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Abstract
Microservice architectures have become the lifeblood of
modern service-oriented software systems. Remote Procedure
Calls (RPCs) among microservices are deeply nested,
asynchronous, and large in number, thus making it very hard to
identify the underlying service(s) that contribute to the overall
end-to-end latency experienced by a top-level request. State-
of-the-art RPC tracing tools collect a deluge of data but provide
little insight. We need sophisticated tools to bubble-up signals
from a myriad of RPC traces to assist developers in identifying
optimization opportunities, pinpointing common bottlenecks,
setting appropriate time outs, diagnosing error conditions, and
planning and managing compute capacity, to name a few.

In this paper, we present CRISP — a tool to perform critical
path analysis (CPA) over a large number of traces collected
from RPCs in microservices environments. CRISP provides
three critical performance analysis capabilities: a) a top-down
CPA of any specific endpoint, which is tailored for service own-
ers to drill down the root causes of latency issues, b) a bottom-
up CPA over all endpoints in the system — tailored for infras-
tructure and performance engineers — to bubble up those (inte-
rior) APIs that have a high impact across many endpoints, and
c) an on-the-fly anomaly detection to alert potential problems.

We have applied CRISP’s capabilities on Uber’s entire
backend system composed of ⇠40K endpoints that cater
to real-time requests from more than 100 million active
daily users worldwide. Using the critical path as the basis
of performance analysis has a) helped us identify five
performance issues and optimization opportunities across
two business-critical microservices, b) guided us in our future
hardware choice that reduces end-to-end latencies, and c)
reduced the false positives in anomaly detection by up to 50%
while speeding up the training and inference by up to 28⇥ and
up to 67⇥, respectively, over the state of the art.

1 Introduction

Microservice architectures [23, 27, 28, 36, 43, 45, 56] have
become the lifeblood of modern service-oriented software sys-

Figure 1: Complex microservice RPC call graph at Uber collected
via Jaeger tracing.

tems. As opposed to monolithic software development and de-
ployment, in a microservice environment, the business logic is
broken into individually deployable programs,which allow fast
development and scalable deployment. Individual microser-
vice instances interact with one another via remote procedure
calls (RPCs). As microservices evolve with the business, they
grow in number and their interactions become complex.

Uber’s backend is an exemplar of microservice architecture.
Uber has⇠4,000 microservices interacting with each other via
RPCs. Each microservice hosts a handful of APIs, leading to
a total of about 40,000 unique RPC endpoints that can call one
another in complex ways, as depicted in Figure 1. Hereafter,
we use the terms endpoint and API interchangeably to mean
a uniquely named functionality provided by a service. We
use the terms operation and RPC interchangeably to mean an
instance of invocation of such an API.

A service request arriving at an entry point API to the Uber
backend systems undergoes multiple “hops” through numer-
ous microservice RPCs before being fully serviced. The life of
a request results in intricate microservice interactions. These
interactions are deeply nested, asynchronous, and invoke nu-
merous other downstream APIs. As a result of this complexity,
it is very hard to identify which underlying service(s) contribute
to the overall end-to-end latency [21, 32, 38, 44, 52, 53, 63]
experienced by a top-level request. Answering this question
is critical in many situations. For example:
• Identifying optimization opportunities for a top-level
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microservice (e.g., reducing tail latency)
• Identifying bottleneck APIs that affect numerous endpoints
• Setting appropriate time-to-live values for RPCs
• Diagnosing outages and error conditions
• Planning for computing and other capacity management

The critical path [59] is the longest chain of dependent tasks
in a microservice dependency graph. Reducing the critical
path length is necessary to reduce the end-to-end latency of
a request. Hence, latency optimization efforts benefit from
prioritizing the services that are on the critical path.

We have developed a tool, CRISP 1, to pinpoint and
quantify performance problems in microservice architectures.
CRISP uses the RPC tracing facility provided by Jaeger [6]
and constructs the critical path through a request’s graph of
dependencies. The critical path may vary among requests;
hence, CRISP computes the critical path per request. It then
aggregates and summarizes critical paths from millions of
requests. Finally, it presents them as digestible and actionable
insights via rich heat maps [5] and flame graphs [31]. CRISP
provides knobs to dissect the details with different percentile
values that help in performance diagnoses.

As a full-fledged performance analysis tool, CRISP caters
to various use cases via the following rich set of capabilities
that scale to work on millions of traces:
• Top-down analysis: A top-down analysis of any specific

endpoint of interest. This capability allows service owners
to deep dive into their specific endpoint and pinpoints and
quantifies bottlenecks encountered in the RPC dependency
graph. Improving these bottlenecks should be the first-order
priority to reduce the latency of the endpoint.

• Bottom-up analysis: A bottom-up analysis over all
endpoints, which bubbles up and ranks by the impact of
those interior APIs that cause the most latency across most
endpoints. Optimizing these interior APIs reduces latency
across numerous endpoints.

• Neural network-based anomaly detection: An automated
anomaly detection system, which detects whether a
request is exhibiting abnormal behavior compared with
the past history of the endpoint. The system is trained per
endpoint using an autoencoder-decoder machine learning
technique [39]. This system is set up to expedite problem
detection and alert developers. Basing the abnormality
detection on the divergence in the critical path as opposed
to the full call graph [39] not only makes the training and
inference faster but also reduces false alerts.
Practical deployment of CRISP at Uber over a three-month

period working on 40K endpoints while processing ⇠200GB
of traces with ⇠18 million spans in ⇠256 hours of CPU time
per day has resulted in the following impact:
• Detection and narrowing down the causes of five latency

impacting bugs in two business-critical services
• Identification of a 1.5⇥ tail latency lengthening due to

1named taking letters from critical and span

hardware choice and the resulting guidance for future
hardware selection

• Up to 27.77⇥ speedup in training, up to 66.85⇥ speed up
in inference, and 50% reduction in false alerts in identifying
abnormality of service behaviors over the state of the art [39]
The rest of this paper is organized as follows: Section 2

motivates CRISP with a use case at Uber, Section 3 describes
the Jaeger tracing framework, Section 4-6 describe the
methodology, internals, and features of CRISP, Section 7
evaluates CRISP at Uber, Section 8 discusses the related
work, and Section 9 offers our conclusions.

2 Motivating Example for CRISP

Fulfillment [8] at Uber is a platform to orchestrate and manage
the lifecycle of orders and user sessions with millions of active
participants. The Fulfillment platform is a foundational Uber
capability that enables the rapid scaling of new verticals. The
platform handles more than a million concurrent users and
billions of trips per year that span over ten thousand cities. The
platform handles billions of database transactions a day. Hun-
dreds of Uber microservices rely on the platform as the source
of truth for the accurate state of the trips and driver or delivery
sessions. Events generated by the platform are used to build
hundreds of offline datasets to make critical business decisions.
Over 500 developers extend the platform using APIs, events,
and code to build more than 120 unique fulfillment flows.

The createOrder endpoint allows capturing the re-
quester’s intent in the Uber backend. Intent can be to request a
ride from one of the ridesharing lines of products, food booked
and dispatched by one of the courier partners, or a package be
delivered to a customer. This endpoint has a complex task de-
pendency graph necessary for: a) determining order risk such
as user fraud, sufficient user balance via authentication hold,
b) ensuring the fare presented to the requester in the shopping
phase is still valid, c) determining the benefits the requester is
eligible for, d) enriching data with location information, and e)
creating an order in the backend to start the matching process.

The tasks in this endpoint have grown organically as
requirements evolved. This has led to an increase in p95
latency to 6 seconds, affecting user experience. The service
itself is written in Java, and highly (both macro and micro)
optimized using periodic profiling. However, the profiling
offered no insights into downstream calls, where most time
is spent. Quantitative insight into the causes of the latency was
hard to analyze by looking at individual traces because each
trace contains thousands of nested and overlapping RPCs.

There are numerous sampling- and instrumentation-based
profilers [10, 11, 13, 29] for intra-service profiling. However,
they do not collect metrics at the individual request level. The
Fulfillment microservice (as most other microservices) is
highly threaded; the work of an individual request may be
partitioned among multiple threads within a process as well
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Figure 2: Critical path(s) of createOrder endpoint shown as a flame graph via CRISP after processing 100K Jaeger traces.

as multiple threads may be handling independent requests
simultaneously. In such a setup, traditional profilers fail to
highlight the causes of latencies incurred at an individual
request level. Also, traditional profilers fail to capture IO
waiting, task dependencies, and serialization patterns.

With CRISP, the development team performed a top-down
critical path analysis of this endpoint over 100K traces
(⇠200GB of traces) and visualized the results as a flame graph
as shown in Figure 2. Navigating the “hot” critical paths via
the flame graph not only corroborated an existing hunch while
offering quantitative guidance but also shed light on new
optimization opportunities lurking in the wild. Below, we
enumerate a few defects and optimization opportunities that
became evident by inspecting CRISP-provided insights.

Async flow optimization: decideOrderRisk contributes
to about 68% of the end-to-end P50 latency, revealing
the following optimizations: a) aggressively use cache in
FraudScore to reduce its latency and b) parallelize the
calls beneath this big endpoint (e.g., PaymentAuthHold and
FraudScore). In the long term, the team envisions using an
asynchronous invocation of paymentAuthHold and using
notification to the requester when a provider is assigned.

Unnecessary API serialization: There was an unnecessary
serialization between GetVenues and GetAccessPts. These
two RPCs can be done in parallel.

Avoidable server roundtrip for validation:
FareValidate contributes to about 5% of the end-to-end P50
latency. This is a call that need not be performed every time.
Trusted edge devices (e.g., company mobile app) can validate
at the edge improving performance for trusted users and falling
back to server validation if the fare has expired based on fare
expiry TTL; untrusted apps will use the full server validation.

Caching over DB fetch: GetMarketplaceBenefits con-
tributes to about 5% of the P50 latency. This can be served via
a cache rather than a database read to fetch requester benefits.

3 Background

In this section, we first describe the microservice tracing
infrastructure at Uber and then enumerate its shortcomings.

3.1 Distributed Tracing at Uber
Microservices run over several physical hosts, usually owned
by multiple teams, and written in multiple languages. It is
impossible to use traditional profilers [7,13,29] to gain insight
into the events involved in processing a request. Because
each physical host can have a separate clock, it is intractable
to infer causality using time alone. Distributed tracing [47]
encodes causality information in a distributed context, which
is propagated across process boundaries. It provides a way to
infer states across various services for the lifetime of a request.

At Uber, Jaeger [6] is used as the distributed tracing
system. Jaeger provides clients for generating trace data and
components for storage and retrieval of traces. Microservices
instrumented with Jaeger clients produce OpenTracing [6]
-compliant spans when receiving new requests and attach
distributed context information (trace ID, span ID, custom
key-value pairs). The “span” [46] is the primary building block
of a distributed trace, which represents a serial unit of work
done in a distributed system. Each span contains the following
information:
• API name
• Start and finish timestamps
• Custom key-value pairs
• Span context and references (described below)

Each span may reference other spans with a causal
relationship by span context. A span may reference a parent
with the ChildOf relationship, indicating that the parent span
waits for the child to finish a certain task. Multiple child spans
can be referenced by the same parent and run concurrently.

While the source code is always instrumented, the overhead
is controlled by a dynamic sampling rate, which is adjusted
based on the traffic received by Internet-facing endpoints. No
data is collected for traces that are not sampled. Specifically,
adaptive sampling sets a target QPS for traces on a per root
service-endpoint basis, which ensures that the number of
samples on the external API request remains roughly constant.
Jaeger does not support tail-based sampling [12].

Figure 3 depicts the Jaeger deployment at Uber. Jaeger
is deployed as multiple components, with a jaeger-agent
running on every host. All applications running on this host
send spans to jaeger-agent over UDP [9]. jaeger-agent
then forwards these spans to a jaeger-collector, which
then buffers spans onto the Kafka [37] distributed event
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Figure 3: Jaeger deployment at Uber.

streaming platform. The spans buffered in Kafka have multiple
consumers: jaeger-ingester, which inserts them into
Docstore [3], a distributed SQL database, and allows for
retrieving full traces; jaeger-indexer, which inserts them
into Sawmill [4], a schema-agnostic logging platform that
allows user-friendly search on spans fields. Additionally, spans
are consumed by Apache Flink [15] jobs to produce multi-hop
dependency graphs. Depending on the sampling configuration
in effect, the backend processes around 400K-1M spans per
second, which is approximately 20TB each day. Variance is
common due to diurnal patterns.

3.2 Difficulties with Large-Scale Jaeger Traces

Despite their power, Jaeger traces are highly complicated.
Jaeger provides a UI to filter traces by time ranges and also
provides a UI to view the trace as a callgraph, as well as an
expandable tree over a timeline. In spite of these facilities,
the users of this manual workflow often complained about the
following limitations to analyze endpoint latencies:

• Only first-level insights are possible from drilling down into
microservice latencies and errors.

• Using a few Jaeger traces is insufficient to reach a reliable
conclusion. Users can visualize and navigate only one Jaeger
trace at a time. There is no aggregate summary of traces.

• A single Jaeger trace can be so complex that it is not humanly
possible to browse and understand the details. Endpoints
commonly have thousands of nodes in the RPC graph with
25-deep call chains and up to 40 spans overlapping in time.
It is cumbersome to manually understand the critical path
due to the asynchronous nature of calls.

• There is a lack of regular, performance-driven feedback
tooling to optimize the workflow or downstream systems.

These challenges introduce a barrier to our developers in
effectively using Jaeger to either detect anomalous situations
or identify optimization opportunities.

4 CRISP Methodology

The fundamental difficulty in making sense out of a Jaeger trace
is due to the complexity of the graph. Our premise is that while
the whole graph is interesting in terms of data richness, it brings
a lot of noise. There are many RPCs and call paths that are in-
significant for a high-level analysis and optimization task. With
this understanding, we shrink the graph to its quintessential
element—the critical path—and aggregate many traces into
a single summary that is still rich with call path information.

Critical Path Analysis [25, 59] (CPA) is a well-studied
concept over directed acyclic graphs (DAG) formed out
of computing graphs in parallel computing. The nodes in
the DAG represent tasks (units of serial execution) and the
edges represent dependencies between tasks. A node with an
out-degree greater than one “spawns” children’s tasks and a
node with an in-degree greater than one waits (“syncs”) for the
children to finish. Total work is the sum of weights of all nodes
and the critical path is the longest weighted path in the DAG.

Definition 1 (Critical Path). In a task graph G=(V,E) made
of task vertices V and their dependency edges E, with two
special vertices S (start node) and F (finish node), the critical
path is a maximal-weight path from S to F . G may contain
more than one critical path.

The critical path identifies the sequence of dependent compu-
tations that consume the most time. To speed up the service, it is
strictly necessary to boost the components on the critical path.

RPCs among microservice operations have a parent-child
hierarchical relationship and can be construed as a parallel
computation DAG. The deriving critical path from Jaeger
traces, however, has the following challenges:
• Unlike a traditional parallel computing DAG seen in the

academic literature, the Jaeger traces do not provide clear
“spawn” and “sync” events in the DAG.

• The parent spans in Jaeger traces carry no dependence
information and so the information of the last “sync“ child
span is not directly available.

• In order to obtain the last “sync“ child span, clock informa-
tion is needed. However, the clocks on different machines
where spans are collected are not time-synchronized.

• The critical path across all requests may not be unique.
Services have diurnal patterns and different traces may
exhibit different critical paths, which need to be aggregated,
and yet “hot” critical paths need to be bubbled up.

• Since the service codes keep evolving, the critical path
keeps changing.

We address these challenges in the next section.
We also mention in passing that the CPA is not a perfor-

mance analysis panacea. Once the exposed latency on the
critical path is eliminated, a new critical path may emerge
which necessitates the need for an iterative profiling and
optimization approach.
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5 Critical Path Analysis

In this section, we detail how we compute, aggregate, and repre-
sent critical paths from many Jaeger traces for a given endpoint.

5.1 Deriving Critical Path from a Single Trace
CRISP’s trace analysis exploits a map-reduce paradigm to pro-
cess millions of traces belonging to each endpoint. To this end,
each process loads an input Jaeger trace file (JSON format) and
builds an n-ary tree, where each parent node is the RPC caller
and the children nodes are the immediate downstream callees.

In order to compute the critical path through the trace,
we need a computational DAG. To accomplish this under
Jaeger/Opentrace trace format, we make use of the start
and end times of children’s spans. The start time in every
immediate child creates a “spawn” event in the parent and
splits its span at that point in time. Similarly, the end time in
every immediate child creates a “sync” event in the parent and
splits its span at the point in time. Thus, we transform the tree
into a logical DAG for critical path construction.

Figure 4 shows an example DAG constructed from Jaeger
traces by looking at span start and end times. In Figure 4,
the span A is the root span, which invokes spans B, X , and
D. The span B in turn invokes span C. The start time T1 and
its end-time T6 of B create a spawn and sync points on A,
respectively. Similarly, the spans X and D, create further
segments in A. Similarly, B’s child C, creates the spawn and
sync points on B at T3 and T4, respectively.

Limitations of Jaeger/Opentrace format: One key
limitation of the Jaeger is that the parent spans (a.k.a., caller)
do not contain dependence information. Specifically, they
lack the information of both start and end of callee RPC.
Instead, it is the callee that stores both the ID of its parent
and callee’s start and end time (per callee’s local clock)
in its own span. The implication of the constraint is that
the dependency relationship needs to be inferred via clock
information recorded in the callee span.

In addition, the inference can be inaccurate because of the
clock skew that will be discussed in Section 5.2. Traditionally,
the computation of the critical path depends on the last
returned child of the parent spans [24]. In Jaeger traces, the
last arriving child information is not directly recorded in the
parent span. Instead, the last arriver needs to be inferred using
the span end time for each child, which will be based on each
child’s local clock. Without correctly handling the clock skew,
the critical path analysis can go wrong.

One may extend Jaeger tracing by making the callee return
additional data to the caller. Unfortunately, ensuring that these
changes are adopted universally across thousands of services
is an engineering hurdle. Such changes also require support
from different RPC libraries used by our system. Our solution,
in contrast, does not require such large-scale system-wide

Timeline

A

B

X

C1

X1

A2 A3 A4 A5A1

B1 B2 B3

C

T0 T1 T2 T3 T4 T5 T6 T7

D1
D

A6 A7

T8 T9

Figure 4: Trace with root span A, its children B, X , and D. B further
calls C. CRISP further segments each parent traces based on the start
and end time of its children. The red-colored blocks represent the
critical path through the trace.

def CP ( r o o t ) :
p a t h = [ r o o t ]
i f l e n ( r o o t . c h i l d ) == 0 :

re turn p a t h
c h i l d r e n = sor tDescendingByEndTime ( r o o t . c h i l d r e n )
l f c = c h i l d r e n [ 0 ]
p a t h . e x t e n d ( CP ( l f c ) )
f o r c in c h i l d r e n [ 1 : ] :

i f h a p p e n s B e f o r e ( c , l f c ) :
p a t h . e x t e n d ( CP ( c ) )
l f c = c

re turn p a t h

Listing 1: Pseudocode to compute critical path.

changes but yet produces high quality results as we describe
in the rest of this section.

5.1.1 Critical Path Algorithm

We, first, describe how we compute the critical path in a trace
assuming perfectly synchronized clocks in this subsection. We
expand to handle unsynchronized clocks in Section 5.2.

The process of computing the critical path (CP shown in
Listing 1) on the logical DAG starts at the root node R—the
endpoint under study. We sort all its children by their span end
time and pick the last finishing child (LFC). The entirety of
LFC is on the critical path. Let LFCs be the start time of the
LFC; we ignore all children spans of R that may start or end in
the time intervening between the start and the end of LFC. We
now look for the next child of R whose end time immediately
precedes LFCs and perform the same procedure iteratively
until no child is left to process. Time not attributed to any child
of R is attributed to the root span itself.

The process is also recursive. Once an LFC is identified,
it recursively calls CP on its own children to distribute its time
under its children. The result of the CP algorithm is a sequence
of graph nodes with time associated with each one of them. Ap-
plying this algorithm to the trace shown in Figure 4, the critical
path is represented by the fragments A1B1C1B3A5D1A7.

There are two types of metrics associated with each node
of the critical path — inclusive time and exclusive time. The
“exclusive” time does not include the time spent in a node’s
callees. The “inclusive” time is the total wall clock time from
the start to the end of the RPC on the specific node.
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Figure 5: From trace to DAG to critical path (CCCT) to aggregate
critical calling context tree. In the trace DAGs (left of the diagram)
the x-axis is the flow of time. Horizontal lines are Jaeger spans and
vertical lines are caller-callee relationships. Red-colored horizontal
spans are on the critical path.

Since every node on the critical path encodes the informa-
tion on how it was called, and since all call paths originate
from a common root — the endpoint under investigation —
it enables us to merge all call paths into a calling context tree
(CCT) [14] by looking at their common prefixes. Consider
the critical path A1B1C1B3A5D1A7 for the trace in Figure 4.
This path encodes the following call and return information:
A calls B calls C returns to B returns to A calls D returns to A.
With this, we can infer that there are the following call chains
involved on the critical path: A, A ! B, A ! B !C, A ! B,
A, A ! D, and A. We can merge all these call paths into a
CCT and call it a Critical Calling Context Tree (CCCT). This
process is presented in the center section of Figure 5.

The calling context information makes it not only rich
but also helps in aggregating critical paths from multiple
traces described later in Section 5.3. A level of aggregation
happens immediately within each trace processing: if the
same endpoint appears multiple times on the critical path, we
sum them as long as their call chains are exactly the same.
For example, in the previous A1B1C1B3A5D1A7 critical path
example, we merge the multiple occurrences of call paths A⇤
and A⇤!B⇤. This merger discards the ordering relationship
between events, which we do not need for further analysis.

5.2 Challenges with the Clock Drift
The span start and end times recorded in Jaeger traces are
both callee’s local-machine time stamps converted to the
standard UTC time. Machine clocks on two different physical
machines drift [17, 49, 58] despite their periodic NTP-based
synchronization. As a consequence of using local clocks, our
critical path algorithm (if not corrected) can go wrong and
sometimes lead to significant misattribution.

Span overlap problem: Figure 6 shows an ideal trace where
the three spans A, B, and C are invoked one after another by the
parent P. Most of the time should be attributed to the children.
Figure 7 shows the trace for this example from our production,
where the time recorded for the children spans have a small
overlap; there is an overlap between the end of A and the start of
B and the end of B and the start ofC. In this case, the critical path

P

A

misattribution

B C

P

A
B

C

Figure 6: Ideal traces for a
parent with three serialized
children executions. Red lines
show the critical path.

P

A

misattribution

B C

P

A
B

C

Figure 7: Actual traces due to
clock drift. Red lines show the
corresponding critical path.
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Figure 8: Distribution of time overlap recorded in Jaeger for two
sequentially invoked RPCs. A positive value shows an overlap. The
mean is 204.21µs and the max is 1696.00µs.

is not attributed to span B and instead attributed to the parent.
Due to the clock drift,more than 50% of our traces recorded this
type of span overlaps causing misattribution in critical paths.

We conducted a detailed study on the impact of such clock
drift. Figure 8 plots the time overlap recorded in Jaeger traces
of two sequentially invoked RPCs sampled over 118K traces.
A positive value shows overlap and a negative value shows
non-overlap. More than 50% of samples show an overlap. The
P50 overlap is 204µs and the maximum overlap is 1696µs.

Based on this empirical observation, we tuned the
happensBefore(A, B) part of our CP algorithm with the
following relaxation:
• Aend�threshold<Bstart , and
• No other children of the parent of P of A can start or end in

the overlapped time range
The first condition allows a small threshold amount of

overlap between the end of the previous span with the start of
the next span. The second condition ensures that in the region
of the allowed overlap, there is no other spawn and sync event,
which ensures the parent-child serialization. The threshold
is set to 1ms.

Span overflow and underflow problems: In addition to the
overlap, there can be overflow and underflow of child spans
due to the clock drift. We enumerate these problems along
with our pragmatic solutions below:
• A child span C may start before the start of the parent span

P. In such cases, we truncate the start time of C till the start
time of P. This may involve the recursive truncation of C’s
descendants.

• A child span C may end after the end of the parent span P. In
such cases, we truncate the end time ofC to the end time of P.
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This may involve the recursive truncation of C’s descendant.
• Although rare, a child span C may end before the start time

of parent span P. Similarly, a child span C may start after the
end time of the parent span P. In these cases, we completely
drop the subtree formed by C for CPA.
This tailoring fixed our CP algorithm. The total time

truncation over millions of traces was under 5% giving us the
confidence that a significant part of the data was retained.

5.3 Aggregating Critical Paths
While one trace can be compressed into its essential critical
path and represented as a CCCT, it may not be representative.
Hence, we need to inspect numerous traces to derive a “typical”
shape of the critical path. Distinct traces may exhibit different
critical paths based on many things, such as calling parameters,
scheduling decisions, system load, time of the day, and
network delays, to name a few. Hence, a summary of typical
components on the critical path is desired.

To this end, we merge all critical paths (represented as
CCCTs) into a weighted, aggregate CCCT. We follow the
tree merging process done in HPCToolkit [13]. The aggregate
CCCT succinctly summarizes all call paths leading to critical
path nodes in all traces; it captures the quantitative aspect by
associating higher weights to those call paths that are often
on the critical path. The weights of the nodes in such a tree
would be the summation of the weights of the constituent call
paths. Specifically, we provide different percentiles (e.g., P50,
P95, P99) of the latency values, which are widely used for
QoS purposes. Figure 5 exemplifies this process.

5.4 Workflow for Continuous CPA
Figure 9 depicts the workflow followed by CRISP for
performing critical path analysis of microservice traces for all
endpoints. The components belonging to CRISP are marked
by the outermost rectangular box.

All services are instrumented to produce Jaeger traces
during their RPCs. The instrumentation is enabled across
languages such as Go, Java, Node.JS, and Python. The RPCs
emit Jaeger spans into a common data store, which can be
queried via SQL-style queries.

The CRISP workflow runs as a daily job. The workflow
begins by collecting a list of endpoints. Each endpoint can be
handled in parallel. Hence, we dedicate a handful of machines
that shard the list of endpoints among them.

For each endpoint, CRISP queries the Jaeger data store
(via sawmill-query) service to fetch a list of traceIDs. This
query is set up to obtain the last two weeks’ worth of traces.
We then use these traceIDs to fetch the actual JSON traces
(jaeger-query) service. We exploit IO parallelism here to
fetch many traces concurrently.

We compute the critical path over each trace in parallel using
the map-reduce paradigm. The set of critical paths obtained is

fed into an aggregating process that summarizes and produces
the daily critical path report for each endpoint (top-down
analysis) and also produces overall metrics aggregated over
all endpoints (bottom-up analysis). The results are injected
into blob storage that can be easily navigated by a varied set
of users, including service owners, performance engineers,
and capacity managers. An offline anomaly detection model
is also trained per endpoint result.

6 CRISP Features

We have developed tools to inspect critical paths for top-down
performance analysis of specific endpoints, bottom-up
analysis over all endpoints, and automatic anomaly detection
over traces. We describe these features in this section.

6.1 Top-Down Analysis
We store the results of our CPA for each endpoint into profiles
for investigation by service owners. CRISP provides the
following means of visualization of CPA over each endpoint.

Flame graph: Flame graph [31] is a powerful way to
visualize hierarchical call paths arising from profiling. The
interactive visualization is easier to digest and investigate.
Since we maintain the summarized critical paths as aggregate
CCCTs, which are formed of many weighted call paths, it
naturally avails itself to be represented as a flame graph.

If we chose all traces to represent a single flame graph, the
critical path found in P99 latencies may dominate the flame
graph and mask the other common cases. For that reason, we
show three different flame graphs for different percentiles
of latency values (e.g., P50, P95, and P99). We also produce
differential flame graphs [30] that show how the critical paths
change between two percentile values.

Heat map: Flame graphs are useful for navigating call chains
but developers sometimes need access to an actual Jaeger trace
that represents a given data so that they can inspect it in further
detail. For this reason, CRISP provides the heat map view (see
Figure 10), where the rows are the endpoints and the columns
represent individual traces. Each cell in the heat map represents
the exclusive time on the critical path and each cell is gradient
colored based on its contribution (exclusive time) to the total
latency. In this view, we collapse the call paths and accumulate
the metrics from all call paths, reaching the same endpoint in
a single row. However, for exploration, the developers have
access to the top 5 call chains (not shown) for each endpoint,
which is available by hovering over any row. In this view,
the user can also choose percentile values and inclusive or
exclusive metrics to sort the rows. Each column is also sorted by
a high to low contribution for a given chosen metric. Selecting
any trace takes the user to the Jaeger-UI to inspect the trace.
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Figure 9: Schematic diagram of CPA over Jaeger traces.
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Figure 10: Example heat map from 1000 traces. The result is sorted
by the P50 percentile value of the exclusive time of each operation.
Each cell is the accumulated time in µs.

6.2 Bottom-Up Analysis
The objective of the bottom-up analysis is to derive insights
from all endpoints and to bubble up those interior APIs
improving which will improve many endpoints. The bottom-
up analysis is a data-intensive process and needs access to
critical paths from all endpoints. For this reason, we retain
the aggregate CCCT computed for each endpoint from the
top-down process, along with some additional statistics related
to the overall graph structure. Once all endpoints are processed,
the bottom-up analysis runs; it aggregates the statistics from
each endpoint and quantifies the impact of each API over all
other endpoints. The output of the bottom-up analysis is a
descending priority list of top APIs that are often in many
endpoints. Additionally, the bottom-up analysis produces
various histograms over all traces taken together, which
include the total number of times any API appears in any graph,
the total number of times an API appears on the critical path,
the number of unique APIs on the critical path, the critical path
length, and the maximum degree of concurrency in a trace,
among others. These graphs are intended to inform infrastruc-
ture and hardware engineers to better understand the current
needs of our systems and aid capacity planning for the future.

6.3 Anomaly Detection
We also employ CRISP to pinpoint whether a new incoming
trace (for a given endpoint) deviates from the normal execution
behavior. For this purpose, we have trained a machine learning
model and used it for inference.

During the offline training, we encode the critical path
(CCCT) for each trace of an endpoint into feature vectors,

A, 5
C, 4B, 3

D, 2 C, 1

A 5
A!B 3
A!B!C 4
A!D 2
A!D!C 1

Figure 11: An example CCCT (left), the letters indicate name and the
numbers indicate the exclusive time on the span. The corresponding
SCPV (right).

which we call service critical path vectors (SCPV). We
feed several SCPVs into an autoencoder to learn the normal
execution pattern of the given service. During the online
inference, the learned model will infer whether the given new
trace is abnormal or not based on an anomaly score.

The architecture design, training, and inference of the
autoencoder are derived from TraceAnomaly [39], which
is the state-of-the-art framework for anomaly detection in
microservices trace. The neural architectural details are
described in Appendix B. The key difference between CRISP
and TraceAnomaly is in the data encoding. TraceAnomaly
uses a service trace vector (STV) which encodes every path
in the trace and, in contrast, CRISP encodes only on the call
paths for those spans that are on the critical path spans.

SCPV encoding: Figure 11 exemplifies encoding the crit-
ical path present as a CCCT into an SCPV. For each node in
CCCT, it assigns weights based on its exclusive execution time.
Notice that endpointC occurs twice on the critical path, thus it is
also encoded twice in the SCPV, given the call chain is different.
The training set is a 2D matrix where each column is a feature
(call path) and each row is the feature values of a given trace.

Using the call paths of spans only on the critical path,
compared with the prior work that used all call paths in the
entire graph, offers significant benefits. It reduces the feature
dimensions; it reduces the training and inference time; and,
most importantly, it improves the model accuracy. The impact
of the CCCT-based encoding is substantial and evaluated in
Section 7.3.

7 Experience and Evaluation

In Section 7.1, we describe one of our findings by applying
the top-down analysis of CRISP at Uber, in Section 7.2 we
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Figure 12: Differential flame graph for the getDriverTask endpoint. Red colors indicate the growth from P50 critical paths to P95 critical paths.

show valuable characteristics of microservices at Uber by
applying the bottom-up analysis of CRISP. In Section 7.3,
we empirically evaluate the anomaly detection capability of
CRISP and in Section 7.4 we describe how we employed
CRISP in guiding future hardware selection to reduce tail
latency in our services.

7.1 Tail Latency Investigation via Top-Down
Analysis

getDriverTasks is a business-critical endpoint in the
driver-presentation service responsible for returning the
task plan that a driver needs to perform. A sample task plan
could be: passenger mask check, pickup passenger, pickup
food, drop off passenger, and drop off food. This endpoint
assembles the task plan and enriches it by calling numerous
other microservices such as courier-task-platform.

Figure 12 shows the differential flame graph for the
getDriverTask endpoint. The graph plots a difference be-
tween the critical paths seen in the traces with the P50 latency
vs. P95 latency for the getDriverTask endpoint. The red-
colored boxes show the growth in percentage time spent in P95
with regards to P50. The getTaskCompletionStatus API
was absent in the P50 traces, whereas it occupies 47% of the
total execution in P95 traces, contributing to the same amount
of addition to the tail latency. This endpoint dependency makes
a call to Cassandra—an expensive database read. Based on this
insight from CRISP’s differential flame graph views,we identi-
fied the root cause of performance variance and high tail latency.
We recommend caching with timestamp filtering optimization
as opposed to a database read to reduce the tail latency.

Trace processing overheads: Table 1 shows the overhead
of analyzing the getDriverTasks endpoint discussed in this
section running on 16 cores of an Intel Xeon Skylake machine
clocked at 2.4 GHz.

Table 1: Overhead of top-down analysis of getDriverTasks.

Num Traces Trace size Processing time Memory usage
10k 6.8 GB 48 sec 2.1 GB
20k 14 GB 109 sec 4.2 GB
40K 28 GB 232 sec 8.5 GB
80K 56 GB 553 sec 17.6 GB

Sparse sampling vs. quality of CPA: We observed that
the sampling rate does not qualitatively affect the aggregate
critical path results. We conducted an experiment where we
first produced an aggregate critical path from 1 million traces.

We also produced critical paths from randomly sampled 100K
and 10K traces from the same data set. We noticed that the
attribution of the top 20 services on the critical path, whether
for 10K or 100K samples, was essentially the same as the one
produced from 1M traces.

7.2 Systemic Insights via Bottom-Up Analysis
In this section, we show the result of running CRISP with
bottom-up analysis on the collected trace dataset and some
insight associated with the data. The dataset includes more
than 1 million traces, ⇠4k services, and ⇠40k endpoints. It
takes around 4 hours on 32-cores of a Intel Xeon Skylake
machine clocked at 2.4 GHz.

Total RPCs per request: Figure 13 is a histogram of the to-
tal number of RPCs made per request, which is same as the total
number of spans in a trace. On average there are 112 spans in a
trace. However, there exist several large ones with a maximum
of 275K spans. Such scale brings significant challenges for the
developer to debug without proper reduction of the graph size.

Total endpoints in a trace: Figure 14 is a histogram of the
total number of unique endpoints found in each trace. At most
each trace has 1400 unique endpoints.

Latency distribution: Figure 15 plots the histogram of
latencies observed in each of ⇠1M traces. The tail is several
orders of magnitudes longer than the mean or median.

RPC depth: Figure 16 is a histogram of the longest call
chain found in each trace. The depth of the call chain is another
measure of the complexity of traces. The average RPC depth
is 8.5. The maximum observed depth is 36.

Unique caller: Figure 17 is a histogram of the number of
the unique callers for each endpoint across one million traces.
The number differs wildly as the mean value is just above 2
but the maximum value is 620.

Degree of concurrency: Figure 18 is a histogram of the
maximum number of spans that overlap in time in each trace.
This number gives the degree of concurrency (and hence a
measure of the complexity) in our traces. Overall, the microser-
vices show a high degree of concurrency. On average, the
degree of concurrency is 21. The degree of concurrency often
grows to 100s for more complicated services. The maximum
degree of concurrency we observed in ⇠1M traces was 3076.

Total RPCs on the critical path: Figure 19 is a histogram of
the number of spans on the critical paths, which counts the num-
ber of RPCs made on the critical path. Besides a few outliers,
the length of the critical path is short. On average, there are 33
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Figure 13: Histogram of the
number of spans per trace.

��� ��� ���
	�����������������
�����
�

���

���

���

���

��
��

�
Figure 14: Histogram of number
of unique endpoints per trace.
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Figure 15: Distribution of
latency among all traces.
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Figure 16: Histogram of longest
call chain per trace.
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Figure 17: Histogram of the
number of unique caller for each
endpoint.
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Figure 18: Histogram of the de-
gree of the concurrency (max no.
of overlapping spans) per trace.
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Figure 19: Histogram of the
number of spans on the critical
path per trace.
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Figure 20: Histogram of the
number unique endpoints on the
critical path per trace.

RPCs on the critical path (in contrast, the entire graph in Fig-
ure 13 shows 112-275K RPCs in traces). The short critical path
length allows the developer to investigate and debug easily.

Endpoints on the critical path: Figure 20 is a histogram
of the unique endpoints on each critical path. Compared with
the number of endpoints in the entire trace (Figure 14), the
number of the endpoints on the critical path is an order of
magnitude smaller (the maximums are 1400 vs. 140). The 10x
size-reduction matches our observation of the 6 services we
test for anomaly detection.

7.3 Empirical Analysis of Anomaly Detection
Here, we will evaluate CRISP’s anomaly detection on six
critical endpoints.

Methodology: We collect traces for six microservices in
real production over a 14-day period. The training data for each
case includes 20,000 traces and the testing data has 500 unseen
traces for normal and abnormal data. To generate abnormal
inference data, we drop 20% of the nodes in the graph and
randomly shuffle the duration of the nodes as described in
[26,39,48]. We did not use real anomalous traces for evaluation
since we do not have a large number of labelled anomalous
traces (i.e., we have a lot of false negatives). Also, the labeled
data contains false positives and coordinating with hundreds
of developers to verify the veracity of labeling is non-trivial.

We use TraceAnomaly [39] as the baseline against which
we compare our results. We adopt the same architecture of the
autoencoder and reuse their code. The main difference is that
we use CRISP to preprocess the trace before feeding it into the
autoencoder so that only paths appearing on the critical path in-
formation are included. A fundamental assumption is that any

noticeable difference in the trace must impact the critical path.
Hardware: We use two machines in our evaluation: a CPU-

only machine with 256 GB memory and a CPU+GPU machine
with 128 GB memory. Most of the experiment is done on a ma-
chine with GPUs. It has 2 Quadro RTX 5000 GPUs and 2 socket
Intel Xeon Gold 5218 CPU at 2.30GHz. The CPU machine has
2 sockets with Intel Xeon Silver 4214 CPU at 2.20GHz. Both
machines run on Linux 4.14. The reason to use two machines is
that for some experiments, the training data for TraceAnomaly
cannot fit the GPU memory, whereas CRISP’s training data al-
ways fits on GPU memory. In such cases, for a fair comparison,
we also run the experiment on the 256 GB CPU-only.

Table 2 shows the empirical evaluation results of anomaly
detection on 6 large online services at Uber. It captures
the essential features such as the number of RPCs, unique
endpoints, and call path diversity in these services. It also
shows the training and inference time with both STV (prior
art from TraceAnomaly) and SCPV (our work) data. Finally,
the last 4 columns present the model accuracy in terms of
precision and recall. In summary, using critical path via
CRISP reduces the training time and inference time and
improves the recall performance on top of the state of the art.

Training speedup: From the table, we can observe that
CRISP offers up to 22⇥ speedup for training compared with
TraceAnomaly. Even the smallest speedup is more than 50%.

The reason for the speedup is that the training data from
CRISP (SCPV) is one magnitude smaller than TraceAnomaly
(STV) up to 25⇥ for Service 6. The number of unique call
paths on the critical path is significantly smaller than the total
number of call paths in the entire graph (also see Figures 13-20).
Furthermore, when the number of the trace and the dimension
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Table 2: Evaluation results for large online services. Inference time is measured with 1000 traces. (TA⇤=TraceAnomaly.)

No. of
Unique

endpoints

Max
no. of
spans

No. of callpaths/
features

Training Time CRISP
training
speedup

Inference Time CRISP
inference
speedup

Precision Recall

TA⇤ CRISP TA⇤ CRISP TA⇤ CRISP TA⇤ CRISPSTV SCPV
Service 1 214 1429 5117 1186 70m (GPU) 46m (GPU) 1.52X 2.24s (GPU) 1.21s (GPU) 1.85X 1.0 0.998 0.986 0.992
Service 2 969 1724 9725 1860 100m (GPU) 50m (GPU) 2.00X 3.54s (GPU) 1.40s (GPU) 2.54X 1.0 1.0 0.958 0.984
Service 3 734 5320 20321 2154 150m (GPU) 50m (GPU) 3.00X 5.64s (GPU) 1.36s (GPU) 4.15X 1.0 1.0 0.5 0.982

Service 4 912 20001 25347 2715 1184m (CPU) 56m (GPU)
219m (CPU)

21.14X (GPU)
5.41X (CPU) 56.67s (CPU) 1.56s (GPU)

9.26s (CPU)
36.33X (GPU)
6.12X (CPU) 1.0 1.0 0.928 0.978

Service 5 768 6562 26404 2336 811m (CPU) 51m (GPU)
177m (CPU)

15.90X (GPU)
4.58X (CPU) 42.90s (CPU) 1.36s (GPU)

5.81s (CPU)
31.54X (GPU)
7.38X (CPU) 1.0 0.998 0.5 0.982

Service 6 1477 10992 28968 1151 1305m (CPU) 46m (GPU)
148m (CPU)

27.77X (GPU)
8.82X (CPU) 78.88s (CPU) 1.18s (GPU)

4.48s (CPU)
66.85X (GPU)
17.61X (CPU) 1.0 1.0 0.912 0.977

of the feature vector is large, the size of the training data of
TraceAnomaly can easily exceed the memory of the GPU,
which makes it unable to train. For such cases (Service 4, 5, and
6), we can still see more than 4⇥ speedup even if we train both
TraceAnomaly and CRISP on CPU machines. When CRISP
is trained on the GPU machine, the speedup can easily exceed
15⇥. The faster training allows for more practical deployment.

Inference speedup: Similar to training speedup, the
reduction in inference data size leads to a faster inference of
CRISP. The smallest speedup is more than 1.85⇥ whereas
the largest speedup is over 66⇥. This lower latency allows us
to batch many inferences together to exploit GPU throughput.

Precision: From Table 2, we can see that both
TraceAnomaly and CRISP are capable of detecting
the abnormal trace accurately. Autoencoders are capable of
capturing the complex pattern of the graph. TraceAnomaly
works slightly better than CRISP on 2 services, but overall
accuracy is very high for both methods.

Recall: The recall is the part that differentiates the quality of
results between TraceAnomaly and CRISP. Recall measures
how many of the actual positives the model captures through
labeling it as positive, (i.e., True_Positive

True_Postive+False_Positive ). When
the recall is closer to 1, it indicates that the model makes fewer
false-positive predictions (an anomaly in this case). From
Table 2, it is clear that CRISP outperforms TraceAnomaly by a
noticeable margin. Particularly for Service 3 and 5, half of the
positive prediction of the anomaly is false, meaning all normal
traces for inference are labeled abnormal by TraceAnomaly.
To make sure the prediction is actually incorrect, we asked
the service owners and verified that the normal inference
testing traces are not showing any abnormal behaviors. On the
contrary, CRISP’s recall is close to 1. For Service 1 and 2, the
performance of CRISP is slightly better than TraceAnomaly,
as both models make relatively accurate predictions. CRISP
shows more than 5% improvement for Service 4 and 6.

CRISP produces superior results on services with a large
number of call paths. For instance, there are 912 endpoints
in Service 4 but the total call paths is 25,347. Since there
is more diversity among the shapes of the call chains on
the entire graph, the SCPV encoding fails to capture its full
variety; consequently, unseen call paths easily trigger a false
positive in TraceAnomlay. In contrast, the critical path remains

fairly stable when trained over a large corpus of traces, and
consequently CRISP has fewer false positives.

7.4 CPA in Hardware Selection
In addition to the parent-child transitive relationships and
times, Jaeger traces also contain additional information, such
as the hostname on which the span was executed. Uber’s data
center consists of diverse hardware CPU SKUs. Services can
be installed on different hardware versions. Hence, an API
may run on different hardware on different requests.

We collected the critical path for one of our important ser-
vices using CRISP and identified that a downstream operation
was on the critical path. We further clustered the samples from
the profiles by the CPU versions on which they were running.
The violin plot in Figure 21 in Appendix A shows how the
latencies vary on 2 prominent CPU SKUs: Intel Xeon Silver
4212 running at 2.2 GHz (SKU-A) and Intel Xeon Silver
4212R running at 2.4 GHz (SKU-B). The two SKUs are identi-
cal (same vendor, microarchitecture, cache size, etc.) with the
only exception being that their CPU clock speeds are different.
This mild (9%) difference in the clock speed has a profound
impact on the behavior of the plotted service. The P50 value
for SKU-A is 15% higher than that on SKU-B. Moreover, the
tail latency on SKU-A is 1.5x higher than the one on SKU-A.

To summarize, a slightly faster CPU clock proves to have
a significant impact on reducing the tail latency and overall
latency. This difference has a significant impact on the
overall capacity allocation since tail latency (e.g., P95) is
often used in capacity allocation. This observation demands
further, systematic investigation into classifying critical path
components as CPU SKU sensitive vs. insensitive; also, such
categorization helps data center-wide microservice schedulers
to favor SKU-sensitive services on the critical path onto the
SKUs where they exhibit superior performance.

8 Related Work

Critical Path Analysis (CPA) has been extensively ex-
plored in the shared-memory parallel programming
paradigm [13, 20, 25, 40, 50, 54, 55, 59, 62] but less explored in
distributed parallel systems. Unlike shared-memory and struc-
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tured parallel programs, microservices use distributed parallel
computing environments and are unstructured in nature.

Barford and Crovella [16] utilize critical path analysis for
profiling and understanding TCP transactions and improve
data transfer latency in web applications; however their scale
is significantly smaller than the 4K services deployed over mil-
lions of CPU cores that we handle. Bohem et al. [18] employ
tracing and CPA for MPI programs in HPC environments;
this approach has not been employed in microservice environ-
ments. Kaldor et al. [33] develop an end-to-end tracing system
(Canopy) for tracking requests from web-browsers/mobile to
backend services; it handles billions of traces. A distinguishing
feature of CRISP compared with Canopy is the use of CPA,
which significantly reduces the data needed for analysis.

Qiu et al. [48] propose a fine-grained resource management
framework based on microservice traces using CPA. They
employ the insights for scheduling and other resource
management to reduce CPU utilization. However, their work
does not cover industry-scale deployment; they also do not
facilitate performance bug or anomaly detection and cannot
provide bottom-up system-wide performance insights.

Fields et al. [24] explore a hardware predictor to analyze
the criticality of instructions by using CPA and use it to
guide dynamic instruction scheduling. Venkataramani et
al. [55] propose Global Critical Path (GCP) to predict
system-level performance and optimize the performance
of highly concurrent self-timed circuits. These approaches
rely on the precise last arriver information, which is readily
available in these cases. Our critical path computation in
microservices also depends on knowing the last arriver. Unlike
the aforementioned approaches, we do not have direct access
to the last arriver in our distributed system. As a result, we
need to use clock information from different hosts and adjust
for clock skew to heuristically infer the last arriver.

Multiple tools have been developed to profile and debug
large distributed and parallel systems. lprof [64] constructs
request flow from logs and it is as good as the quality of logs;
it has not been evaluated on microservices; it also does not
provide CPA and hence suffers from a voluminous noisy data.
Mace et al. [41] developed Pivot as a dynamic, extensible
tracing system for inter-operating applications. Pivot employs
a happen-before relationship between events to establish
causality. Pivot does not build a critical path and hence pays
equal attention to any causal relationship unlike CRISP. Chow
et al. [19] build a system that utilizes a large number of request
traces to validate hypotheses about causal relationships.
Edgar [2] provides a summarized view of request traces,
logs, and metadata in distributed systems. It does not employ
sophisticated analyses or automated anomaly detection.

Several works have focused on microarchitectural aspects
of microservices [34, 42, 52, 60, 61]. Most of these works
are focused on how microservices utilize microarchitectural
features, but ignore the end-to-end user request; in contrast,
CRISP takes a higher-level approach and looks at the entire

flow of requests through a chain of services.
Multiple works have studied anomaly detection in dis-

tributed systems. Liu et al. [39] use Deep Bayesian Network
to detect the performance anomaly in an unsupervised manner.
They utilize machine learning to learn the normal behavior
pattern of the given dependency graph and try to detect the
anomaly online. Gan et al. [26] propose a root cause analysis
system for large-scale microservices using machine learning.
The system uses Conditional Variational Autoencoders
(CVAE) [51] to automatically generate the counterfactual
training data. These approaches have used the entire call graph,
leading to significant training and inference time. In contrast,
CRISP uses only the critical path(s), leading to dramatic
speedups while producing higher quality results.

9 Conclusions and Future Work

Microservices are the preferred architecture choice in modern
service-oriented software systems. Large-scale microservices
have tens of thousands of endpoints with complex, nested,
and asynchronous. Prior work in profiling microservices has
either focused on tracing techniques, which produce a lot of
data, but lack in delivering insights, or on micro-architectural
optimization within a service, ignoring the full picture of the
life of a request through myriad services. This paper develops
a tool, CRISP, which uses critical path analysis (CPA) over
RPC traces to bubble-up interesting activities and discard
noisy events. CRISP provides rich developer insights both for
service owners and infrastructure engineers. In a short three-
month deployment period, CRISP’s analyses have sifted over
4,000+ services, 40,000+ endpoints, hundred of millions of
traces, and tens of terabytes of data at Uber; as a result, CRISP
has bubbled-up profiling results that helped developers under-
stand and optimize important services. Employing the critical
path, as opposed to the whole RPC trace, speeds up the training
of models and on-the-fly inference for anomaly detection
while also producing noticeably higher quality results.

Our future work involves enhancing CRISP to address other
use cases such as setting the TTL values for downstream calls
and bubbling up those downstream services that often return
errors. We plan to expand our anomaly detection to include
developers in the loop and improve traces with labelled data.

Availability

Parts of the code of this work are open-sourced [1].
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A Violin Plot for Hardware Selection
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Figure 21: Violin plots of the exclusive execution time of a critical
path operation with two different CPUs. The latency is in µs.

B Autoencoder Model Architecture

We choose the Deep Bayesian Network for anomaly detection
given it is capable of learning complex patterns from the
trace. We adopt the model from TraceAnomaly [39], which
is the state-of-the-art framework for microservice trace
based anomaly detection. Specifically, we adopt Variational
Auto-Encoder (VAE) [35] to model the distribution pattern
from the normal execution. VAE is an unsupervised learning
that does not require a label, which can be expensive to obtain
in our setting due to the volume of traces. Figure 22 depicts
the architecture of VAE. It has three components: encoder,
posterior flow, and decoder.

The encoder contains 1 hidden layer (hf(x)) to learn the hid-
den features of SCPV. The goal is to learn the mean µz(0) and the
standard deviation sz(0) of the SCPV. z(0) is sampled from diag-
onal Gaussian N (µz(0) ,sz(0)I) and served as the latent variable
to fit the distribution. e is a small constant vector that has been
introduced to avoid numerical issues during the training [39].
SoftPlus is defined as SoftPlus(x)= log(1+exp(x)).

For the next step, posterior flow allows the network to learn
more complex patterns of the trace. The input is z(0) and after
passing length of K flow it will become as z(K).

Then, z(K) will be passed into the decoder network to
extract hidden features. Similarly, the purpose of those hidden
features is to derive the mean µx and standard deviation sx of
the input trace vector. After that, the reconstructed x will be
sampled from N (µx,s2

xI)

C Inference

When a new trace is given, the log-likelihood value will be
computed against the model to detect whether the trace is
abnormal or not. If the trace x is significantly different than
the normal trace, the value of a trace log pq(x) is noticeably
smaller than the value of the normal traces. Instead of manually
setting the threshold of anomaly, we follow the work from
Liu et al. [39] and use Kernel Density Estimation (KDE) [22]
to learn the distribution of the normal traces log-likelihood.
Specifically, we adopt the p-value [57] approach and set the
value as 0.001 to check if the probability of the log-likelihood
value not following the learned distribution.

If the trace contains any unseen call chain, it will be
regarded as abnormal. Training is a continuous process since
the code evolves and the call paths keep changing over time.
We use a sliding window of last 14 days of trace to keep our
model up-to-date.

Trace 1 Trace 2 Trace n…
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Figure 22: Architecture of neural network for anomaly detection.
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Artifact Appendix

Abstract

This artifact includes the script to utilize CRISP as we presented in the paper.

Scope

The artifact allows: top-down analysis, bottom-up analysis, and preprocessing

for anomaly detection. It does not come with any traces to analyze and those

traces need to be provided by the user.

Contents

It contains the implementation of CRISP with corresponding script to run the

analysis.

Hosting

The artifact is available at https://github.com/uber-research/CRISP under atc-
2022 branch.

Requirements

• Python3.6 is recommended to run the anomaly detection. Otherwise, any

python3 version should be fine.

• Git is also needed.

• ”git clone https://github.com/NetManAIOps/TraceAnomaly.git” is required

under the root directory in order to run anomaly detection.

Setup

• ”python3.6 -m pip install -r requirements.txt” to install the de-

pendency for CRISP.

• ”python3.6 -m pip install -r TraceAnomaly/requirements.txt” to
install the dependencies for TraceAnomaly.

• You may need to install protobuf if the requirements.txt doesn’t work in

TraceAnomaly by ”python3.6 -m pip install protobuf==3.12.4”.

• specify ”TRACE DIR” in ”bottom-up.sh”, ”top-down.sh”, and ”preprocess.sh”.
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Top-down Analysis

Before running, you need to specify the input, output, serviceName, opera-

tionName, and processor number in top-down.sh. Make sure the output direc-

tory already existed. To run the analysis, simpling typing

mkdir top−down−r e s u l t

bash top−down . sh

By default, the script will use all processors to run. You can change the

processor number with ”--parallelism” knob in top-down.sh script.

The result will be in top-down-result folder. It will represent Figure 2,

Figure 11, and Figure 13 in the original paper. The number and shape won’t

be exactly the same given the trace and endpoints are di↵erent from the paper.

Specifically, flamegraph like Figure 2 is generated as flame-graph-P50.cct.svg,
flame-graph-P95.cct.svg, and flame-graph-P99.cct.svg. criticalPaths.html
is like the heatmap in Figure 11 and please open it in browser. The di↵erential

flamegraph like Figure 13 can be viewed in flame-graph-P50vsP95.cct.svg

Bottom-up Analysis

To use the artifact, run

bash bottom−up . sh

The figure will be generated under ”result-bottom-up/” folder, which looks

like Figure 13 ˜ Figure 20 from the paper.

Anomaly Detection

Data Preprocessing run ”bash preprocess.sh” to run generate the data

for anomaly detection. Note each training, normal, and abnormal data needs

to be parsed twice as it is shown in ”preprocess.sh”. The reasons is that we

need to know the total number of call path to generate the data.

Training Please refer to https://github.com/NetManAIOps/TraceAnomaly.

Result Parsing Please go back to root directory when parsing the results.

The trained model and the predicted results will be in ”TraceAnomaly/webankdata/”.
To parse the results, run ”python3.6 parse-rnvp.py -i path to rnvp file”.
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