
A Prediction System Service
Zhizhou Zhang
UC Santa Barbara

Santa Barbara, CA, USA
zhizhouzhang@ucsb.edu

Alvin Oliver Glova
UC Santa Barbara

Santa Barbara, CA, USA
aomglova@ece.ucsb.edu

Timothy Sherwood
UC Santa Barbara

Santa Barbara, CA, USA
sherwood@cs.ucsb.edu

Jonathan Balkind
UC Santa Barbara

Santa Barbara, CA, USA
jbalkind@ucsb.edu

ABSTRACT
To better facilitate application performance programming we pro-
pose a software optimization strategy enabled by a novel low-
latency Prediction System Service (PSS). Rather than relying on
nuanced domain-specific knowledge or slapdash heuristics, a sys-
tem service for prediction encourages programmers to spend their
time uncovering new levers for optimization rather than worrying
about the details of their control. The core idea is to write opti-
mizations that improve performance in specific cases, or under
specific tunings, and leave the decision of how and when exactly to
apply those optimizations to the system to learn through feedback-
directed learning. Such a prediction service can be implemented in
any number of ways, including as a shared library that can be easily
reused by software written in different programming languages,
and opens the door to both new software optimization patterns and
hardware design possibilities.

As a demonstration of the utility of this approach, we show that
three very different application-targeted optimization scenarios can
each benefit from even a very straightforward perceptron-based
implementation of the PSS as long as the service latency can be
held low. First, we show that PSS can be used to more intelligently
guide hardware lock elision with resulting speedups over a baseline
implementation by 34% on average. Second, we show that a PSS
can find good configuration parameters for PyPy’s Just-In-Time
(JIT) compiler resulting in 15% speedup on average. Last, we show
PSS can guide the page reclamation task within a kernel memory
management subsystem to reduce the average memory latency by
33% on average. In all three cases, this new optimization pattern
with service support is able to meet or beat the best-known hand-
crafted methods with a fraction of the complexity.

CCS CONCEPTS
•Computer systems organization→Architectures;Real-time
operating systems; • Software and its engineering→ Software
performance; • Computing methodologies→ Perceptron al-
gorithm.

KEYWORDS
software optimization, runtime optimization, perceptron, Opera-
tion System, hardware lock elision, Just-In-Time compiler, memory
management

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575714

ACM Reference Format:
Zhizhou Zhang, Alvin Oliver Glova, Timothy Sherwood, and Jonathan
Balkind. 2023. A Prediction System Service. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3575693.3575714

1 INTRODUCTION
When the low-hanging fruit of obviously inefficient implementation
has been stripped away and the performance of an application is
still a critical concern, capable performance programmers often
find themselves attempting to navigate a complex set of trade-offs.
When is it faster to just lock this data structure versus wrapping
it optimistically in a transaction? When should I just execute the
unoptimized version of this function versus investing the time
to make it faster? When should the operating system pull this
resource so it can go to a better use somewhere else? Answering
such questions is a matter of balancing a set of conflicting forces. As
our applications, systems, and hardware grow increasingly complex,
it is hard to understand (or even characterize) all of the forces
relevant to good decision making – and even more difficult to
navigate those forces with simple ad-hoc heuristics.

Of course, the fact that machine learning has proved particu-
larly capable of navigating exactly this type of complex optimiza-
tion space is not something that has been lost on application re-
searchers. Machine learning techniques have been demonstrated
for optimizing data structures [41], implementing state-of-the-art
recommendation systems [14], improving anomaly detection [58],
and learning the structure and optimal access of databases [40].
In the case of TVM [13], the optimising compiler could produce
machine learning kernels that beat human optimisers’, leading to
significant performance improvements.

This style of optimization is bound to become increasingly com-
mon in the coming years and it makes little sense for each and every
application to roll out their own internal embedded ML framework
for dynamically controlling a few parameters. Such an approach re-
quires each application to support their own machine learning code
base and elides opportunities for sharing of memory or exploiting
hardware resources. Instead, it is time to consider the question of
what new abstractions are necessary to lower the barrier to entry
and sustainably support this important style of optimization.

While the process of learning a good response from noisy ex-
amples is well covered in the machine learning literature, actually
deploying the ability to make predictions in a manner useful for
software optimization requires some innovation. Because these pre-
dictions are often (by the nature of targeting performance-critical
code) directly on the critical path, their utility is a function of both
their accuracy and their latency. A prediction service must be both

48

https://doi.org/10.1145/3575693.3575714
https://doi.org/10.1145/3575693.3575714
https://doi.org/10.1145/3575693.3575714
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575714&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhizhou Zhang, Alvin Oliver Glova, Timothy Sherwood, and Jonathan Balkind

cheap (in terms of computational overhead) and it must be good
enough (providing enough performance benefit to be comparable
to or better than a hand-tuned approach).

In this paper, we argue that it is possible and worthwhile to
introduce a common, simple, shared prediction mechanism to a
variety of runtime tasks and that the right location for this mecha-
nism is as a system service. A system-wide prediction service can
operate usefully with as few as two API functions and can be made
to both be easily reusable across the software stack and allow for
additional innovation on both sides of the interface. By functioning
as a service, the operating system can enable sharing of training
information across user applications when desired or restrict us-
age according to system policy. The service can also be provided
within the kernel for use by runtime services that otherwise rely
on domain-specific heuristics to make performance decisions.

To explore the potential of a PSS to enable optimization, we
prototype this change to a full operating system and examine, both
qualitatively and quantitatively, the capability of our nascent ser-
vice to ease optimization across three different scenarios calling
back to the questions at the beginning of the introduction: transac-
tional lock elision, JIT parameter tuning, and page reclaim. These
scenarios exercise the interface in user and system mode, across
multiple languages, and in both aiding online decisions and param-
eter tuning settings. Specifically, Transactional Lock Elision [62]
via Hardware Transactional Memory (HTM) is a classic example
of a fastpath-slowpath heuristic employed by software; we will
show how our predictor guides this decision on when to use HTM
(fastpath) and when to fallback to locks (slowpath). Just-in-Time
(JIT) compilation always has a tension between high compile time
if highly optimized and low code quality if not well optimized
while offering a whole search space of possible optimization pa-
rameters; we will illustrate a way to employ PSS to quickly arrive
at optimization parameters that improve program speed as com-
pared to the existing parameter tuning solution provided by the
human-optimised PyPy runtime. Page reclaim in the Linux kernel
under high congestion relies on a careful, heuristic-driven consid-
eration of memory usage and storage device utilisation in order to
maintain global performance; we show that introducing PSS to the
kernel can significantly outperform human-optimised heuristics
developed within the last year. Specifically we:

• Introduce the novel concept of prediction as a system service
• Demonstrate that an exceedingly simple interface providing
only predict, update, and reset is all that is required to
be useful for software optimization.

• Develop a complete proof-of-concept implementation capa-
ble of providing Linux processes with useful and actionable
predictions in 4.19 ns.

• Evaluate the effect of these prediction-driven optimizations
across a variety of both user and kernel mode applications
and demonstrate the resulting system performance improves
Transactional Lock Elision by 34% on average, PyPy JIT
parameter tuning by 15% on average over microbenchmarks
and 12% over macrobenchmarks, and provides a 33% average
latency reduction for page reclaim.

We begin with more description of the concepts and require-
ments of Prediction as a Service in Section 2 followed by details

of our prototype implementation and the reasoning behind our
latency-optimized software architecture in Section 3. Section 4 de-
scribes the application use scenarios in detail and is followed by
a more detailed quantitative evaluation, related work, and conclu-
sions in Sections 5, 6, and 7 respectively.

2 PREDICTION AS A SERVICE
If one were to take a careful catalog of all of the performance
optimization techniques available, there is no question that a par-
ticularly large chapter would be required for those driven by pre-
diction. Operating systems can predict the next set of disk pages re-
quired by applications and speculatively bring them into main mem-
ory [35, 38]. Memory access patterns of CPU cores or OS threads
can be learned and the OS can automatically migrate page frames
from a remote NUMA socket to a local socket to reduce latency [16].
Lock implementations can have a spin-and-then-block [20, 37] logic
which spins for a set time before falling back to heavyweight OS-
facilitated blocking. Transactional memory [31] (both in software
and hardware) can dynamically and speculatively adjust to observed
contention [17, 66, 72].

While these techniques rely on a prediction, most are not explicit
about the predictive nature of their ability to achieve a speedup. In-
stead, most hide their predictive nature in the choice of a parameter
or in a set of criteria used to make a selection. Unfortunately: 1) Pa-
rameter choices are often ad-hoc, relying on limited use cases and/or
hard-won domain-specific expertise making such approaches frag-
ile and hard to scale. 2) Even when well informed by data, most
parameter choices are still static, meaning they are unable to adapt
to the changing machine state or objectives. Profiles can help gather
information on effective parameters, but profiling requires either
well-understood use-cases or the ability to gather useful informa-
tion in production with low overhead. Both of these are possible,
but 3) Complex dynamic approaches for either prediction or profiling
increase application complexity which, in turn, makes the system
harder to support across multiple platforms and increases the code
footprint significantly. Finally 4) There is no effective way to share
developments. Programmers can spend non-trivial amounts of time
optimizing the code in one specific language given a predetermined
interface, but as we cross languages, as we have collections of
smaller services, and as we seek to exploit hardware to help in the
process, there is little opportunity for reuse.

In contrast, an ideal system would be straightforward to un-
derstand and simple to use. Users should only need to specify a
target function, candidate solutions, and feedback. A prediction
service would generate a prediction (informing, for example, which
equivalent code path take) and update the model based on feedback.
To be effective the prediction service must be low overhead both
in terms of training and inference. The service will need to pro-
vide useful predictions as early as possible, to avoid long warm-up
overheads, and provide those predictions with very low latency, to
avoid eating into all of the potential performance improvements
such predictions might provide. The prediction service should also
be suitably general purpose, allowing it to be applied to a wide
range of applications, possibly written in multiple programming
languages. It should not only work with one or a few domain spe-
cific scenarios.

49

A Prediction System Service ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Prediction System Service

Application 1 Application 2 Application n

OS
Service 1

OS
Service 2

OS
Service n

Update PredictUpdate Predict Update Predict

PredictUpdatePredictUpdate PredictUpdate

…

…

Figure 1: Design of Prediction System Service

An effective target for such an optimization, in turn, needs to
be both measurable (meaning that it is possible to determine the
“goodness” of the prediction to inform learning) and correctness
preserving (meaning paths under all possible predictions are equally
correct even if not equally desirable).

3 DESIGN AND IMPLEMENTATION OF A PSS
Informed by the requirements above, a Prediction System Service
(PSS) provides a standard interface and straightforward prediction
and update procedures. At a high level, the PSS takes input of the
programmer’s choice and returns the value of the prediction. In our
proof of concept we limit ourselves to predictions along a single
dimension where the return values can be interpreted as “predict
true” when positive and “predict false” when negative and the
magnitude of the return value shares some degree of confidence in
the prediction (particularly useful when the costs of mispredictions
are asymmetric or when true and false are used iteratively to narrow
in on some balance point). The system then attempts to optimize
its predictions over time based on feedback in the form of updates.

3.1 System Interface
PSS can be implemented with two core functions, predict and
update, and one state management function, reset, with behavior
as follows:

Predict: Given input features and stored weights, predict gen-
erates a binary result prediction which determines which path to
take. The format of the input features can be different depending
on the prediction scenario. The function signature is

int predict(int* features, int len)

where the input is an array of user-specified features for predict
with length of len and the returned prediction value is an integer.
The number and value of features can be changed by users for
different scenarios.

Update: Based on the predicted and observed results, PSS will
update the stored model parameters accordingly depending on
whether the prediction was correct or not. The function signature

can be viewed as

void update(int* features, int len, bool dir)

where the input parameter contains a feature array and its length
like predict and one Boolean variable to indicate whether the
prediction is correct or not.

Reset: This function allows the users to initialize the stored PSS
data, either by section or in totality. It can be called if certain en-
vironment parameters of the prediction have been changed or to
completely wipe the PSS data. As an example, when some data need
to be reused without initializing all data used by PSS for prediction,
we can use this function to selectively clear only some data. The
function signature can be viewed as

void reset(int* features, int len, bool all)

where the input feature array and length are similar to the previous
two cases and there is an additional boolean variable to indicate
whether to wipe out the entire PSS data or clean a specific entry.

3.2 Prediction Unit Design
While there are many possible implementations of a PSS, for our
proof of concept implementation we wanted to pick a design that
we knew would have consistently low latency and that would help
us test our hypothesis that even relatively simple predictions would
be an important step beyond the state of the art in many potential
optimizations. As such, for this effort, we limit our evaluation to
an online perceptron predictor [34]. Given an input feature vec-
tor, the predictor simply calculates the weighted sum of the input
and compares it with a threshold value. If the sum surpasses the
threshold, the result will be regarded as positive, otherwise the
return value will be negative. During update, the prediction from
the perceptron is compared to the actual outcome. If the prediction
is correct, the weight will be increased. Otherwise, the weight will
be decreased as a penalty.

The hash-based perceptron predictor has been proven to be
highly versatile yet can be both executed and updated in very short
order (in either software or hardware) [7, 55, 68]. While more so-
phisticated predictor designs are possible to consider with hardware
support in the future, we prioritize low latency software implemen-
tations in this work.

Currently, PSS is designed to support up to 16 features with 1024
entries for each feature. The feature data is hashed to reduce the
chance of conflict with other features and stored in a weight matrix.
Once the predicted result is obtained, it can be compared with a
threshold to generate binary decisions. If the value surpasses the
threshold, the prediction will be regarded as true, otherwise the
prediction is considered false.

3.2.1 Predictor Model Extensibility. Since the system interface is
not tied to the implementation, the underlying predictor model
can be replaced easily if the users have specific needs. When low
latency is preferred, other relatively simple models can be used,
such as decision trees [52], linear regression [23], and naive Bayes
algorithm [77]. On the other hand, if accuracy is prioritized more
complicated model can be deployed, including XGBoost [12], k-
nearest neighbors (KNN) [22], and neural networks [32].

50

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhizhou Zhang, Alvin Oliver Glova, Timothy Sherwood, and Jonathan Balkind

3.2.2 Parameter Types. The API described above mainly focuses
on numeric parameters. But PSS can accept categorical parameter
types after some preprocessing or transformation. For example, if
those categories exist in some sort of embedded space then they
can be exposed to a predictor through hierarchy or projection.

3.3 Reduced Latency Predictions with vDSO
In modern Operating Systems (OS), a user-level application cannot
touch the kernel’s memory space directly for a whole variety of rea-
sons. Instead, interactions with the kernel are typically supported
by system calls (syscall) — unfortunately, syscalls carry with them
a significant amount of context switch overhead which conflicts
directly with our stated goal of achieving low latency.

Fortunately, we are not the first to grapple with such a limitation
and there are now multiple different mechanisms to build from,
most notably virtual system calls (vsyscall) and virtual dynamic
shared objects (vDSO). A vDSO is a Linux kernel mechanism that
allows a portion of kernel memory space to be accessible in user
space via a small shared library. The system presents to user space
a map to the corresponding kernel data and programs such that
it can access that memory directly. This facilitated direct read-out
means there is no context switch involved in satisfying a vDSO
read request which, in turn, leads to significant speedups [27]. In
our experiments, this reduces the latency by more than a factor of
16x (from 68ns with syscall down to 4.19 ns) and, even more impor-
tantly, translates to real and noticeable improvements in application
runtime.

Of course, vDSOs have their own limitations. By definition, it
can be only used in a read-only manner since user mode cannot
modify the kernel memory without a syscall and we must provide
data as part of the update process.

Therefore, we design PSS in a way that combines a mix of syscalls
and vDSOs. Specifically, we implement predict via vDSO since no
writing to kernel data is involved. For update, we choose a syscall
as the means to modify PSS model within kernel space. To further
reduce the syscall overhead from update calls, we adopt a batch
update mechanism that pools together multiple update calls into a
single system call. A local buffer aggregates updates and allows us
to amortize the boundary crossing.

Advantages of a System Service. One of the most interesting as-
pects of a system-service approach to prediction is that learning can
happen across application invocations, a feature we demonstrate in
application studies. While this is technically possible in application
space, it requires the system to save and restore application-level
files which is a poor match for the model of increasingly short-lived
processes called in reaction to dynamic events. A system library
has the additional advantage of being able to be used across kernel-
space applications. Lastly, by utilising a vDSO that connects to
kernel space, system policy can be enforced around the use of PSS,
for example, to restrict which users or which programs can use the
service and how information is shared across those programs.

4 USE-CASE SCENARIOS
To demonstrate the usefulness of the services described above, in
this section, we present the application of PSS in three different
scenarios chosen to demonstrate the generality of the service.

1 void TxLock(mutex *m) {

2 int * features = {perf_cnt, remain_retry} // 2 features

3 if (predict(features, /*len=*/ 2) == USE_HTM) {

4 tryingHTM = true

5 while(m->isLocked ()) ; // spin
6 slowPath = false;
7 for (int i := 0; i < MAX_RETRIES; i++) {
8 if (tx_begin () == SUCCESS) {
9 if (m->isLocked ()) {
10 tx_abort (); //abort
11 }
12 // transaction started
13 return;
14 }
15 }
16 } else {

17 tryingHTM = false

18 }
19 slowPath = true;
20 m->lock(); // slow path
21 }
22 void TxUnlock(mutex *m) {

23 int * features = {perf_cnt, remain_retry} // 2 features

24 if (! slowPath) {
25 tx_commit ();

26 update(features,/*len*/2, /*reward*/+1)

27 } else {
28 m->unlock ();

29 if (tryingHTM)

30 update(features,/*len*/2, /*reward*/-1)

31 }
32 }

Listing 1: Hardware Lock Elision with PSS.

4.1 PSS in Hardware Lock Elision
Synchronizing accesses to shared variables is a critical performance
limiter in shared-memory multicore systems. While locks are one
of the most frequently used mechanisms to safely manage sharing
among many threads, locking is an inherently pessimistic method
of synchronization where execution is potentially serialized and
locking and unlocking costs are paid whether or not concurrent
executions conflict in accessing data. In contrast, Transactional
Memory [18, 19, 31, 64, 67] (TM) allows threads to execute through
a set of guarded transactions optimistically and relies instead on
the run-time detection of conflicts with an accompanying roll back
when serialization is determined to be required. If one wishes to
keep to the semantics of critical sections assumed by locks, TM
can still be useful in allowing the system to speculatively execute
through lock-protected critical sections through a class of tech-
niques known as Hardware Lock Elision [36, 57, 79].

Of course, there is a balance to be struck between optimism and
pessimism. Each lock under different use scenarios may benefit
from a different approach and it is not straightforward to achieve
good performance in practice due to the high costs of both rollback
and of overly pessimistic locking.

Listing 1 presents a typical method for eliding locks using HTM.
The original code is shown with a white background color and
the additions we made to patch with PSS are highlighted in a gray
background. There are two functions at the heart of the eliding
lock implementation: TxLock, which is called at the beginning
of a critical section, and TxUnlock, which is called at the end of
the critical section. The input to both functions is a mutex object
with lock/unlock/isLocked operations on it that can potentially be
replaced by HTM. For interoperability with the lock, the HTM path
is not tried until the lock is held (Line 5).

The transaction starts at Line 8 and the lock status is checked
again to ensure it was not taken in the meantime by another thread

51

A Prediction System Service ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and an explicit abort (Line 10) is issued if that is the case. The suc-
cessful start of the transaction (tx_begin()) will result in a return
from the function and will allow execution to continue into the
critical section. Any failure due to conflict, capacity, explicit abort,
or unsupported instruction, will cause the tx_begin() to return a
non-success return code. On failure, retries are made a fixed number
of times after which the algorithm falls back to the slow path of
taking the underlying lock at Line 19. A special flag slowPath is
set to indicate the corresponding action at the end of the critical
section. This design performs well when most transactions succeed.
However, in reality, it may not be known ahead of time whether
lock-elision for a critical section is beneficial. For various reasons,
the transactions can fail: notably due to increased contention and
increased conflicts, due to increased memory footprint that may
not fit within the HTM implementation’s capacity, or due to the
execution path using unsupported instructions.

Listing 1 shows the minor modifications (gray background) to
the baseline that are required to enable PSS to guide the HTM vs.
lock decision at runtime. At a high level, the idea is to utilize HTM
if it is likely to succeed and rollback to lock if the transaction is
likely to fail. Instead of having a fixed trial number mechanism,
PSS allows the system to easily make the lock/HTM decisions at
runtime. The output of the prediction directly informs the path
through the code taken. In order to make reasonable predictions
from the PSS, we use two parameters. The first is a thread-level
performance counter from past transactions. We use an integer to
store the past performance and each bit represents one transaction
attempt. A value of ’1’ means the transaction finished successfully
whereas ’0’ suggests the transaction failed. The second parameter is
the number of retries left before hitting the maximum retry number
(𝑀𝐴𝑋_𝑅𝐸𝑇𝑅𝐼𝐸𝑆).

The same two features will be used for the calls to predict
and update. The first argument to predict is this feature vector
and the second argument is the feature length (2). If the result of
predict is above the threshold (USE_HTM), the program attempts
the HTM path, otherwise, it falls back to using the underlying lock
without trying the HTM. The feedback to the prediction is given
after the critical section ends, in the TxUnlock() function. If the
perceptron recommended taking the HTM path (tryingHTM is true),
then a successful fastpath rewards the perceptron by invoking the
update API function with +1 (Line 9); however, if the perceptron
recommended theHTMpath but theHTM failed, we penalize it with
a negative reward of -1 (Line 30). To avoid the perceptron becoming
trapped in only the lock path after several failed predictions, a
predetermined threshold is also set.

4.2 Page Reclaim and Congestion Wait
When memory gets tight, the operating system memory manage-
ment subsystem starts to reclaim already used pages for later use.
During the reclaim process, pages with modified contents need to
be written out before the reclaim can occur. However, if the devices
that the pages will be written out are already congested with other
traffic, there is very limited benefit to adding extra I/O requests.

To mitigate congestion problems in the Linux kernel, a tracking
mechanism for block devices was proposed in 2002 [48] which was
adopted in v2.5.39 [47]. If the devices are congested, the memory

management sub-system would not create any new I/O requests
before the congestion is resolved. This idea has been extended in
various ways and such a mechanism still exists in Linux kernel 5.15
as congestion_wait() [46].

Unfortunately, over the years developers have found that there
are several limitations to the congestion-wait mechanism. First,
congestion tracking suffers from an inherent race condition as the
degree of device congestion can change before the query returns
to the caller. Second, accurate tracking of congestion has become
more difficult as storage devices have come to support longer com-
mand queues. As a result, congestion_wait() is used in practice only
when the timeout expires, which is not at all what it was originally
intended to do [51].

To overcome the limitation mentioned above, in 2021 it was
proposed that all instances of congestion-wait in the source code
should be completely eliminated [49]. The proposed new design
reclassifies the original congestion wait into three sub categories
and handles each one differently:

• When there are too many dirty or writeback pages, sleep
until enough pages are cleaned or a timeout expires

• When there are too many isolated pages, sleep until enough
of them are put back into the LRU system or reclaimed

• When there is no progress in page reclaim, the direct reclaim
task sleeps until another reclaim task proceeds with some
acceptable efficiency

The third point specifically measures the efficiency of another re-
claim task by dividing the number of pages reclaimed by the number
of pages scanned: 𝑛𝑟_𝑟𝑒𝑐𝑙𝑎𝑖𝑚𝑒𝑑

𝑛𝑟_𝑠𝑐𝑎𝑛𝑛𝑒𝑑 . In the most recent patch, the effi-
ciency threshold is set at a fixed value of 12.5%. However, as the
proposer of this technique rightly points out, the fixed threshold
value may not work for all scenarios. Here we see yet another op-
portunity to apply PSS to optimize control of the system, in this
case dynamically optimizing the sleep condition instead of relying
on a fixed ratio.

We input several parameters into PSS and dynamically decide if
the current reclaim task should sleep or not. The parameters include
the rounded values of nr_reclaimed and nr_scanned as well as the
ratio of 𝑛𝑟_𝑟𝑒𝑐𝑙𝑎𝑖𝑚𝑒𝑑

𝑛𝑟_𝑠𝑐𝑎𝑛𝑛𝑒𝑑 . Since PSS only takes integer inputs currently,
we use the reciprocal of the ratio and rounded to the closest integer,
i.e. 𝑓 𝑙𝑜𝑜𝑟 (𝑛𝑟_𝑠𝑐𝑎𝑛𝑛𝑒𝑑

𝑛𝑟_𝑟𝑒𝑐𝑙𝑎𝑖𝑚𝑒𝑑
) If the returned result is greater than or

equal to 0, the task will not go to sleep.
For this use case update is not as straightforward as predict —

how does one know that the prediction was “wrong”? While we
don’t have direct access to ground truth, we can instead assume
that entering the page claim throttle function is a negative sign for
the last decision since overall page reclaim is a procedure that we
want to minimize. Therefore, we keep a timer via ktime_get() to
measure the timestamp of the last entrance of the function and the
duration between two entrances. If the duration becomes longer,
it means that the page reclaim has been invoked less frequently
and we will reward the weights that lead to such a decision. Other-
wise, it suggests that the reclaim happens more often and we will
penalize the weights accordingly. In the end, even though we are
inferring prediction and misprediction indirectly, we are able to
limit the scope of our code changes to only the original function,
consider_reclaim_throttle.

52

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhizhou Zhang, Alvin Oliver Glova, Timothy Sherwood, and Jonathan Balkind

Table 1: List of selected PyPy JIT parameters.

parameters Default Descriptions
decay 40 amount to regularly decay counters by
function_threshold 1619 number of times a function must run for it to become traced from start
loop_longevity 1000 a parameter controlling how long loops will be kept before being freed
threshold 1039 number of times a loop has to run for it to become hot
trace_eagerness 200 number of times a guard has to fail before we start compiling a bridge
trace_limit 6000 number of recorded operations before we abort tracing with ABORT_TOO_LONG

4.3 JIT Parameter Tuning for PyPy
Python is one of the most popular languages because of its sim-
plified syntax and dynamic features. However, the default inter-
preter implementation (CPython) suffers from slow execution speed
brought by the extra interpreter layer. To recover some of that per-
formance, Just-In-Time (JIT) compilation can be used to translate
frequently executed code snippets into machine code that can be
executed directly. PyPy is one of the most popular tools for doing
so, in part because of its efficient tracing-based JIT compiler [8].

Unlike a method-based JIT that compiles an entire method at a
time, a trace-based JIT only considers the frequently executed code
paths (a.k.a., "hot path") within a method.

In PyPy specifically, there is a critical parameter named threshold,
which decides whether a loop is hot or not. The default value of
threshold happens to be 1039, meaning a loop will trigger the JIT
tracing mechanism on the code path only after the loop has been
executed 1039 times.

Like threshold, there are 16 other parameters in PyPy that control
the tracing and compilation mechanism [61]. We detail the subset
of the parameters we utilise and their default values in Table 1.

While it is well understood that these parameters are critical,
most prior work seeks to find an single static set that strikes that
balance. One of the most commonly usedmethods of achieving such
tuning is genetic algorithm (GA). For instance, Yu et al. [80] use GAs
to optimize parameters for Spark while Li and Jiang [44] show that
GAs can find PyPy parameters that can significantly outperform
the default JIT parameters. However, GA and other static parameter
tuning approaches require both expensive upfront overhead and a
set of “representative“ programs while to training. A large amount
of data, machine and load dependence of results, and the significant
design space exploration time required to make improvements all
potentially limit the applicability of such an approach.

Using PSS, we can tune the JIT parameters on-the-fly without
additional data collection and model training cost. Inspired by Li
and Jiang [44], we choose the parameters within a set of prefixed
values. The default value is multiplied by 1

4 ,
1
2 , 2, and 4 to get the 4

new settings. The only exception is trace_limit of 4𝑋 , which is set
to 16000 instead of 24000 because of a range limit.

Listing 2 sketches the use of PSS in the PyPy JIT. After each
iteration, we record the performance including the number of in-
structions and the execution time. More counter information can
also be used if available, such as branch prediction and cache per-
formance. We then feed this information into the perceptron as
input features. The perceptron returns the decision on whether

1 def main():
2 features = {performance counters}
3 for i in range(iteration):
4 run the workload
5 if predict(features , len) == True:
6 set more aggressive JIT parameter
7 else:
8 set more conservative JIT parameters
9 if curItrTime < prevItrTime:
10 update(features , +1)
11 else:
12 update(features , -1)

Listing 2: Integration of PSS with PyPy JIT

more aggressive optimization should be used or not and the JIT
configurations will be set accordingly.

Once the timing information is collected with the new parame-
ters, we compare it with the duration from the previous iteration.
If the new parameters speed up the execution, the corresponding
weight will be increased; otherwise it will be decreased.

The input feature for the use case includes detailed information
from PAPI [69] like the number of instructions and potentially dif-
ferent cache levels’ hit rates. To better utilize them, we round the
raw values before passing them to the perceptron. The rounding
keeps only the most significant figures of a given integer. For ex-
ample, 1234 will be rounded to 1000, 6276 will be rounded to 6000,
and 1999 will be rounded to 2000. Rounding allows the perceptron
to learn common input and prediction patterns.

5 EVALUATION
We evaluate PSS on an 8-core (×2-way SMT [71]) Intel Coffee Lake
CPU with a total 32GB memory, running Linux 5.15.0. The CPU
has 32KB L1I and L1D cache, 256KB L2 cache, and 16MB L3 cache.

For each applications in the three examples, we use STAM-
P/HTMBench [54, 74] as the HTM workload, MMTests for page
reclaim benchmarks [28], and PolyBenchPython [5] and python-
macrobenchmarks [3] as the PyPy JIT benchmarks.

In this section, we define the word iteration to describe the num-
ber of a dividable subroutine internally repeated in a benchmark
program. And we use benchmark run to refer to one whole run of a
benchmark.

5.1 Hardware Lock Elision Results
We choose Stanford Transactional Applications forMulti-Processors
(STAMP) [54] as the workload for HLE. STAMP is a collection of
applications targeted for transactional memory research. The de-
scription of the benchmark programs can be found in Table 2. We
use the recommended parameters for simulation setup.

53

A Prediction System Service ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

-20%

0%

20%

40%

60%

80%

100%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(a) genome

0%

20%

40%

60%

80%

100%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(b) SSCA2

-1.4%
-1.2%
-1.0%
-0.8%
-0.6%
-0.4%
-0.2%
0.0%
0.2%
0.4%
0.6%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(c) labyrinth

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(d) intruder

-5%

0%

5%

10%

15%

20%

25%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(e) kmeans-low

-10%
0%

10%
20%
30%
40%
50%
60%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(f) kmeans-high

0%

20%

40%

60%

80%

100%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(g) vacation-low

0%

20%

40%

60%

80%

100%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(h) vacation-high

0%

10%

20%

30%

40%

50%

60%

1 2 4 8 16Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Thread count

HTMBench PSS

(i) yada

Figure 2: Performance of HTMBench and PSS HLE normalised to vanilla STAMP.

Table 2: Benchmarks used from STAMP/HTMBench.

Benchmark Description
intruder Network intrusion detection
labyrinth Maze routing
yada Delaunay mesh refinement
SSCA2 Graph kernel
vacation Travel reservation system
kmeans K-means clustering
genome Gene sequencing

HTMBench is the state-of-the-art benchmark suite of HTM and
it is implemented using Intel’s TSX [33]. It provides an efficient
profiler to analyze HTM and offers optimizations that generate
nontrivial speedups. We compare our PSS implementation against

HTMBench [74] and vanilla STAMP with HTM support as the
baselines. We vary core count over 1, 2, 4, 8, and 16 cores. We run
each program five times and report the median value of the results.

The result of STAMP is plotted in Fig 2, which shows the perfor-
mance improvement of HTMBench and PSS over vanilla STAMP.
Overall, the overhead of using PSS is relatively low. The most slow-
down comes from 1 thread setting for kmeans-high in Fig. 2f, where
PSS optimized code generates 7.02% performance degradation. In
most of the other cases, the slowdown is less than 5%. On the other
hand, PSS optimized code can clearly show benefits over the vanilla
baseline or even HTMBench in selected cases like Fig. 2a and 2i.
For instance, PSS leads to 87.62% of improvement for 16 threads
setup in genome, which is 11% higher than HTMBench.

In terms of overhead, HTMBench has state-of-the-art implemen-
tations of STAMP after extensive profiling and optimization. On the
other hand, baseline code patched with PSS is only trained a few

54

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhizhou Zhang, Alvin Oliver Glova, Timothy Sherwood, and Jonathan Balkind

-20%
0%

20%
40%
60%
80%

100%
120%
140%

at
ax

gr
am

sc
hm

id
t

flo
yd

_w
ar
sh
al
l

he
at
_3
d

se
id
el
_2

d

fd
td
_2

d

ja
co
bi
_1
d

sy
rk ad
i

ge
m
m

nu
ss
in
ov

sy
r2
k

ja
co
bi
_2
d

de
ric

he

do
itg

en

ge
su
m
m
v lu

ch
ol
es
ky

tr
is
ol
v

m
vt

tr
m
m

co
rr
el
at
io
n

du
rb
in

lu
dc
m
p

co
va
ria

nc
e

3m
m

sy
m
m

ge
m
ve
r

2m
m

bi
cg

ge
om

ea
n

av
er
ag
ePe

ro
fm

ra
nc

e
Im

pr
ov

em
en

t

Figure 3: Performance improvement of PSS with 20 iterations on PolyBenchPython

-20%

0%

20%

40%

60%

80%

100%

ge
m
m

de
ric

he

flo
yd

_w
ar
sh
al
l

gr
am

sc
hm

id
t

ja
co
bi
_1
d

se
id
el
_2

d

fd
td
_2

d

nu
ss
in
ov

he
at
_3
d

sy
rk ad
i

ja
co
bi
_2
d

sy
r2
k

do
itg

en

ge
su
m
m
v

at
ax lu

co
rr
el
at
io
n

ch
ol
es
ky

co
va
ria

nc
e

3m
m

m
vt

du
rb
in

tr
m
m

sy
m
m

lu
dc
m
p

ge
m
ve
r

tr
is
ol
v

2m
m

bi
cg

ge
om

ea
n

av
er
ag
ePe

ro
fm

ra
nc

e
Im

pr
ov

em
en

t

Figure 4: Performance improvement of PSS with 50 iterations on PolyBenchPython

hours and it performs very close to HTMBench or even outperforms
it in several cases.

5.2 PyPy JIT Results
5.2.1 Benchmark Setup. We use version 7.3.3 of PyPy as the JIT
compiler and PolyBenchPython [5]with python-macrobenchmarks [3]
as the workloads. PolyBenchPython is a benchmark suite with 30
commonly used kernels for scientific computing and it is representa-
tive asmicrobenchmarks. On the other hand, python-macrobenchmarks
contains some of the most popular python applications on a macro-
level, including Flask [4], Django content management system
(CMS) [1], Gunicorn [2] and more.

For PolyBenchPython, we run the benchmark using the default
list implementation of the array and MINI as the input data size.
Since the original PolyBenchPython already uses PAPI [76] coun-
ters, we include some of them as input features to PSS. Specifically,
we use the execution time and the ratio between L1D hit and L1D
miss as parameters for PSS. Each benchmark is executed 10 times
and we report the time spent in the first 20 and 50 iterations. The

baseline is the program with the default JIT setting while the mod-
ified JIT is the program patched with PSS, dynamically changing
the JIT configuration parameters as we described in Section 4.3.

5.2.2 PolyBenchPython Results. The result of PyPy JIT parameter
tuning is presented in Figure 3 and 4. On average, PSS can im-
prove the performance of the 30 programs by 15.38% and 11.11%
for 20 and 50 iterations, respectively. For the first 20 iterations, the
largest improvement is over 120% while the largest slowdown is
only around 6%. For 50 iterations, the largest performance gain
and loss are smaller since most of the commonly executed code is
already jitted in the late iterations. However, the improvement is
still significantly larger than the slowdown. We believe this setup
of optimization can be potentially useful for Function-as-a-Service
(FaaS) applications, which tend to run short computation tasks over
and over.

5.2.3 Macrobenchmark Result. The result of the macro benchmark
is plotted in Fig 5. We choose 4 benchmarks that can easily demon-
strate performance iteration-wise and we simply use the iteration-
wise runtime as the parameter for PSS. We run 3000 iterations

55

A Prediction System Service ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

iterations

Ti
m

e
in

 s
ec

on
ds

0

2

4

6

8

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

baseline PSS PSS-syscall

(a) aiohttp

iterations

Ti
m

e
in

 s
ec

on
ds

0

10

20

30

40

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00

baseline PSS PSS-syscall

(b) djangocms

iterations

Ti
m

e
in

 s
ec

on
ds

0

5

10

15

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
baseline PSS PSS-syscall

(c) flaskblogging

iterations

Ti
m

e
in

 s
ec

on
ds

0

2

4

6

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

baseline PSS PSS-syscall

(d) gunicorn

Figure 5: Result of macrobenchmarks.

for aiohttp and gunicorn and 1800 iterations for djangocms and
flaskblogging. Each benchmark runs 5 times and we plot the aver-
aged result iteration-wise.

It is clear that PSS can speed up the macro-benchmark with
better dynamic parameter tuning. For the four benchmarks, the
performance improvements are 22.17%, 2.54%, 6.3%, and 18.66%,
respectively. From the two sets of benchmarks, we demonstrate the
functionality and performance benefits of PSS for both micro and
macro-benchmarks of Python.

5.2.4 Latency-Sensitive Applications. Figure 5 also contains the re-
sult of using syscall as prediction instead of vDSO. From the results,
it is clear that for the latency sensitive applications, implementation
using vDSO performs better than syscall. The syscall-based results
either have less speedup as shown in Figures 5b, 5c, and 5d) or
generate significant slowdown as shown in Figure 5a.

5.3 Page Reclaim and Memory Management
5.3.1 Benchmarks and Methodology. We follow the experiments
mentioned in the original patch [50]. We ran mmtests [28] on the
original 5.15.0-rc3 kernel, the patched kernel [29], and the kernel

with dynamic control from PSS. MMtests is a benchmark framework
aimed at performance testing of the Linux kernel. Specifically, we
ran a test named stutterp, which sweeps a different number of
“worker” processes and inspects the impact of the direct reclaim.
There are four types of workers in stutterp:

• One “anon latency” worker: creates mmap mappings then
measures the duration to fault the mapping.

• X file writers: flexible I/O tester (fio) that randomly writes X
files. The total size of the files equals the preset 𝑑𝑖𝑟𝑡𝑦_𝑟𝑎𝑡𝑖𝑜 .

• Y file readers: fio that randomly reads small files.
• Z anon memory hogs: continually map memory with the
ratio (100 − 𝑑𝑖𝑟𝑡𝑦_𝑟𝑎𝑡𝑖𝑜)%.

The total estimated working set size (WSS) is (100+𝑑𝑖𝑟𝑡𝑦_𝑟𝑎𝑡𝑖𝑜𝑛)%
of memory. The motivation of stutterp is to maximise the total
WSS with file and anonymous memory. During execution, some
anonymous memory has to be swapped and it is very likely that
dirty/writeback pages reach the end of the LRU.

5.3.2 Results. The result of stutterp is plotted in Fig. 6. It shows
the performance improvement compared with 5.15.0 vanilla kernel.
The number after mmap indicates the number of the worker threads

56

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhizhou Zhang, Alvin Oliver Glova, Timothy Sherwood, and Jonathan Balkind

Im
pr

ov
em

en
t o

ve
r v

an
ill

a

-50.00%

0.00%

50.00%

100.00%

mmap-4 mmap-7 mmap-12 mmap-21 mmap-30 mmap-48 mmap-64

gorman PSS-run1 PSS-run2 PSS-run3 PSS-run4

Figure 6: Average latency of MMTests. Each mmap-N represents a run with N worker threads. The larger the number, the higher
the memory pressure.

mentioned above and larger worker counts means higher memory
pressure for the system.

From the plot it is clear that PSS can outperform the baseline
implementation now merged into the kernel. The improvement is
much higher for the 21, 30, and 48 workers setups and PSS achieved
slight improvement where the baseline suffers significant perfor-
mance loss for 12 workers. For 7 workers, all the implementations
perform worse than the vanilla code, but the slowdown is less for
PSS code after several iterations.

Another benefit we can observe from the figure is that the per-
formance of PSS is improving over multiple benchmark runs. It
does not show a monotonic increase, but shows improvement as
the general trend over time. On the other hand, we tried to run
the baseline version multiple times and we did not observe any
noticeable improvement.

6 RELATEDWORK
Since prediction is a key feature of the system software stack, there
have beenmany different implementations which have been demon-
strated to take advantage of common system operations and commu-
nication patterns for prediction to improve performance and other
system metrics. Kraska et. al. [39] and Mitzenmacher et. al. [56]
survey recent work which make use of prediction and machine
learning for systems.

The most relevant work to our proposed system service for pre-
diction is SmartChoices [9]. Similar to PSS, it also proposes a set of
interface functions that software can use to make predictions, as
well as ability to do on-the-fly learning. However, their proposed
system is based on Reinforcement Learning which requires sig-
nificantly more resources for training and incurs higher latency

compared to a simple perceptron-based predictor. Thus, it has lim-
ited applicability in resource-limited systems which only require
simple and fast predictions.

Other than the work mentioned on prediction memory access
and synchronization mentioned in Section 2, there have been sev-
eral other synchronization algorithms which have a fastpath/slow-
path or other variants [11, 17, 42, 45, 78, 81, 82] and the decision to
dynamically choose the correct variant is predicted based on the
past behavior and current conditions.

Low-level runtime systems for dynamically adjusting to power
and energy consumption employ lightweight prediction mecha-
nisms [6, 26, 53, 63]. Esmaeilzadeh et al. present a learning-based
technique to accelerate approximate programs [21]. In their work,
programmers can label a code region to approximate and then a
NN model will be trained to emulate the region. Once the training
is complete, the original code region will be replaced by the invoca-
tions to a low-power Neural Processing Unit via an ISA extension.
Furthermore, system failure prediction [24, 25, 30, 60, 65, 75] has
also attracted a lot of attention in recent times due to very large
scale systems and increased failure rate. Finally, searching for the
set of compiler optimizations and their order of application em-
ploys various prediction techniques based on past learnings and
behaviors [10, 15].

There are many studies focused on how to automatically tune
the configuration settings for different kinds of software systems.
In general, those studies can be classified into two groups. The first
group utilizes a certain type of search-based algorithm, including
hill-climbing [73], genetic algorithms [80], and ParamILS [43]. The
second group tries to find the optimal configurations by reduction,
including the iterative experiment [70] and similarity measure-
ment [59].

57

A Prediction System Service ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Our proposed system service prediction is flexible enough to be
used and bring performance benefits in most of these prediction sce-
narios and avoid the complications of parameter tuning. Compared
to traditional approaches, our proposed service offers advantages in
terms of lower effort and resources needed with on-the-fly tuning
and better reusability.

7 CONCLUSION
The effective end of processor frequency scaling and the continued
drive for higher performance and lower energy utilization means
that application-targeted software optimization will only continue
to grow in importance in the field. While there are sure to be many
application specific optimizations that do not rely on prediction,
a surprisingly diverse class of optimizations, from hot-path/cold-
path, to parameter tuning, to resource optimization, and beyond
are more easily and readily enabled through support from a simple
to call and low-latency software service. The move to a new ab-
straction that is useful in the process of optimization helps us step
away from both the fragile heuristics so common in production
code today while avoiding inheriting the complexity of complete
application-embedded prediction frameworks. A system service
for prediction has the potential to enable performance optimizers
to spend their time worrying more about the discovery of new
opportunities for specialization and tuning, and less about how ex-
actly one should navigate the space of trade offs such opportunities
live in. Even if there are times when such a service might not be
appropriate for a final deployment, a prediction service can still
be helpful in the development process by speeding up the sorting
of promising optimization opportunities from those that will offer
little gain even with well-crafted heuristic control. A core idea of
prediction as a service is the decoupling of the creation of optimiza-
tions and the specific decision of how and when exactly to apply
those optimizations.

We demonstrate the utility of Prediction as a System Service
across three application-targeted optimization scenarios, and in
all three cases find performance improvements. As to be expected
such an approach is highly latency sensitive, but we are able to
demonstrate a creative new use of vDSOs that can allow applica-
tions to extract predictions in an average of 4.19ns. In all of the
cases we examined this new optimization pattern with operating
system service support is able to meet or beat the best known
hand-crafted methods with a fraction of the complexity of existing
hardware. We believe this approach would be of particular interest
to the ASPLOS community as it also opens the door for new and
creative uses of architectural support for assisting in prediction
with low latency, language level opportunities for the exploitation
of prediction services, and further innovation in the system-level
abstractions appropriate to more fully support dynamic control of
software optimization.

ACKNOWLEDGEMENT
This material is based upon work supported by the National Science
Foundation under Grants No. 2006542 and 1763699. We thank the
anonymous reviewers for their feedback. We also thank Milind
Chabbi and Timothy Hayes for the discussion and assistance.

REFERENCES
[1] [n.d.]. django-cms/django-cms: The easy-to-use and developer-friendly enter-

prise CMS powered by Django. https://github.com/django-cms/django-cms.
(Accessed on 06/17/2022).

[2] [n.d.]. Gunicorn - Python WSGI HTTP Server for UNIX. https://gunicorn.org/.
(Accessed on 06/17/2022).

[3] [n.d.]. pyston/python-macrobenchmarks: A collection of macro benchmarks
for the Python programming language. https://github.com/pyston/python-
macrobenchmarks. (Accessed on 06/17/2022).

[4] [n.d.]. Welcome to Flask — Flask Documentation (2.1.x). https://flask.
palletsprojects.com/en/2.1.x/. (Accessed on 06/17/2022).

[5] Miguel Á Abella-González, Pedro Carollo-Fernández, Louis-Noël Pouchet, Fabrice
Rastello, and Gabriel Rodríguez. 2021. PolyBench/Python: benchmarking Python
environments with polyhedral optimizations. In Proceedings of the 30th ACM
SIGPLAN International Conference on Compiler Construction. 59–70.

[6] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bronis de
Supinski, and Martin Schulz. 2008. A Regression-Based Approach to Scalability
Prediction. In Proceedings of the 22nd Annual International Conference on Super-
computing (Island of Kos, Greece) (ICS ’08). Association for ComputingMachinery,
New York, NY, USA, 368–377. https://doi.org/10.1145/1375527.1375580

[7] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V Gratz, and Daniel A
Jiménez. 2019. Perceptron-based prefetch filtering. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 1–13.

[8] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.
Tracing the meta-level: PyPy’s tracing JIT compiler. In Proceedings of the 4th
workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems. 18–25.

[9] Victor Carbune, Thierry Coppey, Alexander Daryin, Thomas Deselaers, Nikhil
Sarda, and Jay Yagnik. 2019. SmartChoices: hybridizing programming and ma-
chine learning. Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36th International Conference on Machine Learning (ICML) (2019).

[10] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam. 2007.
Rapidly Selecting Good Compiler Optimizations using Performance Counters. In
International Symposium on Code Generation and Optimization (CGO’07). 185–197.
https://doi.org/10.1109/CGO.2007.32

[11] Milind Chabbi and John Mellor-Crummey. 2016. Contention-Conscious, Locality-
Preserving Locks. In Proceedings of the 21st ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (Barcelona, Spain) (PPoPP ’16). As-
sociation for Computing Machinery, New York, NY, USA, Article 22, 14 pages.
https://doi.org/10.1145/2851141.2851166

[12] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).
ACM, New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA, USA) (OSDI’18).
USENIX Association, USA, 579–594.

[14] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2019. Gen-
erative adversarial user model for reinforcement learning based recommendation
system. In International Conference on Machine Learning. PMLR, 1052–1061.

[15] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing
for Reduced Code Space Using Genetic Algorithms. In Proceedings of the ACM
SIGPLAN 1999Workshop on Languages, Compilers, and Tools for Embedded Systems
(Atlanta, Georgia, USA) (LCTES ’99). Association for Computing Machinery, New
York, NY, USA, 1–9. https://doi.org/10.1145/314403.314414

[16] Redhat Corp. [n.d.]. Automatic NUMA Balancing. https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_
and_optimization_guide/sect-virtualization_tuning_optimization_guide-
numa-auto_numa_balancing.

[17] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield, and Mark Moir. 2014.
Adaptive Integration of Hardware and Software Lock Elision Techniques. In Pro-
ceedings of the 26th ACMSymposium on Parallelism in Algorithms andArchitectures
(Prague, Czech Republic) (SPAA ’14). Association for Computing Machinery, New
York, NY, USA, 188–197. https://doi.org/10.1145/2612669.2612696

[18] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. 2009. Early experience
with a commercial hardware transactional memory implementation. In Proceed-
ings of the 14th international conference on Architectural support for programming
languages and operating systems. 157–168.

[19] Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking II. In Interna-
tional Symposium on Distributed Computing. Springer, 194–208.

[20] Dice Dave. 2015. waiting policies for locks : spin-then-park . https://blogs.oracle.
com/dave/waiting-policies-for-locks-:-spin-then-park.

[21] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural
acceleration for general-purpose approximate programs. In 2012 45th Annual

58

https://github.com/django-cms/django-cms
https://gunicorn.org/
https://github.com/pyston/python-macrobenchmarks
https://github.com/pyston/python-macrobenchmarks
https://flask.palletsprojects.com/en/2.1.x/
https://flask.palletsprojects.com/en/2.1.x/
https://doi.org/10.1145/1375527.1375580
https://doi.org/10.1109/CGO.2007.32
https://doi.org/10.1145/2851141.2851166
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/314403.314414
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://doi.org/10.1145/2612669.2612696
https://blogs.oracle.com/dave/waiting-policies-for-locks-:-spin-then-park
https://blogs.oracle.com/dave/waiting-policies-for-locks-:-spin-then-park

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhizhou Zhang, Alvin Oliver Glova, Timothy Sherwood, and Jonathan Balkind

IEEE/ACM International Symposium on Microarchitecture. IEEE, 449–460.
[22] Evelyn Fix and Joseph Lawson Hodges. 1989. Discriminatory analysis. Nonpara-

metric discrimination: Consistency properties. International Statistical Review/Re-
vue Internationale de Statistique 57, 3 (1989), 238–247.

[23] David A Freedman. 2009. Statistical models: theory and practice. cambridge
university press.

[24] Song Fu and Cheng-Zhong Xu. 2007. Exploring event correlation for failure
prediction in coalitions of clusters. In Proceedings of the 2007 ACM/IEEE conference
on Supercomputing. 1–12.

[25] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. 2013. Failure
prediction for HPC systems and applications: Current situation and open issues.
The International journal of high performance computing applications 27, 3 (2013),
273–282.

[26] Neha Gholkar, FrankMueller, and Barry Rountree. 2019. Uncore Power Scavenger:
A Runtime for Uncore Power Conservation on HPC Systems. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis (Denver, Colorado) (SC ’19). Association for Computing Machinery, New
York, NY, USA, Article 27, 23 pages. https://doi.org/10.1145/3295500.3356150

[27] GitHub. 2018. GitHub - nlynch-mentor/vdsotest: Utility for testing and bench-
marking a Linux VDSO. https://github.com/nlynch-mentor/vdsotest. (Accessed
on 04/08/2022).

[28] Mel Gorman. 2011. gormanm/mmtests: MMTests: Benchmarking framework
primarily aimed at Linux kernel testing. https://github.com/gormanm/mmtests.
(Accessed on 12/01/2021).

[29] Mel Gorman. 2021. kernel/git/mel/linux.git - Candidate patch series by Mel Gor-
man. https://git.kernel.org/pub/scm/linux/kernel/git/mel/linux.git/commit/?h=
mm-reclaimcongest-v5r4&id=a2f8f6191574311e28d0c3609394937533ec490c. (Ac-
cessed on 12/01/2021).

[30] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. 2017.
Failures in large scale systems: long-term measurement, analysis, and implica-
tions. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 1–12.

[31] Maurice Herlihy and J Eliot B Moss. 1993. Transactional memory: Architec-
tural support for lock-free data structures. In Proceedings of the 20th annual
international symposium on Computer architecture. 289–300.

[32] John J Hopfield. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of sciences
79, 8 (1982), 2554–2558.

[33] Intel. 2022. Intel 64 and IA-32 Architectures Optimization Reference
Manual. https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf.

[34] Daniel A Jiménez and Calvin Lin. 2001. Dynamic branch prediction with percep-
trons. In Proceedings HPCA Seventh International Symposium on High-Performance
Computer Architecture. IEEE, 197–206.

[35] R. Karedla, J. S. Love, and B. G. Wherry. 1994. Caching strategies to improve disk
system performance. Computer 27, 3 (1994), 38–46. https://doi.org/10.1109/2.
268884

[36] Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai, Thomas Legler,
Benjamin Schlegel, and Wolfgang Lehner. 2014. Improving in-memory database
index performance with Intel® Transactional Synchronization Extensions. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 476–487.

[37] Sanidhya Kashyap, ChangwooMin, and Taesoo Kim. 2017. Scalable NUMA-aware
Blocking Synchronization Primitives. In 2017 USENIXAnnual Technical Conference
(USENIX ATC 17). USENIX Association, Santa Clara, CA, 603–615. https://www.
usenix.org/conference/atc17/technical-sessions/presentation/kashyap

[38] Tracy Kimbrel, Andrew Tomkins, R Hugo Patterson, Brian Bershad, Pei Cao,
Edward W Felten, Garth A Gibson, Anna R Karlin, and Kai Li. 1996. A trace-
driven comparison of algorithms for parallel prefetching and caching. In OSDI.
19–34.

[39] Tim Kraska. 2021. Towards Instance-Optimized Data Systems. Proc. VLDB Endow.
14, 12 (jul 2021), 3222–3232. https://doi.org/10.14778/3476311.3476392

[40] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Jialin Ding, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019.
SageDB: A Learned Database System.

[41] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference onManagement of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 489–504. https://doi.org/10.
1145/3183713.3196909

[42] Leslie Lamport. 1987. A Fast Mutual Exclusion Algorithm. ACM Trans. Comput.
Syst. 5, 1 (Jan. 1987), 1–11. https://doi.org/10.1145/7351.7352

[43] Philipp Lengauer and Hanspeter Mössenböck. 2014. The taming of the shrew:
increasing performance by automatic parameter tuning for java garbage collec-
tors. In Proceedings of the 5th ACM/SPEC international conference on Performance
engineering. 111–122.

[44] Yangguang Li and Zhen Ming Jack Jiang. 2019. Assessing and optimizing the
performance impact of the just-in-time configuration parameters-a case study

on PyPy. Empirical Software Engineering 24, 4 (2019), 2323–2363.
[45] Beng-Hong Lim and Anant Agarwal. 1994. Reactive Synchronization Algorithms

for Multiprocessors. In Proceedings of the Sixth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (San Jose,
California, USA) (ASPLOS VI). Association for Computing Machinery, New York,
NY, USA, 25–35. https://doi.org/10.1145/195473.195490

[46] Linux. 2021. backing-dev.c - mm/backing-dev.c - Linux source code (v5.15-rc6)
- Bootlin. https://elixir.bootlin.com/linux/v5.15-rc6/source/mm/backing-dev.c.
(Accessed on 04/05/2022).

[47] LWN. 2002. Development kernel 2.5.39 released [LWN.net]. https://lwn.net/
Articles/11130/. (Accessed on 04/05/2022).

[48] LWN. 2002. infrastruture for monitoring request queue congestion [LWN.net].
https://lwn.net/Articles/9519/. (Accessed on 04/05/2022).

[49] LWN. 2021. [PATCH v5 0/8] Remove dependency on congestion_wait in
mm/ [LWN.net]. https://lwn.net/ml/linux-kernel/20211022144651.19914-1-
mgorman@techsingularity.net/. (Accessed on 04/05/2022).

[50] LWN. 2021. [PATCH v5 0/8] Remove dependency on congestion_wait in
mm/ [LWN.net]. https://lwn.net/ml/linux-kernel/20211022144651.19914-1-
mgorman@techsingularity.net/. (Accessed on 12/01/2021).

[51] LWN. 2021. Replacing congestion_wait() [LWN.net]. https://lwn.net/Articles/
873672/. (Accessed on 04/05/2022).

[52] Oded Z Maimon and Lior Rokach. 2014. Data mining with decision trees: theory
and applications. Vol. 81. World scientific.

[53] Aniruddha Marathe, Peter E. Bailey, David K. Lowenthal, Barry Rountree, Mar-
tin Schulz, and Bronis R. de Supinski. 2015. A Run-Time System for Power-
Constrained HPC Applications. InHigh Performance Computing, Julian M. Kunkel
and Thomas Ludwig (Eds.). Springer International Publishing, Cham, 394–408.

[54] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008.
STAMP: Stanford transactional applications for multi-processing. In 2008 IEEE
International Symposium on Workload Characterization. IEEE, 35–46.

[55] Samira Mirbagher-Ajorpaz, Gilles Pokam, Esmaeil Mohammadian-Koruyeh, Elba
Garza, Nael Abu-Ghazaleh, and Daniel A Jiménez. 2020. PerSpectron: Detecting
Invariant Footprints of Microarchitectural Attacks with Perceptron. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
1124–1137.

[56] Michael Mitzenmacher and Sergei Vassilvitskii. 2021. Algorithms with Predictions.
Cambridge University Press, 646–662. https://doi.org/10.1017/9781108637435.037

[57] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M Michael, and Hisanobu
Tomari. 2015. Quantitative comparison of hardware transactional memory for
Blue Gene/Q, zEnterprise EC12, Intel Core, and POWER8. ACM SIGARCH Com-
puter Architecture News 43, 3S (2015), 144–157.

[58] Duc Tam Nguyen, Zhongyu Lou, Michael Klar, and Thomas Brox. 2019. Anomaly
detection with multiple-hypotheses predictions. In International Conference on
Machine Learning. PMLR, 4800–4809.

[59] Takayuki Osogami and Sei Kato. 2007. Optimizing system configurations quickly
by guessing at the performance. In Proceedings of the 2007 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems. 145–
156.

[60] Teerat Pitakrat, DušanOkanović, André vanHoorn, and Lars Grunske. 2018. Hora:
Architecture-aware online failure prediction. Journal of Systems and Software
137 (2018), 669–685.

[61] PyPy. 2021. JIT help — PyPy documentation. https://doc.pypy.org/en/latest/jit_
help.html. (Accessed on 04/05/2022).

[62] Ravi Rajwar and James R. Goodman. 2001. Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution (MICRO 34). IEEE Computer Society,
USA, 294–305.

[63] Barry Rountree, David K. Lowenthal, Bronis R. de Supinski, Martin Schulz, Vin-
centW. Freeh, and Tyler Bletsch. 2009. Adagio:MakingDVS Practical for Complex
HPC Applications. In Proceedings of the 23rd International Conference on Super-
computing (Yorktown Heights, NY, USA) (ICS ’09). Association for Computing Ma-
chinery, New York, NY, USA, 460–469. https://doi.org/10.1145/1542275.1542340

[64] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L Hudson, Chi Cao Minh, and Ben-
jamin Hertzberg. 2006. McRT-STM: a high performance software transactional
memory system for a multi-core runtime. In Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming. 187–197.

[65] Felix Salfner, Maren Lenk, and Miroslaw Malek. 2010. A survey of online failure
prediction methods. ACM Computing Surveys (CSUR) 42, 3 (2010), 1–42.

[66] William N. Scherer and Michael L. Scott. 2005. Advanced Contention Manage-
ment for Dynamic Software Transactional Memory (PODC ’05). Association for
Computing Machinery, New York, NY, USA, 240–248. https://doi.org/10.1145/
1073814.1073861

[67] Michael F Spear, Maged M Michael, and Christoph Von Praun. 2008. RingSTM:
scalable transactions with a single atomic instruction. In Proceedings of the twen-
tieth annual symposium on Parallelism in algorithms and architectures. 275–284.

[68] Elvira Teran, Zhe Wang, and Daniel A Jiménez. 2016. Perceptron learning for
reuse prediction. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1–12.

59

https://doi.org/10.1145/3295500.3356150
https://github.com/nlynch-mentor/vdsotest
https://github.com/gormanm/mmtests
https://git.kernel.org/pub/scm/linux/kernel/git/mel/linux.git/commit/?h=mm-reclaimcongest-v5r4&id=a2f8f6191574311e28d0c3609394937533ec490c
https://git.kernel.org/pub/scm/linux/kernel/git/mel/linux.git/commit/?h=mm-reclaimcongest-v5r4&id=a2f8f6191574311e28d0c3609394937533ec490c
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://doi.org/10.1109/2.268884
https://doi.org/10.1109/2.268884
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
https://doi.org/10.14778/3476311.3476392
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/7351.7352
https://doi.org/10.1145/195473.195490
https://elixir.bootlin.com/linux/v5.15-rc6/source/mm/backing-dev.c
https://lwn.net/Articles/11130/
https://lwn.net/Articles/11130/
https://lwn.net/Articles/9519/
https://lwn.net/ml/linux-kernel/20211022144651.19914-1-mgorman@techsingularity.net/
https://lwn.net/ml/linux-kernel/20211022144651.19914-1-mgorman@techsingularity.net/
https://lwn.net/ml/linux-kernel/20211022144651.19914-1-mgorman@techsingularity.net/
https://lwn.net/ml/linux-kernel/20211022144651.19914-1-mgorman@techsingularity.net/
https://lwn.net/Articles/873672/
https://lwn.net/Articles/873672/
https://doi.org/10.1017/9781108637435.037
https://doc.pypy.org/en/latest/jit_help.html
https://doc.pypy.org/en/latest/jit_help.html
https://doi.org/10.1145/1542275.1542340
https://doi.org/10.1145/1073814.1073861
https://doi.org/10.1145/1073814.1073861

A Prediction System Service ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[69] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
performance data with PAPI-C. In Tools for High Performance Computing 2009.
Springer, 157–173.

[70] Risi Thonangi, Vamsidhar Thummala, and Shivnath Babu. 2008. Finding good
configurations in high-dimensional spaces: Doing more with less. In 2008 IEEE
international symposium on modeling, analysis and simulation of computers and
telecommunication systems. IEEE, 1–10.

[71] D. M. Tullsen, S. J. Eggers, and H. M. Levy. 1995. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In Proceedings 22nd Annual International
Symposium on Computer Architecture. 392–403.

[72] Takayuki Usui, Reimer Behrends, Jacob Evans, and Yannis Smaragdakis. 2009.
Adaptive Locks: Combining Transactions and Locks for Efficient Concurrency.
In Proceedings of the 2009 18th International Conference on Parallel Architectures
and Compilation Techniques (PACT ’09). IEEE Computer Society, USA, 3–14.
https://doi.org/10.1109/PACT.2009.20

[73] Kewen Wang, Xuelian Lin, and Wenzhong Tang. 2012. Predator—An experience
guided configuration optimizer for Hadoop MapReduce. In 4Th IEEE international
conference on cloud computing technology and science proceedings. IEEE, 419–426.

[74] Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu. 2019. Lightweight hard-
ware transactional memory profiling. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming. 186–200.

[75] Yukihiro Watanabe, Hiroshi Otsuka, Masataka Sonoda, Shinji Kikuchi, and Ya-
suhide Matsumoto. 2012. Online failure prediction in cloud datacenters by
real-time message pattern learning. In 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings. IEEE, 504–511.

[76] Vincent M Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr
Luszczek, Dan Terpstra, and Shirley Moore. 2012. Measuring energy and power
with PAPI. In 2012 41st international conference on parallel processing workshops.
IEEE, 262–268.

[77] Geoffrey I Webb, Eamonn Keogh, and Risto Miikkulainen. 2010. Naïve Bayes.
Encyclopedia of machine learning 15 (2010), 713–714.

[78] Jae-Heon Yang and James H. Anderson. 1995. A Fast, Scalable Mutual Exclusion
Algorithm. Distrib. Comput. 9, 1 (March 1995), 51–60. https://doi.org/10.1007/
BF01784242

[79] Richard M Yoo, Christopher J Hughes, Konrad Lai, and Ravi Rajwar. 2013. Per-
formance evaluation of Intel® transactional synchronization extensions for high-
performance computing. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. 1–11.

[80] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-aware high dimen-
sional configurations auto-tuning of in-memory cluster computing. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 564–577.

[81] M. Zhang, H. Chen, L. Cheng, F. C. M. Lau, and C. Wang. 2017. Scalable Adaptive
NUMA-Aware Lock. IEEE Transactions on Parallel and Distributed Systems 28, 6
(2017), 1754–1769. https://doi.org/10.1109/TPDS.2016.2630695

[82] Zhizhou Zhang, Milind Chabbi, Adam Welc, and Timothy Sherwood. 2021. Opti-
mistic Concurrency Control for Real-world Go Programs. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 939–955.

Received 2022-07-07; accepted 2022-09-22

60

https://doi.org/10.1109/PACT.2009.20
https://doi.org/10.1007/BF01784242
https://doi.org/10.1007/BF01784242
https://doi.org/10.1109/TPDS.2016.2630695

	Abstract
	1 Introduction
	2 Prediction as a Service
	3 Design and Implementation of a PSS
	3.1 System Interface
	3.2 Prediction Unit Design
	3.3 Reduced Latency Predictions with vDSO

	4 Use-Case Scenarios
	4.1 PSS in Hardware Lock Elision
	4.2 Page Reclaim and Congestion Wait
	4.3 JIT Parameter Tuning for PyPy

	5 Evaluation
	5.1 Hardware Lock Elision Results
	5.2 PyPy JIT Results
	5.3 Page Reclaim and Memory Management

	6 Related Work
	7 Conclusion
	References

