Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis®

Tegan Brennan, Nestan Tsiskaridze, Nicolas Rosner, Abdulbaki Aydin, and Tevfik Bultan
Department of Computer Science, University of California Santa Barbara, CA
{tegan,nestan,rosner,baki,bultan}@cs.ucsb.edu

ABSTRACT

We present a constraint caching framework to expedite potentially
expensive satisfiability and model-counting queries. Integral to this
framework is our new constraint normalization procedure under
which the cardinality of the solution set of a constraint, but not
necessarily the solution set itself, is preserved. We extend these
constraint normalization techniques to string constraints in order
to support analysis of string-manipulating code. We use a group-
theoretic framework, which generalizes earlier results, to express
our normalization techniques. We also present a parameterized
caching approach where, in addition to storing the result of a model-
counting query, we store a model-counter object that allows us to
efficiently recount the number of satisfying models for different
bounds. We implement these techniques in our tool Cashew, which
is built as an extension of the Green caching framework [55], and
integrate it with the symbolic execution tool Symbolic PathFinder
(SPF) and the model-counting constraint solver ABC. Our experi-
ments show that constraint caching can significantly improve the
performance of symbolic and quantitative program analyses. For
instance, Cashew can normalize the 10,104 unique constraints in
the SMC/Kaluza benchmark down to 394 normal forms, achieve
a 10x speedup on the SMC/Kaluza-Big dataset, and an average 3x
speedup in our SPF-based side-channel analysis experiments.

CCS CONCEPTS

« Software and its engineering — Formal software verification;

KEYWORDS

Constraint caching, quantitative program analysis, model counting,
string constraints

ACM Reference Format:
Tegan Brennan, Nestan Tsiskaridze, Nicolas Rosner, Abdulbaki Aydin, and
Tevfik Bultan. 2017. Constraint Normalization and Parameterized Caching

“This material is based on research sponsored by NSF under grant CCF-1548848 and
by DARPA under the agreement number FA8750-15-2-0087. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3106303

535

for Quantitative Program Analysis. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4-8, 2017 (ESEC/FSE’17), 12 pages.
https://doi.org/10.1145/3106237.3106303

1 INTRODUCTION

Improvements in the area of satisfiability modulo theories [10, 12]
and powerful SMT solvers [11, 20, 21] have been key technologi-
cal developments enabling the rise of effective symbolic program
analysis and testing techniques in the last decade [15, 27, 32, 48].

Performing symbolic analysis via satisfiability checking, how-
ever, is not sufficient for quantitative program analysis, which is an
important problem that arises in many contexts such as probabilistic
analysis [14, 24, 38], reliability analysis [22] and quantitative infor-
mation flow [7, 17, 28, 40, 41, 43—45, 50, 53]. The enabling technol-
ogy for quantitative program analysis is model-counting constraint
solvers. A model-counting constraint solver returns the number of
solutions for a given constraint within a given bound [6, 8, 39].

Since constraint solving and model counting are heavily used
in program analysis, improving performance of these tasks is of
critical importance. In this paper, we present a new approach for
constraint normalization and constraint caching with the goal of
improving the performance of quantitative program analyses.

The key step in constraint caching is normalization of constraints,
i.e., reducing constraints to a normal form, where two constraints
are reduced to the same form only if they are equivalent (w.r.t.
satisfiability or model counting). Using the normal form of a con-
straint as a key, we can recover results of previous satisfiability or
model-counting queries without recomputing them.

Earlier techniques for constraint caching [4, 31, 55] 1) focus only
on numeric constraints and do not handle string constraints, 2) use
normalization techniques that preserve the exact solution set of a
constraint, which reduces cache hits for model-counting queries,
and 3) always produce cache misses for model-counting queries if a
different bound is used, even if the queried constraint remains the
same. In this paper, we extend earlier results in multiple directions:

e We present constraint normalization techniques for model
counting under which the solution set of the constraint may
not be preserved but its cardinality is.

e We extend constraint caching to string constraints which is
crucial for analyzing string manipulating code.

e We present a parameterized caching approach where, in
addition to the result of a model-counting query, we also
cache a counter object in the constraint cache that allows us
to efficiently recount the models for different bounds.

e We formalize our normalization scheme using an extensible
group-theoretic framework for constraint normalization that

https://doi.org/10.1145/3106237.3106303
https://doi.org/10.1145/3106237.3106303

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

generalizes earlier results on constraint normalization for
caching.

We implemented these techniques in our tool Cashew, which is built
as an extension of the Green caching framework [55]. We integrated
Cashew with Symbolic PathFinder (SPF) [42] and the ABC [6]
model-counting constraint solver. Our experiments demonstrate
that constraint caching can improve the performance of quantitative
program analysis significantly.

The paper is organized as follows: In Section 2 we provide some
motivating examples for constraint caching. In Section 3 we give
an overview of our constraint caching framework. In Section 4 we
discuss our group-theoretic normalization scheme. In Section 5 we
describe the constraint language we support. In Sections 6 and 7
we present the constraint normalization procedure. In Section 8 we
present our experiments. In Section 9 we discuss related work. In
Section 10 we present our conclusions. In Section 11 we describe
how to obtain and use the implementation.

2 MOTIVATION

The amount of string-manipulating code in modern software appli-
cations has been increasing. Common uses of string manipulation
include: 1) Input sanitization and validation in web applications;
2) Query generation for back-end databases; 3) Generation of data
formats such as XML and HTML; 4) Dynamic code generation; 5)
Dynamic class loading and method invocation. In order to analyze
programs that use string manipulation, it is necessary to develop
techniques for efficient manipulation of string constraints. Recently,
there has been significant amount of work in string constraint solv-
ing to address this problem [2, 23, 29, 30, 33-36, 47, 52, 57]. One of
our contributions in this paper is a constraint normalization and
caching framework that can handle string constraints.
Consider the following string constraint F:

b = “https” A prefix_of (b, url) A ¢ = “?” A contains(c, url)
Aw € (0]1)" Aindex_of (w,url) = 8

The solution set of F is the set of values that can be assigned to the
string variables b, ¢, w, and url for which F evaluates to true.

Constraints such as F commonly arise in symbolic program anal-
ysis. For example, F might correspond to a path constraint generated
during symbolic execution of a string-manipulating program. A fun-
damental question about a constraint F generated during program
analysis is its satisfiability. Symbolic program analysis techniques
generate numerous satisfiability queries while analyzing programs.
Given that satisfiability checking is computationally expensive, it
is crucial to answer satisfiability queries efficiently in order to build
scalable symbolic program analysis tools.

On the other hand, quantitative program analysis techniques
ask another type of question while analyzing programs. Assume
that we bound the length of the string variables b, ¢, w, and url in
constraint F to 5. How many different string values are there for
the variable b such that the constraint F is satisfiable within the
given bound? These types of queries can be answered by model-
counting constraint solvers. Again, due to the high complexity of
model counting, answering model-counting queries efficiently is
crucial for quantitative program analysis.

536

T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

Now, consider the following string constraint G:

k="“¢"Aw="http : ” A contains(k,var0) A z € (1/0)*
A index_of(z, var0) = 8 A prefix_of (w, var0)

Constraint G is a constraint on string variables k, z, w, and var0.
Assume that constraints F and G are generated during program
analysis and it is necessary to check the number of satisfying so-
lutions and satisfiability of each. Can we avoid making redundant
calls to the constraint solver? Note that the solution sets of F and
G are different since different string constants appear in these two
constraints. However, the satisfiability and the cardinality of the so-
lution sets for these two constraints are identical. Hence, if we were
able to detect the relationship between the number of satisfying
models of F and G and had stored the result of a model-counting
query on F, then when we see G we do not have to call the model-
counting constraint solver again. Same for satisfiability queries.

The problem of reusing information about F to answer our ques-
tions about G has now been reduced to finding a fast way to deter-
mine that F and G are equivalent with respect to satisfiability and
model counting. In this paper, we present a constraint normaliza-
tion scheme to determine this type of equivalence. Based on our
scheme, the normalized form of F and G are identical:

« 3

v0 = “a” A vl = “beede” A contains(v0, v2)
A prefix_of (v1,02) A v3 € (flg9)" A index_of (v3,v2) = 8

Hence, given a constraint, to determine if an equivalent constraint
has already been encountered, we normalize it and check if its
normal form was seen previously. Using a constraint store to cache
the results of prior queries to the solver, we avoid redundant queries
for constraints that have the same normalized form.

For both satisfiability and model-counting queries, we can cache
the result of the query in a constraint store, use normalization to
determine equivalence of constraints, and then reuse the query
results from the store when we get a cache hit. However, since
model-counting queries come with a bound parameter, in order
for the query to match, the bound also has to match. While this
limits our ability to reuse results in the most general case, there
is a class of model-counting constraint solvers whose results can
be reused even is the case of mismatched bounds. Parameterized
model-counting techniques [6, 39] not only count the number of
solutions for a constraint within a given bound, but also generate a
model counter that can count the number of solutions for any given
bound. Note that counting the number of solutions with different
bounds may be necessary during program analysis. For example,
consider the following constraint which has no solutions for bounds
less than 5 but has satisfying solutions for higher bounds:

contains(x, “abede”) A |y| > |x| Ay € (ab)*

In this paper, we present a parameterized caching approach
that utilizes parameterized model-counting constraint solvers. We
assume that, in response to a model-counting query, parameterized
model-counting constraint solvers return a model-counter object
that can be used to count the number of models for any given bound.
By storing the model-counter object, we are able to reuse model-
counting query results even for queries with different bounds.

Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis

Constant shifter

° - [FV.b]
£ Conjunct sorter Store
S
FEV
] [FV]
g Variable renamer
g M Model-counter
= . object evaluator
|4 String alphabet renamer Reuse
= Mgr
g g
S
z

[FV.bl
| Translator

Solver

[FVb]

i

Figure 1: Architecture of Cashew

3 CONSTRAINT CACHING

Our tool Cashew, depicted in Figure 1, is designed to work with a
wide range of model-counting solvers to support quantitative pro-
gram analyses. Algorithm 1 outlines how Cashew handles model-
counting queries. Cashew expects a query of the form (F,V,b),
where F is a well-formed formula, V is a set of variables in F, and b
is a bound. The answer to the query, denoted as #(F, V, b), is the
number of satisfying solutions for F for the variables in V within the
bound b. We normalize the formula, variable(s) and bound using our
normalization procedure, NORMALIZE-QUERY, which is described in
the following sections. The resulting normalized query is denoted
as [F,V,b]l = NorRMALIZE-QUERY(F, V, b).

Depending on the capabilities of the selected model-counting
constraint solver, [F, V, b] is queried differently. Algorithm 1 out-
lines the normalization and query process. Typical model-counting
constraint solvers [16, 37, 51], return a single count value (#(F, v, b))
after receiving a query of the form (F, V, b). For such solvers, our
caching algorithm first sends the query [F, V, b] to the cache store.
If there is a cache hit, the result is returned to the client. If not,
the normalized query is sent to the model-counting solver, and the
result is stored under [F, V, b] and returned to the client.

We call a model-counting constraint solver paramaterized if it
returns a model-counter object that can be used to compute the
number of satisfying solutions for an arbitrary bound. ABC [6]
is a parameterized model-counting constraint solver where the
model-counter object is the transfer matrix of an automaton that
accepts all satisfying models of the given constraint. SMC [39] and
barvinok [54] are also parameterized model-counting constraint
solvers where the model-counter object is a generating function.

For parameterized solvers, the store is queried as follows: First,
[F,V,b] is queried. On a hit, the result (#(F, V, b)) is returned to
the client. In the case of a miss, an additional query for [F, V] is
made. If this results in a hit, the model-counter object for [F, V] is
recovered from the store. This model-counter object is sent to the
model-counter evaluator which evaluates #(F, V, b) based on [b].
The result returned by the model-counter evaluator is stored under
[F,V,b] and is returned to the client. If both queries are misses,
the selected solver is called, the model-counter object is computed
and cached under the key [F, V], and #(F, V, b) is evaluated based
on [b], stored under [F,V, b] and returned to the client.

537

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

In order to use Cashew’s parameterized caching functionality
and reuse cached model-counter objects, a service that is able to take
a model-counter object (such as a transfer matrix or a generating
function) and evaluate it for a particular bound is required. This
service is referred to as the model-counter evaluator.

Algorithm 1 CoNsTRAINT-CACHING(F, V, b):

Input: A query (F, V, b).
Output: The number of satisfying solutions of V in F under the length bound b.
1: [F, V, b] = NormALIZE-QUERY(F, V, b)
2: if Hiton [[F, V, b] then
3 return #(F,V,b)
4: end if
5: if Hit on [F, V] then
6 Evaluate the model-counter object for bound [b] using the model-counter
evaluator;
7: Store the result under [F, V, b]
8: return #(F,v,b)
9: end if
: Translate [F, V, b] and send it to the selected model-counting solver
: Store the returned model-counter object under [F, V]
: Store #(FV,b) under [F, V, b]
: return #(F,V,b)

4 GROUP-THEORETIC FRAMEWORK

The goal of normalization is to reduce constraints equivalent un-
der some property to the same form. This objective is shared by
work in constraint programming, where detecting symmetries in
constraints leads to a more efficient search [18, 19, 25]. Symmetry-
breaking for constraint programming is expressed using concepts
from group theory [3, 26, 49], a formalization we find fitting and
intuitive for our purposes and adopt.

Our framework provides a means for constructing normal forms
of constraints based on groups of property-preserving transfor-
mations. For different analysis problems, it might be necessary to
preserve the entire solution set, the cardinality of the solution set,
or only the satisfiability of constraints, each corresponding to a dif-
ferent level of normalization. Our framework is equally applicable,
regardless of the desired level of normalization. Our framework is
also not restricted to a constraint language, but is equally applicable
to any background theory on which a group of property-preserving
transformations can be defined.

Symmetry Groups. A group (G, op) is a set of elements together
with a binary operator that satisfies the four group axioms: closure,
associativity, identity, and invertibility. For example, the set of
all transpositions on the natural numbers, N, under the binary
operator function composition form a group. The transposition
from N to itself defined by the relation {(1, 2), (2, 1)} is an example
of an element of this group which maps 1 to 2, 2 to 1 and all other
elements of N to themselves.

A subset of a group is called a subgroup if it also forms a group un-
der the same binary operator. We construct the group of cardinality-
preserving transformations under composition (Gcard, ©) by intro-
ducing its generating subgroups. As composition is the only bi-
nary operator we consider, we simply refer to this group as Gcard
throughout the remainder of the paper.

Solution-Set-Preserving Subgroups of G.44. A solution-set-preser-
ving transformation is one under which the solution set is mapped

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

to itself. Any solution-set-preserving transformation is trivially
cardinality-preserving. Each generating subgroup acts on a par-
ticular domain related to some feature of a constraint. The first
generating subgroup we introduce acts on 7, the domain of all
possible indices of conjuncts in a constraint. Here, we consider the
index of a conjunct to be its position in that constraint when read
from left-to-right, making 7 simply the set of natural numbers. The
subgroup acting on 7 is the group mentioned previously — that of
all transpositions on N or identically, the permutation group whose
elements fix all but a finite number of numbers.

Intuitively, this subgroup captures our understanding that the
solution set of a constraint is independent of the order of the con-
juncts in it. Under the transposition {(1, 2), (2, 1)}, for example, the
formula x > 0 A y < 0is mapped toy < 0 A x > 0, making the two
orderings equivalent modulo the action of this group.

Our second solution-set-preserving subgroup is the transposition
group acting on V, the infinite domain of all allowable variable
names. Since the solution set of a constraint is independent of
the choice of variable names, two constraints that are equivalent
modulo the action of this group have the same solution set. As a
simple example, realize that both w and x are elements of V and
that the number of solutions for x < 7 A x > 2 is the same as that
of its mapping under the relation {(x, w), (w,x)}: w <7 A w > 2.

Cardinality-Preserving Subgroups of G.q,4. Preserving only the
cardinality of the solution set of a constraint enables the use of sub-
groups with less constrained group actions. Under these groups, the
solution set of a constraint is bijectively mapped to the solution set
of another constraint, leaving the number of solutions unchanged.

Our first family of cardinality-preserving subgroups are given by
the Euclidean groups E(n) (symmetry groups on Euclidean space)
acting on the solution space of linear integer arithmetic constraints.
The elements of these groups are Euclidean motions such as trans-
lations, rotations and indirect isometries such as reflection. Under
these symmetries of Euclidean space, the volume captured by the
corresponding polytope remains unchanged.

Though this volume is preserved under any action of the Eu-
clidean group, some actions impact the number of lattice points in
the polytope. Because we are often interested in the number of inte-
ger solutions to a constraint, we limit ourselves to considering only
those transformations that preserve the number of lattice points
as well as those that can be easily reflected through changes in the
syntax of the constraint. In particular, our normalization scheme
uses the subgroup of integral translations in Euclidean space as a
generating subgroup for G.,,q. Integral translations can be reflected
syntactically in integer constraints through changes in the constant
terms of each conjunct. Each constant term must be identically
shifted by an integral amount. For example, shifting each constant
term of the constraint x + y = 2 Ax > 0 Ay > 0 by 2 results in the
constraint x + y =4 A x > 2 Ay > 2 which has the same number
of integer solutions (6) as the original.

For any arithmetic constraint, F, the shift of F, denoted Shift(F),
is the vector composed of the constant terms of each of its conjuncts.
SH denotes the domain of all possible shifts. The subgroup of inte-
gral translations thus acts on SH. For string or mixed constraints,
we do not apply transformations from this subgroup and we say
that Shift(F) of such constraints is 0.

538

T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

Our second cardinality-preserving subgroup is given by the per-
mutation group on the string alphabet, . The solution set of a
string constraint can be canonically represented by an automaton
that accepts exactly the set of solutions to that constraint. Transi-
tions between states are made based on a set of allowed alphabet
symbols. Permuting the alphabet symbols thus changes the strings
accepted by that automaton but not the cardinality of the accepted
set. As a simple example, the number of solutions of the constraints
F := x.contains(“ac”) and F’ := x.contains(“bd”) is the same.

Orbits under the Symmetry Group Gc,4- These subgroups gen-
erate G.,rq in the following sense: the domain of any element of
Geard 1s the union of the domains of the subgroups, making it the
Cartesian product 7 X V X SH X 2. Every element of a subgroup
acts as an element of G.,,q by acting as the identity on every do-
main element on which it is not defined. Any element of G.,,4 can
be written as a composition of elements from these subgroups.

For a constraint F, the orbit of F under G,,q is the set of con-
straints obtained by applying any element o € G.,.q to F.

The problem of choosing a normalized form for F can now be
formulated as choosing a representative constraint from the orbit of
Funder G.,.q- We do this by defining a strict ordering on constraints
and choosing the well-defined lowest ordered constraint within the
orbit as the representative for all constraints within the orbit.

While we have spoken generally about cardinality-preserving
group actions, our application of interest is in parameterized model-
counting which involves finding the number of satisfying solutions
to a constraint for any given bound. While most of the group actions
defined above preserve the number of solutions for a given bound,
the elements of the Euclidean group may not. For example, x +
y=2Ax > 0Ay > 0has 6 solutions given a bound of 2 but
x+y=4Ax>2Ay =2, which is in the same orbit under G.,.4,
has only one solution for the same bound. In order to preserve
the parameterized model count, the bound is translated according
to the same group action as the constraint. In the example above,
bound 2 is translated to bound 4 by the same integer translation (2)
that translated the shift, resulting in 6 satisfying models.

In a similar vein, it’s interesting to note that though not all of
our transformations preserve the solution set of a constraint, all of
them are invertible. This means that the solution set of a constraint
can be obtained from the solution set of its normal form by applying
the inverse transformations of those applied to ¥ and SH when
normalizing the constraint to the solution set of its normal form.
This enables our transformations to be used even for analyses that
require the solution sets of constraints.

5 CONSTRAINT LANGUAGE

We focus on constraints over strings and linear integer arithmetic.
We define three types of terms: string terms 7s, regular expression
terms 7R, and LIA terms 74, as described in Figure 2. We consider
three types of constraints over these terms, which we call conjuncts
throughout this paper: string conjuncts S, regular membership
conjuncts R, and LIA conjuncts A. The conjuncts are built using
comparators as described in Figure 3. L is a language defined over
these conjuncts. Input constraints to our normalization procedure
are assumed to be in conjunctive form, with each conjunct from L.

Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis

Ts = c|vs | Ts - Ts | char_at(7s, 7a) | int_to_str(74) |
replace(7s, 7s, 7s) | substr(7s, Ta, Ta)
elsl(R) | TR-Tr | RITR | T"
nlval=Tal(TA) | TA+Ta | TA = Ta | Ta X n |
n X Ta | |7s| | index_of (7s, 7s) | str_to_int(7s)

TR
(]R .

Figure 2: Here c € 3, n € Z, s € ¥¥ vs and vp denote an
unbounded string variable and an integer variable, resp.

L=T|L|S|IRJA

S:=T5 =75 | Ts # Ts | contains(Ts, Ts) | prefix_of (75, Ts) |
suffix_of (75, 7s) | not_contains(7s, 7s) |
not_prefix_of (75, 7s) | not_suffix_of (7s, 7s)

R=T5e€TR|Ts ¢

A=TAa=TalTa <TalTa < Ta | Ta # Ta

Figure 3: The language L: conjuncts of string (S), regular ex-
pression (R) and LIA (A) types.

Let Syp be the set of string operators, i.e. the operators used to
build the 75 terms. LetScomyp be the set of string comparators, i.e.
the comparator used to build S conjuncts. Similarly, let Rop be the
set of regular expression operators used in 7g; Rcomp — the set of
regular expression comparators used in R; Aoy — the set of the LIA
operators used in 7a; and Acomp — the set of LIA comparators used
in A. Let a function TYPE:SUR U A= > Scomp U Reomp U Acomp
be a function that takes in a conjunct and returns the comparator
of this conjunct.

6 CONSTRAINT ORDERING

Assume a strict total ordering on constraints, <. A constraint F is a
normal form if for every other constraint F” in its orbit under G.,.q,
F < F’. There are many ways to impose an ordering on constraints.
We present one possible ordering below.

Our ordering is produced compositionally, with strict orders
defined over various components of our language which are com-
posed to yield an ordering on constraints. To start, we define an
ordering on each element of the domain of G.,4-

The ordering on both V and ¥ is lexicographical. The ordering on
7 is that induced by the natural numbers. We define the ordering on
SH, the domain of constant shifts, after we introduce an ordering
on vectors. We consider vectors over strict totally ordered sets and
denote by <y an order on such vectors.

Let X be a strict totally ordered set, and <x be a strict total order
on X. Let v = (vg,...,vn) and u = (up,...,um) be two vectors
over X, then <y is defined as:

{m <n, or
V <pec U &
m=n, diVj: j<i<n, vj =uj v; <x U;.

This defines ordering on SH since shift vectors are built over
integer constants.

Our normalization procedure relies on the following auxiliary
functions that given a constraint return, as vectors, various struc-
tural and syntactic components characterizing the constraint. These
vectors are built over the domains of V, > and Z, i.e. over strict
totally ordered sets.

539

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

VI(F) — returns a vector of the indices of variables as they occur
in F relative to other variables, constants and operators. The
indices are compared according to the “<” operator over Z.
Int(F) — returns a vector of integer constants occurring in F from
left to right, ignoring all elements of Shift(F). The vectors are
compared according to the “<” operator on Z.

V(F) — returns a vector of variable names occurring in F from
left to right. These vectors are compared according to the lexi-
cographical order on V.

3(F) — returns a vector of string characters occurring in F from
left to right. The vectors are compared according to the lexico-
graphical order on X.

Next, we define strict total orderings on operators and (sepa-
rately on) comparators, listing them in the order of the increasing
precedence. Both operators and comparators, are ordered with
precedence to S, then R, and A.

Sop: -, the rest of the string operators in the lexicographic order
according to their names in Figure 2;

ordered according to the standard precedence order on
regular expression operators;

+,—, %, |I, (), the rest of the LIA operators in the lexico-
graphic order according to their names in Figure 2.

Rop:
Aop:

Scomp: =, #, the rest of the string comparators in the lexico-
graphic order according to their names in Figure 3;
Reomp: €, &

Acompt = <, <

bt H

The ordering on comparators allows to define an order <;ype on
the types of the conjuncts TYPE, based on the type of the comparator
occurring in the conjuncts. The strict total ordering on operators
allows to introduce vectors of operators of constraints and compare

them with <gec:

Op(F) — a vector of string, regular and LIA operators occurring
in F from left to right.

Note all auxiliary vectors and their orderings introduced in this
section are defined for constraints and are naturally applicable to
conjuncts — as to a special type of constraints with a single conjunct.

In the future, when we compare two elements of the same type
we will drop the subscript notation and use < to represent compar-
ison between them.

We are now ready to build a strict total order on conjuncts. We
define the ordering hierarchically: the structural or syntactic aspects
of the conjuncts are compared one at a time in a fixed order, until a
tie-breaking aspect is found. This order can be selected in any way.
We present one intuitive order below to distinguish conjuncts with
more significant differences as early as possible. The conjuncts are
first compared based on their type TYPE, then based on their length
|| lI, then the total number of variables #Var, then their vectors of
operators Op, followed by the vectors of indices of variables VI,
their vectors of integer coefficients Int, their vectors of variable
names V, then vectors of string constants 2, and finally based on
their constant shifts Shift. This order is described in Algorithm 2.

This order is strict and total. Two conjuncts are equal if and only
if they are the same conjunct. This allows us to extend the ordering
to constraints as follows:

(i) Order constraints based on their total number of conjuncts.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Algorithm 2 C-LessTHAN(Cy, C2): Conjunct Comparison

Input: Two conjuncts C;, C; € L
Output: TRUE if C; < Cy, otherwise FALSE

1: for each f € [TyeE, || ||, #V ar, Op, VI, Int, V, 2, Shift] do
2 if f(Cy) < f(C;) then

3: return TRUE

4: end if

5: end for

6

: return FALSE

(if) Then order constraints by comparing their conjuncts element-
wise according to the order imposed on 7. This is equivalent
to comparing conjuncts pairwise from first to last.

(iii) A constraint F is lower ordered than a constraint G if the
first differing conjunct of F is lower ordered than that of G.

This order is described in Algorithm 3.

Algorithm 3 F-LEssTHAN(F, G): Constraint Comparison

Input: Two constraints F = F; A...AFpand G =Gy A
Output: TRUE if F < G, otherwise FALSE

1: if m = n then

2: fori « 1, ndo

: if C-LessTHAN(F;, G;) then
return TRUE
end if
end for

end if
returnm < n

.. AGn

3
4:
5:
6

7:
8:

7 NORMALIZATION PROCEDURE

The normal form of a constraint F is the lowest constraint in the
orbit of F under G.,,4. In this section, we present a normalization
procedure to find the normal form of a constraint.

Given a transformation o € G a4, we define o[F], the action of o
on F, as a composition of elements of four categories corresponding
to each of the components of the domain of G,q:

I: oy [F] gives the constraint resulting from re-ordering the

conjuncts of F according to oy.

V: oy[F] gives the constraint resulting from renaming the vari-
ables of F according to oy;

3: ox[F] gives the constraint resulting from permuting the al-
phabet constants in F according to ox;

SH: og4¢[F] gives the constraint resulting from shifting each
element of F’s shift according to og4.

We first present an expensive but complete procedure for nor-
malization in Algorithm 4 and give guarantees for its termination
and correctness. Given a constraint F, this procedure probes each
permutation F’ of conjuncts in F, building and applying a compos-
ite o from transformations specific to the domains V, 3, and SH
which reduces F’ until the only transformations that can reduce it
further involve an action on 7. The results among all permutations
of F are compared and the lowest-ordered result is chosen as the
normal form of F.

The procedure uses auxiliary functions to build the minimizing
domain-specific transformations:

MiN-o-V(F’) constructs oy compositionally — it proceeds through
the conjuncts of F’ from left to right renaming the variables of F’

540

T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

in order of appearance. Each time a new variable is encountered a
transposition is added to the composition that permutes the name
of the encountered variable and the lowest-ordered variable name
that no other variable of F” has been renamed to yet. At the start
of the procedure, o is initialized to the identity transposition on V.

MiN-c-3(F’) similarly constructs oy, — it proceeds through the con-
juncts of F” from left to right, this time permuting string characters.
Each time a new string character is encountered, a transposition
is added to the composition that permutes the encountered string
character with the lowest-ordered character that no other charac-
ter in F” has been mapped to yet. oy is initialized as the identity
transposition on X.

MiN-0-SH (F’) returns og4; — the transformation on Shift(F)
that translates the constant coefficient of the first appearing (from
left to right) linear integer arithmetic conjunct in F’ to 0. If F con-
tains variables that are shared between string and LIA constraints,
s is the identity transformation.

Algorithm 4 CoMPLETE-NORMALIZATION (F)

Input: A constraint F

Output: The normalized form of F
1: Fpin:=F
2: for each permutation F’ of conjuncts in F do
3: oy = MIN-0-V(F)

4: oy = MiN-0-2(F’)

5: o574 = MIN-0-SH (F’)

6: F' :=oyooyoosy[F]

7: if F-LEsSTHAN(F’, Fp, i) then
8: Fin == F

9: end if

10: end for

11: return F,;p,

THEOREM 7.1. Algorithm 4 terminates.

Proor. Given a constraint F, there are finitely many permuta-
tions of conjuncts F’. Consequently, there are finitely many exe-
cutions of the “for each" loop. Construction of each permutation
F’ is linear in the length of F. Construction of each of the domain-
specific transformations within a single “for each” call is performed
in a single pass through the conjuncts of F’, thus, is linear in the
length of F, too. The final transformation on F’ is also linear in the
length of F. Thus, COMPLETE-NORMALIZATION terminates.]

THEOREM 7.2. Algorithm 4 returns the normal form of F.

ProOF. Assume G = COMPLETE-NORMALIZATION(F) is not the
normal form of F. Then either G is not in the orbit of F under G.,;q
or there is some constraint H in the orbit of F such that H # F and
F £ H. We show that both result in a contradiction.

Assume G is not in the orbit of F. G is the result of permuting
the conjuncts of F, the action of some o, composed with domain
specific transformations. Each domain-specific transformation has
an inverse in G4 as does any permutation of the conjuncts of F.
Therefore, there exists some ¢ in G.,rq such that o[G] = F.

Now assume that there is some H in the orbit of F such that
H # G and G £ H. The order of conjuncts in H is given by some
transposition of the indices of F. This means that there is some
iteration of the for loop of Algorithm 4 in which the conjuncts of

Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis

the considered permutation of F are ordered identically to those
of H. By construction, our choices of o, o5, and og¢/ reduce this
constraint to the lowest-ordered constraint that maintains the same
ordering of conjuncts. Therefore either G = H or G < H. O

Algorithm 4 gives a normalization procedure which is sound
(each orbit has at least one fixed point) and complete (there is exactly
one fixed point for each orbit). In practice, however, such a brute
force exploration is very expensive. For our implementation, we
use a sound but not complete normalization procedure given in
Algorithm 5. Given F, NORMALIZATION(F) returns the semi-normal
form on F — a constraint within the orbit of F which, though not
necessarily the lowest in the orbit, is not higher ordered than F.

Algorithm 5 simplifies COMPLETE-NORMALIZATION procedure in
that instead of brute-forcing all permutations of conjuncts in F, it
inexpensively chooses a permutation by ordering the conjuncts of F
according to C-LEssTHAN up to the point when further refinement
involves comparison over the domains V, %, or SH. In other words,
the conjuncts are not compared according to their variable names,
string constants or shifts. It is possible that two conjuncts in F
are equal by this comparison, in which case their initial order in
F is preserved. The resulting permutation of conjuncts defines a
transposition on 7. We apply this transposition to F, resulting in a
constraint F'. oy, oy, and 0 g¢s are generated by the same auxiliary
functions as in Algorithm 4, composed, and applied to F’. The result
is the semi-normal form of F.

Algorithm 5 NORMALIZATION(F)

Input: A constraint F
Output: A semi-normal form of F

: F’ := Permute conjuncts of F according to Algorithm 2 up until V
: oy = MIN-0-V(F’)

oy = MIN-0-2(F')

o544 = MIN-0-SH (F’)

[F]:=ovoosoosyl[F]

: return [F]

AR AN S

THEOREM 7.3. Algorithm 5 is sound.

Proor. Each action on F is the action of an element of G,,4. By
definition, the resulting formula is in the orbit of F under G.,,q- O

The procedure given in Algorithm 5 is not complete. There are
orbits for which not every constraint is reduced to the same form.
Though this potentially increases the number of misses to the cache,
our experimental results demonstrate the large number of formulas
mapped to the same semi-normal form by Algorithm 5.

Queries to Cashew are of the form (F, V, b) where V is the set
of variables on which to count, and b is the maximum length of a
satisfying solution. To ensure that the cardinality of the solution
set is preserved after normalizing F, both V and b must be normal-
ized according to the same transformations applied to F during
Algorithm 5. Algorithm NorMALIZE-QUERY(F, V,b) implements
this query normalization.

8 EXPERIMENTAL EVALUATION

We implemented our tool, Cashew, as an extension of the Green [55]
caching framework. This allows Cashew to use any of the exist-
ing Green services, and it allows Green users to benefit from our
normalization procedure. We experiment with Cashew-enabled
satisfiability and model-counting services, which support string

541

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Algorithm 6 NormALIZE-QUERY(F, V, b)

Input: A query (F, V, b)
Output: A normalized query [[F, V, b]
1: [F] := NormarLizaTION(F)
2: o := the transformation used to normalize F
3: [V]:=0o[V]
4: [b] := o [b]
5: return ([F], [V, [b]1)

constraints and linear integer arithmetic. They also support mixed
constraints, i.e., those involving both string and arithmetic opera-
tions. In this evaluation, we used ABC [6] as our constraint solver.
As we explained in Section 3, other model-counting constraint
solvers can be integrated instead of ABC.

All the experiments were run on an Intel Core i7-6850 3.5 GHz
computer running Linux 4.4.0. The machine has 128 GB RAM, of
which 4 GB were allocated for the Java VM.

8.1 Model Counting over the SMC/Kaluza
String Constraint Dataset

The Kaluza dataset is a well-known benchmark of string constraints
that are generated by dynamic symbolic execution of real-world
JavaScript applications [47]. The authors of the SMC solver [39]
translated the satisfiable constraints to their input format: one
contains 1,342 big, while the other contains 17,554 small where big
and small classification is done based on the constraint sizes in the
Kaluza dataset. We shall refer to the former as the original SMC-Big
and to the latter as the original SMC-Small.

Duplicate Constraints. While inspecting the results of our nor-
malization, we found out that many of the files within each dataset
are identical (indistinguishable by diff). Due to the presence of
duplicates, even trivial caching (without any normalization) will
yield some benefit on the original datasets. After removing all du-
plicate files, only 359 of the 1,342 constraints in SMC-Big and 9,745
of the 17,554 constraints in SMC-Small were found to be unique.
As we discuss below, our normalization procedure allows further
reductions in this dataset, increasing the benefits of caching well
beyond what can be achieved with trivial caching.

Model Counting. Since these constraints correspond to path con-
ditions from symbolic execution, counting the number of satisfying
models of each one could be necessary for quantitative analysis.
We model-counted all constraints in each set as a simple way to
emulate the behavioral pattern (w.r.t. caching) of one or more users
performing quantitative analyses on the original programs.

When counting the models of a constraint over strings, to avoid
infinite counts one needs to set a bound on the length of strings.
In this experiment, we set the bound to 50 characters for both sets.
We model-counted each constraint in the dataset. We first did this
without normalization or caching, and then again with Cashew
normalization and caching. In non-caching mode, each constraint
was sent unmodified to the model-counting solver. In caching mode,
the cache was cleared before running SMC-Big, and again before
running SMC-Small. Since these path constraints were produced
by an external symbolic executor, in this experiment we did not use
SPF. Note that since all constraints were model-counted, the order
in which we traverse the datasets does not matter: each normalized

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

SMC-Big SMC-Small

42 | 42 | 40 | 40

1875 1874 1020

23 40 | 39 | 38 | 38 2543
30 | 38 36|36 |35 226 | 390 345|323 b1
99 74 |198]159 €
39 | 38 | 34 |28 |27 —To4]
43 2537 729 | 524 EZ- TR
99 27 |13 168[73
39 | 37
32 = Eﬁ s | 71 552

Figure 4: Orbit sizes for the original SMC datasets.

Table 1: Model counting SMC-Big and SMC-Small.

Without caching ~ With caching Speedup

Big Average 894s 0.82s 10.90x
(no dups) | Maximum 121.92 s 40.13 s 3.03x
Total time 3,208.65 s 293.21s 10.94x

Small Average 0.12's 0.05 s 2.40x
(no dups) | Maximum 1.09 s 1.12s 0.97x
Total time 1,211.09 s 552.56 s 2.19x

Big Average 23.32s 0.26 s 89.70x
(original) | Maximum 121.92 s 40.13 s 3.03x
Total time 31,297.90 s 358.17 s 87.38x

Small Average 0.13s 0.05s 2.60x
(original) | Maximum 1.09 s 1.12s 0.97x
Total time 2,22191 s 971.50 s 2.29x

constraint will fall within some orbit, and for each orbit, the full
cost will be paid exactly once (first cache miss).

Results. Table 1 shows the total, maximum and average model-
counting time, as well as the speedups obtained by Cashew on each
of these metrics, for the two datasets with and without duplicates.
On the SMC-Big set, Cashew achieved a speedup over 10x. On the
SMC-Small set, which is a rather bad case for the caching trade-
off because it contains a large number of very small constraints,
Cashew still achieved a 2.19x speedup.

For the original datasets, these numbers (e.g., a 87x speedup) are
largely due to the presence of duplicates, which makes even caching
with no normalization very effective. We report the results because
the original datasets are widely used, and because the duplicates
might indeed have been genuinely generated by symbolic execution
of various different (yet similar) JavaScript programs.

Figure 4 depicts the effect of our normalization procedure on
the original benchmarks. The area of each orbit is proportional to
its size. Labels indicating orbit size are shown only when they fit
in the available space. For the original SMC-Small set, the 17,554
original constraints are reduced to 360 orbits. For the SMC-Big set,
the 1,342 original constraints are reduced to just 34 orbits.

We do not compare Cashew with Green because the original
Green (without Cashew) cannot handle string constraints.

Note that the largest constraint in SMC-Small takes slightly more
time after normalization. We cannot infer much from this, because
the largest constraint in SMC-Small barely takes one second; the
small difference (about 30 msec) could be due to noise. However,
the maximum time for SMC-Big decreased by 3x with caching
enabled, from 122 to 40 seconds. This is due to normalization. The
constraint that (without normalization) requires maximum time to
be model-counted falls within some orbit. It does not matter which
constraint in that orbit will be the one to cause a cache miss once

542

T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

Table 2: Effect of transformations on orbit refinement.

Transformations enabled ~ #Orbits (SMC-Big) ~ #Orbits (SMC-Small)

None 359 9754
All transformations 34 360
All except o7 72 376
All except oy 344 9645
All except o5, 35 841
All except removeVar 34 361
All except removeConj 40 386

caching is enabled — only one of them will, and as they are all
normalized to the same normal form, any of them would take the
same model-counting time. What is interesting is that said time can
be significantly smaller than the maximum pre-normalization time.
Table 2 shows the number of orbits that are achieved by differ-
ent subsets of the transformations in our normalization procedure.
Since some transformations can benefit from others, instead of
considering them in isolation, we measured the effect of disabling
each one. We did not include o g4 as it doesn’t apply to the string
domain. The removeVar and removeConj transformations are pre-
processing steps that remove redundant variables and conjuncts,
respectively. These results indicate that all transformations yield
some benefit, and that o is the most beneficial transformation. For
SMC-Small, removing o5, more than doubles the number of orbits.
The same is true of o7 for SMC-Small. This shows that different
transformations can be more effective for different datasets.

8.2 SPF Analysis of String-Handling Code

In this second part of the experimental evaluation we use Symbolic
PathFinder [42] with Cashew, to symbolically execute Java pro-
grams that operate on strings. In order to support model-counting-
based quantitative analyses, we are interested in obtaining a model
count for each leaf path constraint.

As an example of quantitative information flow analysis, we
study some possible applications of Cashew to side-channel anal-
ysis. We consider four Java programs in which a side channel
can allow an attacker to gain information about a hidden secret.
PasswordCheck1 contains a method that checks whether or not a
user-given string matches a