding such a nonce can only be done by actually calculating
the hash of the block for all possible nonces until a valid
solution is found. It is therefore difficult to find an input that
produces a solution, but straight forward to verify it. The nonce
is part of the block so that nodes receiving it can verify that
the creator solved the proof-of-work. The hash H

b

is also used
as the block’s identity. The target is determined via consensus
by all nodes in order to achieve an average of one result every
10 minutes in the entire network and is adjusted every 2016
blocks, which should occur once every 14 days in expectation.

Nodes attempting to find a solution to the proof-of-work are
often called miners. To incentivize miners, the node finding a
block receives a reward in the form of newly minted bitcoins,
i.e., it may include a transaction that has no inputs but may
specify outputs for a predetermined number of coins into the
block. This reward transaction is only valid if it appears in the
block and is the only exception to the rule that the sum of a
transaction’s outputs has to be smaller or equal to the sum of
the transaction’s inputs.

C. Blockchain
Up to this point, blocks do not provide any added synchro-

nization on top of the individual transactions. This changes
when the blocks are chained together, creating a chronological
order over the blocks and therefore about the transactions
contained within them.

The blocks are organized in a directed tree. Each block
contains a reference to a previously found block. The block b

referenced by a block b

0 is called its parent. The transitive
closure of this relation gives its ancestors. The root block
in the tree is the genesis block, which is hardcoded into the
clients. This block is an ancestor of all blocks by definition.

The blockchain is defined as the longest path from any block
to the genesis block. The distance between a block b and the
genesis is referred to as its block height h

b

. The genesis block
g therefore has height h

g

= 0. The block with maximal height,
i.e., the block that is furthest away from the genesis block is
referred to as blockchain head, with height hhead. We use the
notation B

h

to reference the set of blocks at height h.
Since to include a reference to the parent block, that parent

block’s identity (its hash) has to be known, the child block
must have been found after the parent. The chaining is used
to assign a chronological order to the transactions: transactions
in lower height blocks have been verified before transactions
in higher blocks.

As only blocks appearing in the blockchain will be rewarded
with newly minted coins that are accepted by other users,
miners will always attempt to find a block that builds on
the current blockchain head. Building on an earlier block
would require the resulting branch to become longer than the
currently longest branch, i.e., the blockchain, to be rewarded.

D. Blockchain forks
From the definition of blockchain directly follows that there

can be multiple heads at a time, i.e., when |B
h

| > 1 with

h = hhead. This situation is called a blockchain fork. During
a blockchain fork the nodes in the network do not agree on
which of the blocks in B

h

is the current blockchain head.
Two blocks b, b

0 2 B
h

are guaranteed to disagree about
the current state of the ledger, because they both introduce a
reward transaction. Hence, a blockchain fork implies that the
system is no longer consistent.

When a node, whose blockchain head b

h

is at height h,
receives a block b

h

0 for height h0
> h it switches its blockchain

head to this block. The new block b

h

0 may either be on the
same branch as b

h

, i.e., b
h

is an ancestor of b
h

0 , or on another
branch.

Should block b

h

be on the same branch as the newly found
blockchain head b

h

0 it will retrieve all intermediate blocks on
the branch and apply their changes incrementally. On the other
hand, should b

h

0 be part of another branch, i.e., b
h

is not an
ancestor of b

h

0 , then they share a common ancestor. Since b

h

0

is on a longer chain than b

h

it becomes the new blockchain
head, therefore the node has to revert all changes down to the
common ancestor and apply the changes in the branch of b

h

0 .
A blockchain fork may be prolonged by the partitions of

the network finding more blocks B
h+1,Bh+2, . . . building

on their respective blockchain heads. Eventually one branch
will be longer than the other branches, and the partitions that
did not adopt this branch as theirs will switch over to this
branch. At this point the blockchain fork is resolved and the
ledger replicas are consistent up to the blockchain head. The
blocks discarded by the blockchain resolution are referred to
as orphan blocks.

Bitcoin never commits a transaction definitively. Every
transaction can be invalidated if a longer chain that started
below the block including the transaction is created. If a
single entity could control a majority of the computational
power on the network, and thus be able to find blocks faster
than the rest of the network combined, it could revert any
transaction. If an attacker attempts to revert a transaction that
was included in block b

h

it would create a new transaction
that conflicts with the original transaction and include it into
a block b

h

0 with h

0
< h. The attacker would then proceed to

create blocks on top of b
h

0 until this new chain overtakes the
original blockchain and thus becomes the new blockchain.

One may argue that the existence of blockchain forks is the
very reason that transactions are never definitively committed.
The tight coupling between blocks and the validity of a
transaction not only slows down the confirmation time of a
transaction but also limits the confirmation to be a probabilistic
statement about the validity.

III. INFORMATION PROPAGATION

The Bitcoin network is a network of homogeneous nodes.
There are no coordinating roles and each node keeps a com-
plete replica of all the information needed to verify the validity
of incoming transactions. Each node verifies information it
receives from other nodes independently and there is only
minimal trust between the nodes.

3



13-th IEEE International Conference on Peer-to-Peer Computing

A. Network topology

By construction the nodes in the network form a random
graph. When a node joins the network it queries a number
of DNS servers. These DNS servers are run by volunteers
and return a random set of bootstrap nodes that are currently
participating in the network. Once connected, the joining node
learns about other nodes by asking their neighbors for known
addresses and listening for spontaneous advertisements of new
addresses. There is no explicit way to leave the network. The
addresses of nodes that left the network linger for several
hours before the other nodes purge them from their known
addresses set. At the time of writing approximately 16000
unique addresses were advertised, of which approximately
3500 were reachable at a time.

Each node attempts to keep a minimum number of connec-
tions p to other nodes open at all times. Should the number
of open connections be below p the node will randomly select
an address from its set of known addresses and attempt to
establish a connection. On the other side, incoming connection
are not closed if they result in the number of open connections
to be above the pool size p. The total number of open
connections is therefore likely to be higher for nodes that also
accept incoming connections.

We observed that a node running bitcoind which accepts
incoming connections, has an average of 32 open connections.
This greatly exceeds the default connection pool size of p = 8.
On nodes that are not reachable, due to either being behind
a network address translation or a firewall, the number of
simultaneous open connections never exceeded p.

Partitions in the connection graph are not actively detected,
and should they occur the partitions will continue operating
independently. While this is certainly desirable from a liveness
point of view, the state tracked in the partitions will diverge
over time, creating two parallel and possibly incompatible
transaction histories. It is therefore of paramount importance
that network partitions are detected. Such detection could
be done by tracking the observed aggregated computational
power in the network. A rapid decrease in the block finding
rate might indicate that a partition occurred.

B. Propagation Method

For the purpose of updating and synchronizing the ledger
replicas only transaction (tx) and block (block) messages are
relevant. These messages are far more common than any other
message sent on the network and may grow to a considerable
size. In order to avoid sending transaction and block messages
to nodes that already received them from other nodes, they are
not forwarded directly. Instead their availability is announced
to the neighbors by sending them an inv message once the
transaction or block has been completely verified. The inv
message contains a set of transaction hashes and block hashes
that have been received by the sender and are now available
to be requested. A node, receiving an inv message for a
transaction or block that it does not yet have locally, will issue
a getdata message to the sender of the inv message containing
the hashes of the information it needs. The actual transfer of

Node A

Node B

block

inv

ge
td

at
a block

verification

Fig. 2. Messages exchanged in order to forward a block message a single
hop from Node A to Node B.

the block or transaction is done via individual block or tx
messages. Figure 2 visualizes the protocol flow for a single
hop in the broadcast. Node A receives a block, verifies it and
announces it to its neighbors. Node B receives the inv message
and, since it does not know about the block, it will issue a
getdata message. Upon receiving the getdata message, Node
A will deliver the block to Node B.

Each block or transaction is introduced to the network at
one of the nodes, its origin, and is then propagated throughout
the network using the above broadcast mechanism.

At each hop in the broadcast the message incurs in a
propagation delay. The propagation delay is the combination
of transmission time and the local verification of the block or
transaction. The transmission time includes an announcement
in the form of an inv message, a request from the receiving
party and a delivery. While the inv and the getdata messages
are relatively small in size (61B in most cases, as immediate
broadcasts only contain a single block or transaction being
announced), the block message may be very large — up to
500kB at the time of writing. Before the block is announced
to the neighbors of a node, it is verified. The verification of a
block includes the verification of each transaction in the block.
Transaction verification in turn requires random access to data
stored on discs.

Let t
i,j

be the time difference between the first announce-
ment by the origin to the network and the time at which node
j receives the item i. If node o is the origin of the data item
i, i.e., either the finder of the block or the node that created
the transaction, then t

i,o

= 0.
The times t

i,j

at which nodes learn about the existence of
a data item follow a double exponential behavior. Similar to
randomized rumor spreading [12], the propagation of a data
item can be divided into two phases: an initial exponential
growth phase in which the most of the nodes receiving inv
messages will request the corresponding data item as they do
not have it yet, and an exponential shrinking phase in which
most of the nodes receiving an announcement already have
the corresponding data item.

To measure the propagation delay we implemented the
bitcoin network protocol and connected to a large sample of

4



13-th IEEE International Conference on Peer-to-Peer Computing

Fig. 3. The normalized histogram of times since the first block announcement
with fitted exponential curve.

nodes in the network. Our implementation behaves exactly
like a normal node with one caveat: it does not relay inv
messages, transactions or blocks. It tracks how transactions
and blocks are propagated through the network by listening
for the announcement of their availability in the form of inv
messages. Once the measuring node receives an inv message
containing the reference to a block we know that the node
which sent the announcement has received and verified the
block.

The measuring node collected timing information from
blockchain height 180’000 for 10’000 blocks. The timing
information contains the hash of the block, the announcing
nodes IP and a local timestamp when the announcement was
received. An estimate for the t

i,j

is given by subtracting
the timestamp of the first announcement of a block from all
announcements for that data item.

Figure 3 shows the normalized histogram of t

b,j

for all
blocks b in the measured interval. The normalization allows
us to use this as an approximation of the probability density
function of the rate at which nodes learn about a block. Notice
that we do not differentiate between the blocks’ sizes and
instead aggregate over all blocks. The median time until a
node receives a block is 6.5 seconds whereas the mean is at
12.6 seconds. The long tail of the distribution means that even
after 40 seconds there still are 5% of nodes that have not yet
received the block.

C. Size Matters

There is a strong correlation between the size of a message
and the propagation delay in the network. The delay cost
is defined as the time delay each kilobyte causes to the
dissemination of a transaction or block. Notice that the cost
is a combination of both verification and transmission time.
Figure 4 plots the costs for the 50, 75 and 90 percentile
for various sizes. For sizes larger than 20kB the cost can
be said to be constant, whereas for small sizes there is
a considerable overhead. The overhead for small sizes is

Fig. 4. Delay costs for the 50, 75 and 90 percentile. The plot is focused on
the lower y-range to show the constant behavior after 20kB.

caused by the roundtrip delay, i.e. the fact that even small
messages are announced via an inv message and then retrieved
via a getdata message. The roundtrip delay is dominant for
transactions as 96% of all transactions are smaller than 1kB.
For blocks, whose size is larger than 20kB, each kilobyte in
size costs an additional 80ms delay until a majority knows
about the block. It would therefore be sensible to forward
transactions directly, and thus avoiding the overhead of the
added roundtrip. However the same cannot be said for blocks
where the overhead does not contribute as much to the overall
time to disseminate.

D. Information Eclipsing

So far we have discussed how information is propagated
in the case that the information is not contradicting. Another
important part in the dissemination of information in the
Bitcoin network is the visibility of information. When a node
receives a new block or transaction, that it deems invalid,
possibly because it contradicts information it received earlier,
it will ignore it and not forward it.

Let us consider the case of a block being disseminated in
the network and how it may lead to a blockchain fork that is
only detected by a minority of the nodes.

Let G = (V,E) be the network’s underlying connection
graph, V being the set of all nodes and E the set of con-
nections between the nodes. Starting from a single partition
P

h

⇢ V containing all nodes whose blockchain head is at
height h, i.e., they do not know any block for the next height
h + 1. Finding a new block b

h+1 introduces a new partition
P

h+1,b which contains the nodes that believe this block to
be the head, i.e., it is the first block for height h + 1 they
received. If no other block is found, then nodes adjacent to
the cut between P

h

and P

h+1,b leave P

h

and join P

h+1,b until
P

h

is empty and the network as a whole proceeds with the
new blockchain height h+ 1.

On the other hand, should another block b

0
h+1 for height

h + 1 be found by a node in P

h

, it again introduces a new

5



13-th IEEE International Conference on Peer-to-Peer Computing

partition P

h+1,b0 . In this case nodes from P

h

will join P

h+1,b

and P

h+1,b0 concurrently until P
h

is empty, and all nodes are
in one of the partitions with height h+ 1.

Only nodes adjacent to the cut between P

h+1,b and P

h+1,b0

will know both b and b

0 and therefore able to detect the
resulting blockchain fork. Nodes that are in the partition
P

h+1,b, and not adjacent to P

h+1,b0 , will only know b and be
completely oblivious to the existence of a conflicting block. A
partition P

h+1,b could potentially contain only a single node,
in the case that the node’s neighbors already know a conflicting
block and immediately stop the propagation of b.

The above also applies for transactions that are being
propagated. If two transactions that attempt to spend the same
output are propagated in the network only the first transaction
a node receives will be deemed valid, the second transaction
will be invalid according to that node’s state and will therefore
not be announced to its neighbors.

This behavior has the advantage that a malicious node may
not flood the network by issuing hundreds of contradicting
transactions with no additional cost, in the form of fees, to the
malicious node. On the downside this very behavior makes
double spend attacks that are invisible to the merchant [11]
possible.

In the case of transactions, stopping the propagation is a
reasonable trade off, that protects the network from transaction
spam, at the expense of individual users. However, in the
case of blocks, stopping the propagation is not reasonable.
The blockchain forks, that are hidden from a majority of the
nodes by doing so, are an important indicator of an ongoing
unresolved inconsistency. As valid, but potentially conflicting
blocks, cannot be created at an arbitrary rate like transactions,
forwarding them would not create the possibility of an attack.

IV. BLOCKCHAIN FORKS

In this section we focus on the block propagation and the
blockchain forks that occur in the network. We show that
blockchain forks are caused by the long propagation time by
presenting a model that matches the observed blockchain fork
rate.

A. Observing Blockchain forks

Some blockchain forks may be observed by participating
in the network and receiving the two conflicting blocks.
Observing all blockchain forks however is difficult. If a node
detects that an incoming block conflicts with the block it
believes to be the chain’s head, then it will not propagate the
block any further.

Recall that the partitions in a blockchain fork may have size
1. As a direct result, faithfully reporting all blockchain fork
would require being connected to every node in the network.
Due to some nodes not being reachable, either because they
are behind a firewall or network address translation, only an
approximation of the actual number of blockchain forks can
be given.

Using the implementation from Section III we collected
the blocks that have been propagated in the network between

Fig. 5. Histogram of blockchain forks for 10’000 blocks starting at height
180’000, observed while participating in the network.

height 180’000 and height 190’000. We are confident that due
to our large sample, which includes all reachable nodes, nearly
all the found blocks have been propagated to us, allowing us
to identify close to all blockchain forks that occurred in the
measurement interval.

Figure 5 shows the histogram of blockchain forks in the col-
lected blocks. There were 169 blockchain forks in the observed
10’000 block interval, resulting in an observed blockchain fork
rate r = 1.69%.

B. Model

The proof-of-work causes valid blocks to be found inde-
pendently at random. Since blocks are found independently
at random by the participants in the network, a block might
be found while a conflicting block is being propagated in the
network. We claim that blockchain forks are caused by the
block propagation delay in the network.

1) Probability of finding a block: The bitcoin protocol
adjusts the difficulty of the proof-of-work required to find
a block so that in expectation one block is found every 10
minutes.

If X

b

is the random variable of the time difference in
seconds between a block being found and its predecessor being
found, then the probability of a block being found by the
network as a whole in any given second is

P

b

= Pr[X
b

< t+ 1|X
b

� t] ⇡ 1/600 (1)

2) Part of the network that could find a conflicting block:
A blockchain fork occurs if, during the propagation of a block
b, a conflicting block b

0 is found. Such a block b

0 may only
be found by the part of the network that does not yet know
about b.

Let t
j

be the time in seconds at which node j learns about
the existence of b since it has been found. Let the I

j

(t) be
the indicator function whether node j knows about b at time
t. Let I(t) be the indicator function that counts the number of

6



13-th IEEE International Conference on Peer-to-Peer Computing

informed nodes, i.e., the nodes that have received and verified
block b, at time t.

I

j

(t) =

(
0 t

j

> t

1 t

j

 t

I(t) =
X

j2V

I

j

(t)

Then the ratio of informed nodes is

f(t) = E[I(t)] · n�1

Notice that f(t) is equivalent to the cumulative distribution
function (CDF) of the rate at which peers are informed. We
may therefore use the PDF of the rate at which peers are in-
formed from Figure 3 as an estimate during the measurements.

Only the uninformed nodes may produce a conflicting block.
Combining the probability of finding a block and the ratio
of nodes that is uninformed we derive the probability of a
blockchain fork. Let F be a discrete random variable that
counts the number of conflicting blocks being found while
another block is being propagated, then the probability of a
blockchain fork is:

Pr[F � 1] = 1� (1� P

b

)
R 1
0 (1�f(t))dt (2)

Notice that this last step requires the simplifying assumption
that the probability of node finding a block is distributed
uniformly at random among all nodes.

Hence, knowing the probability of the entire network to find
a block P

b

and the distribution of how the nodes learn about
the existence of the block allows to derive the probability of
a blockchain fork. P

b

and the distribution of the I

j

depends
on the computational power in the current network and the
topology and size of the network.

C. Measurements

To validate the model we compare the resulting probability
of a blockchain fork with the observed rate of blockchain
forks.

1) Probability of finding a block: Each block includes a
timestamp of the time the block was found. As nodes do not
synchronize clocks, but rather sample the current time of their
neighbors, there is a non-trivial clock skew in the timestamps.

In some cases the clock skew is quite pronounced, pro-
ducing even impossible constellations. For example block at
height 209873 in the blockchain has a timestamp of 22:10:13
whereas the following block at height 209874 has a timestamp
for 22:08:44. Since the latter includes the hash of the former,
the blocks were found in the correct order. Thus the conflicting
timestamps may only be caused by the non-synchronized
clocks.

As alternative, because we are participating in the network
and have a large sample of the nodes, we may also use the
time we first saw the block being announced to the network as

Fig. 6. Shifted time difference distribution for blocks being found between
height 180’000 and 190’000.

the time the block was found. While this does not suffer from
clock skew, it may have a small delay between the block being
found and the first announcement reaching the measurement
node and we only have the timestamps the blocks that were
found while actively measuring the network.

The proof-of-work is a Poisson process, therefore the time
difference follows an exponential distribution. The convolution
of the random clock skew and the time between blocks being
found in the timestamp of the block causes a right shift of
the maximum. This can be corrected by a left shift until the
maximum is at t = 0. The announcement time observed while
measuring does not suffer from the clock skew and directly
produces the correct histogram.

g(t) = �e

��·x

By extracting the timestamps from the blocks at height
180’000 through 190’000 we get the distribution shown in
Figure 6. By fitting the observed distribution to the exponential
distribution we find a value for � = 0.001578 and therefore
an expected time between two blocks of 1/� = 633.68
seconds. By fitting the probability density of the time between
first announcements from the measurements we find a value
� = 0.001576 resulting in an expected time between two
blocks of 1/� = 634.17. The two approximations of � are
consistent, but both are slightly above the targeted value of
600 seconds. The difference is most likely due to a decrease
in computational power in the network.4

2) Block propagation in the network: Due to the normaliza-
tion the histogram in Figure 3 also represents the probability
density function (PDF) of the random variables t

b,j

for all
blocks b in the measurement interval. Hence, the ratio of
informed nodes f(t) is the area under the histogram up to
time t.

Combining the above probability of finding a block and
the function for the informed ratio results in the following

4See http://bitcoin.sipa.be/ for June 2012

7



13-th IEEE International Conference on Peer-to-Peer Computing

Fig. 7. Probability density function of a conflicting block being found while
another block is being broadcast.

probability for a blockchain fork:

Pr[F � 1] = 1� (1� P

b

)
R 1
0 (1�f(t))dt

= 1�
✓
1� 1

633.68

◆11.37

(3)

⇡ 1.78% .

According to our model the probability of a blockchain
fork is therefore 1.78%. Comparing this result to the observed
blockchain fork rate of 1.69% in Section IV-A we observe
that we overestimate the observed fork rate by only 5%.
The slightly higher predicted probability is possibly due to
the assumption that the computational power is uniformly
distributed over all nodes in the network. However, the good
quality of the fit suggests that the model is a good match for
the reality.

Because the number of transactions and the size of the
network is likely to grow as the adoption of Bitcoin as a
payment method picks up the rate of blockchain forks is bound
to increase. A larger network, with the random topology and
the fixed connection pool size increases the diameter and the
average distance between the nodes and the origin of a block.
An increase in the number of transactions causes a growth in
the block size which in turn increases the verification delay
and the transmission delay at each hop in the propagation.

An alternative interpretation of the result in eq. (3) is that
each time a block is found, the equivalent of 11.37 seconds
worth of computational power of the entire network is wasted.
Work, i.e., attempts to find a proof-of-work solution, that goes
into building alternative blockchain heads does not contribute
to extend the blockchain, making it potentially easier for
an attacker to overtake the current blockchain head with an
alternative chain of its own. Nakamoto [14] already anticipated
that an attacker with more than 50% of the computational
power in the network would be able to find proof-of-work so-
lutions faster than the rest of the network. The attacker would
therefore be able to eventually replace the transaction history

from an arbitrary point in time. While certainly sufficient,
the condition is not strict, as our result shows. In reality the
efficiency of the network as a whole, including a propagation
delay, is not optimal. This inefficiency may give a prospective
attacker that can reduce the delay a considerable advantage.

The effective computational power in the current network is
1�11.37/633.68 = 98.20%. Therefore, a 49.1%, share of the
computational power in the network is enough for an attacker
to eventually revert any transaction under current conditions.
While even this is hard to achieve, increasing propagation
delay may further weaken the network as a whole.

V. SPEEDING UP THE PROPAGATION

In the previous section we have shown that the way informa-
tion is propagated in the network causes blockchain forks. In
this section we explore what the limits of the existing protocol
are and whether unilateral changes in the nodes behavior can
change the blockchain fork rate. There are several ways to
improve the propagation of information in the network:

• Minimize verification
• Pipelining block propagation
• Connectivity increase
Limiting the changes to the ones that can be enacted in

an unilateral way allows us to assess their effectivity without
major changes to the protocol, which would have to be vetted
and accepted by the Bitcoin community.

A. Minimize verification

A major contributor to the propagation delay is the time
it takes a node to verify a block before announcing it to the
network. There is a strong correlation between the size of a
block and the time to verify it. As each hop in the propagation
has to verify the block before relaying it to its neighbors the
delay is multiplied by the length of the propagation paths.

Currently there is a block size limit of 500kB per block
enforced by bitcoind, but this is likely to be relaxed more and
more as the average block size grows, so that it may include
more transactions.

The first insight is that the verification can be divided into
two phases:

• An initial difficulty check;
• A transaction validation.
The difficulty check consists of validating the proof-of-work

by hashing the received block and comparing the hash against
the current target difficulty. Additionally, it checks that the
block is not a duplicate of a recent block and that it references
a recent block as its predecessor to verify that the block is not
a resubmission of an old block. The bulk of the validation is
done in the transaction validation which checks the validity
of each transaction in the block. The block can be relayed to
the neighbors, as soon as the difficulty has been checked and
before the transactions have to be verified.

Therefore the behavior of the node could be changed to send
an inv message as soon as the difficulty check is done, instead
of waiting for the considerably longer transaction validation
to be finished.

8



13-th IEEE International Conference on Peer-to-Peer Computing

Node A

Node B

inv

ge
td

at
a

inv

ge
td

at
a

block

block

diff verification

Fig. 8. Message exchange after the behaviour described modifications.
Compared to Figure 2 there is a notable difference. The inv message is
forwarded immediately and the verification is split into two, speeding up
the propagation.

Any change to the behavior of nodes in the network has to
be vetted against the potential for being misused by an attacker
to harm the network. In particular relaying information that has
not been validated might allow an attacker to send arbitrary
amounts of data that is then relayed, overwhelming some
nodes in the network and resulting in a distributed denial of
service attack.

This change does not increase the risk for a denial of service
attack as producing an invalid block that passes the difficulty
check is just as hard as producing a valid block with the
same difficulty. On the downside this change is unlikely to
have a large impact on the overall propagation delay if it is
implemented only by a single node that is not well connected.
It speeds up a single hop on the path from the origin to the
nodes.

B. Pipelining block propagation

A further improvement can be achieved by immediately
forwarding incoming inv messages to neighbors. The goal of
this is to amortize the round-trip times between the node and
its neighbors by preemptively announcing the availability of
a block earlier than it actually is. The incoming getdata mes-
sages for the block are then queued until the block has been
received and the above difficulty check has been performed,
then the block is sent to the neighbors requesting it. Unlike
the first change, this may cause some additional messages
being sent as from the hash of the block no validation can
be done. An attacker may announce an arbitrary number of
blocks without being able to provide them when asked for
it. Nodes receiving these spam announces will relay them to
their neighbors. Should a node detect that one of its neighbors
is announcing blocks that it cannot provide it can switch
back to the original behavior of first verifying blocks before
announcing them.

Even though nodes can be tricked into forwarding inv
messages that it cannot provide the block for, the impact is
likely to be small as the inv messages have a small constant
size of 61B. Note that the same attack is already possible by

Fig. 9. The histogram of detected blockchain forks while influencing the
propagation in the network from blockchain height 200’000 to 210’000.

creating an arbitrary amount of transactions and announcing
them to the network. As the attacking node can provide the
matching transaction, it will not be recognized as an attack.

Figure 2 and Figure 8 show the changes in the behavior.
Node A is the node whose behavior has been altered. No-
tice the verification being divided into two phases (diff and
verification) and the inv message being sent much earlier.

Again this speeds up a single hop and is unlikely to result
in a large improvement if implemented only by single node in
the network.

C. Connectivity increase

The most influential problem is the sheer distance between
the origin of a transaction or a block and the nodes. To
minimize the distance between any two nodes we attempted to
connect to every node in the network creating a star sub-graph
that is used as a central communication hub, speeding up the
propagation of inv messages, blocks and transactions.

We instructed our implementation to keep a connection pool
of 4000 connections open. This caused it to connect to every
single advertised address, as fewer than 4000 nodes were
reachable at any time.

The result is that the distance between any two nodes the
hub connected to is close to 2.

D. Measurements

The above changes were implemented in our client and
tested from blockchain height 200’000 to 210’000. During this
time the client was connected to an average of 3048 nodes in
the network and uploaded 20.5 million block messages. For
each block the node received an average of 2048 requests.

Figure 9 shows the histogram of blockchain forks while
participating in the network with the modified client. Com-
paring it to the unmodified case shown in Figure 5 a clear
improvement is visible. The overall effect of the changes was
that the blockchain fork rate dropped from 1.69% to 0.78%,
i.e., a 53.41% improvement over the unmodified case.

9



13-th IEEE International Conference on Peer-to-Peer Computing

As mentioned before, the pipelining and the verification
minimization only have a small effect, which is multiplied
by the last change. The last change however has high band-
width requirements as blocks caused bandwidth spikes up to
around 100 MB/s and resulted in a total upload, during the
measurements, of 2.31TB raw block data.

VI. RELATED WORK

Although relatively young as a system, Bitcoin has sparked
a lot of interest in many research areas. The topics that are
being researched include the legal [1], the economic [4] and
the technical aspects of Bitcoin.

The problem of double spending has been addressed in the
original paper by Nakamoto, but only theoretically. Karame et
al. [11] have an in depth analysis of the probability of a double
spending attack to succeed in several scenarios. While they
do mention the possibility of a double spend that cannot be
detected simply by a longer detection period, we introduce the
concept of information eclipsing, which causes this problem.
Bamert et al. [3] propose some mitigations to the double-
spending problem in fast payment scenarios.

Babaioff et al. [2] analyzed the incentives for nodes to
forward information at all in the network and found that they
are insufficient. A dominating strategy in the current system
is for a miner to hold on to transactions that include fees, and
claim them by eventually creating a block that includes the
transaction.

Bitcoin mining often requires specialized equipment and
consumes wast amounts of energy. Becker et al. [4] analyze the
ecological impact of Bitcoin as a currency system compared to
traditional currencies. Their conclusion is that while the fees
to send a Bitcoin transaction are small, actually maintaining
and securing the network against takeover is expensive. As we
have shown the amount of computational power in the network
is likely to be underestimated.

Another highly debated topic is the anonymity of Bitcoin
transactions. The fact that all transactions are tracked in a
replicated ledger and that the details of the transactions are
therefore accessible by any participant in the network would
suggest that privacy is not possible. However, Nakamoto
claims that, since the identities of the owner of an account and
the identity of the account are kept separate, the privacy can be
said to be pseudonymous. Reid et al. [15] analyze this claim
and point out that by colluding the information of multiple
accounts that participated in a transaction details about the
owner can in fact be recovered. Shamir et al [17] analyzed the
transaction graph, deriving some global statistics, including an
estimate that 78% of the issued bitcoins are not circulating, and
an in depth analysis of a highly active region in the transaction
graph. Elias [8] discussed some legal, and moral, aspects of
the anonymity, or lack thereof, in Bitcoin.

The anonymity problem in Bitcoin was later addressed by
ZeroCoin [13] which allows the implementation of a Zero-
Knowledge based decentralized coin mixing service. Earlier
Hanke et al. [10] presented a Pay-to-Contract Protocol that
is built on top of Bitcoin and secures transactions between

merchants and their clients. CommitCoin [6] is another system
that builds on the blockchain to carbon date commitments.

VII. CONCLUSION

In this paper we analyzed how information in the Bitcoin
network is disseminated in order to synchronize the ledger
replicas. The reliance on blocks not only delays the clearing
of transactions, but it also poses a threat to the network itself.
Large blocks are propagated slowly in the network, giving an
attacker an advantage.

We introduce a model that explains the existence of
blockchain forks, and corroborate the model by matching it
to our observations. As blockchain forks are symptomatic for
an inconsistency in the ledger replicas, it is important that the
nodes in the network are aware about them. However, due to
information eclipsing, most nodes are unable to detect them.

Finally, we implemented and measured some changes to
the Bitcoin protocol that reduce the risk of a blockchain fork.
Our measurements show that a single node implementing these
changes reduces the number of blockchain forks in the network
by over 50%. The root cause of the problem however is
intrinsic to the way information is propagated in the network.
The changes may mitigate the problem in the short term, until
a scalable long term solution is found.

REFERENCES

[1] Bitcoin virtual currency: Unique features present distinct challenges for
deterring illicit activity. Technical report, Federal Bureau of Investiga-
tion, 2012.

[2] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar. On bitcoin and red
balloons. In Proc. of Electronic Commerce, 2012.

[3] Tobias Bamert, Christian Decker, Lennart Elsen, Samuel Welten, and
Roger Wattenhofer. Have a snack, pay with bitcoin. In IEEE Internation
Conference on Peer-to-Peer Computing (P2P), Trento, Italy, 2013.

[4] Jörg Becker, Dominic Breuker, Tobias Heide, Justus Holler, Hans Peter
Rauer, and Rainer Böhme. Geld stinkt, bitcoin auch — eine Ökobilanz
der bitcoin block chain. In BTC 2012: Workshop Bitcoin.

[5] David Chaum. Blind signatures for untraceable payments. In Crypto,
volume 82, page 199203, 1982.

[6] Jeremy Clark and Aleksander Essex. Commitcoin: Carbon dating com-
mitments with bitcoin. In Financial Cryptography and Data Security.
2012.

[7] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In Advances in Cryptology.

[8] Matthew Elias. Bitcoin: Tempering the digital ring of gyges or
implausible pecuniary privacy. Available at SSRN 1937769, 2011.

[9] Ryan Fugger. Money as ious in social trust networks & a proposal for
a decentralized currency network protocol. 2004.

[10] Ilja Gerhardt and Timo Hanke. Homomorphic payment addresses and
the pay-to-contract protocol. CoRR, abs/1212.3257, 2012.

[11] G.O. Karame, E. Androulaki, and S. Capkun. Two bitcoins at the price
of one? double-spending attacks on fast payments in bitcoin. In Proc.
of Conference on Computer and Communication Security, 2012.

[12] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized
rumor spreading. In Proc. of Foundations of Computer Science, 2000.

[13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin.
Zerocoin: Anonymous distributed e-cash from bitcoin. 2013.

[14] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
[15] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system.

In Proc. of the Conference on Social Computing (socialcom), 2011.
[16] Ronald L Rivest. Electronic lottery tickets as micropayments. In

Financial Cryptography, pages 307–314. Springer, 1997.
[17] Dorit. Ron and Adi Shamir. Quantitative analysis of the full bitcoin

transaction graph.
[18] Beverly Yang and Hector Garcia-Molina. Ppay: micropayments for peer-

to-peer systems. In Proc. of Computer and communications security.

10


