Bitwidth Sensitive Code Generation in a Custom Embedded Accelerator Design System

Scott Mahlke Rajiv Ravindran

Michael Schlansker

Robert Schreiber Timothy Sherwood

Hewlett-Packard Laboratories, Palo Alto, CA

1 Introduction

An ever larger variety of embedded ASICs is being designed
and deployed to satisfy an explosively growing demand for new
electronic devices. Many of these devices are called upon for
computationally demanding processing of multimedia data. In
many such ASICs, specialized nonprogrammable hardware ac-
celerators (NPAs) are used for parts of the application that would
run too slowly if implemented in software on an embedded pro-
grammable processor. Rapid, low-cost design, low production
cost, and high performance are all important in these designs.

In order to reduce design time and design cost, the HP Labs
Program-In-Chip-Out (PICO) project is focused on automating
the design of NPAs from high-level specifications. Source code
(in a subset of C) for a performance-critical loop nest is used as a
behavioral specification of an NPA. The PICO system compiles
the source code into a custom hardware design in the form of a
parallel, special-purpose processor array. The user, or a design
exploration tool, specifies the number of processing elements
and their performance. The system produces a VHDL design
for the array, its control logic, its interface to memory, and its
interface to a host processor.

In the multimedia application domain, integer data of various
bitwidths is common (e.g., 8-bit and 16-bit data). The bitwidth
is defined as the number of bits required to represent the range of
possible values in two's complement. The complexity of auto-
matically generated designs is an important issue, and it appears
essential to produce cost-effective designs by taking advantage
of operations with varying bitwidths. The width of hardware
components, including registers, busses, and function units, can
be minimized with knowledge of the maximum width of data
processed by the component. Earlier research into the use of
programmer annotation of and compiler inference of required
bitwidths has shown this approach to be worthwhile [1, 2, 3].

In this paper, we investigate the exploitation of integer
bitwidth in the code generation system of an NPA compiler. The
code generation consists of two major parts. First, a bitwidth
analysis phase is used to infer the bitwidth requirements for all
program data. We allow users to define the bitwidth of selected
variables through declarations in the source code. With this in-
formation as the starting point, the bitwidth analysis examines
the data dependence structure of the application together with
opcode semantics to derive the minimum width required for all
program variables. While developed independently, our infer-

ence methods are hard to distinguish from those of the earlier
efforts cited above.

The second part of the NPA code generation system handles
the mapping of operations to resources, a problem that has not
yet been addressed adequately in the literature. More specif-
ically, this part includes the allocation of hardware resources
and scheduling where operations are assigned to those resources.
With operations of varying bitwidths, the mapping must be done
in a width-cognizant manner to achieve a cost-effective design.
Intuitively, operations of similar width should be assigned to
common hardware resources, so narrow resources are used for
operations with narrow data and wide resources are used for op-
erations with wide data. The goal is to minimize the overall cost
of the hardware resources. We employ a technique referred to
as width clustering, in which operations with similar bitwidths
are grouped into clusters before scheduling. Hardware resources
are then allocated separately for each cluster. During scheduling,
operations are restricted in their binding to resources from their
own cluster. In this manner, the operation binding choices are
limited in order to encourage intelligent grouping of operations
to resources based on bitwidth information.

Operation clustering has traditionally addressed the problem
of compiling programs for predefined hardware clusters of func-
tion units and register files [4]. In contrast, we use width clusters
to intelligently create clustered hardware.

The remainder of this paper provides an overview of the PICO
NPA design system. Then, a description of the two major com-
ponents of the code generation system that handle bitwidth spe-
cific issues are described. We then give some experimental re-
sults to illustrate the extent to which bitwidth annotation of vari-
ables and bitwidth inference allows PICO to reduce the cost of
the hardware it generates.

2 Overview of the PICO Design System

The overall structure of PICO is shown in Figure 1. The user
provides a C loop nest as well as a range of architectures to be
explored. The spacewalker is responsible for finding the best
designs, i.e., the points such that no explored design has both
lower cost and better performance. The spacewalker specifies
a processor count, a performance per processor, and a global
memory bandwidth to the NPA compiler. The NPA compiler is
responsible for creating (and expressing in VHDL) an efficient,

Explore Range

Loop nest (C) Spacewalker

abstract spec
{ NPA Compiler 1
‘ Iteration Space => Space-Time
Dependence Tilin Iteration
Analysis 9 Scheduling cygles &
A
v Pareto-optimal
Parallel Loop Nest => Hardware : designs
Host | {Cost
interface! Bitwidth Width FU Modulo Datapath .
code ‘ Analysis Clustering| |Allocation| |Scheduling| |Synthesis| |1 © NPA DeSIQn
I i i (VHDL)
—»‘ Cluster Manager ‘ :

Figure 1: PICO hardware accelerator design system.

detailed NPA design for the given loop nest, consistent with the
abstract architecture specification provided by the spacewalker.
It also generates an accurate performance measurement and an
estimated gate count for the NPA. See [5] for a full description
of PICO NPA synthesis capabilities.

The NPA compiler transforms the loop nest into a customized
RTL architecture through a sequence of steps:

1. Exact dependence analysis.

2. Determination of the tile shape and the mapping of iterations

to processors and to clock cycles.

3. Code rewriting: Tiling and loop transformation. The loop
nest is first tiled, the outer loops over tiles are sequential. The
inner nest for the tile is transformed into an outer sequen-
tial loop and an inner parallel nest over the set of physical
processors. The loop body mirrors the intended hardware,
through explicit register promotion, load-store minimization,
explicit interprocessor communication, explicit data location
in global or local memory, and an efficient scheme for com-
puting iteration space coordinates, memory addresses, and
control signals.

. Processor synthesis. The processor's function units are allo-
cated, the operations and the data of the loop body are bound
to these units and scheduled relative to the start time of the
loop (modulo scheduling), and the processor storage assets
and intra- and inter-processor interconnects are created.

5. System synthesis. Multiple copies of the processor are al-

located and interconnected, and the controller and the data
interfaces are designed.

We extended the NPA compiler backend with the shaded mod-
ules in Figure 1 to support width-cognizant code generation and
datapath synthesis. The cluster manager serves as the conduit
for all bitwidth information across the system. The starting point
consists of an assembly-level dependence graph representing the
parallel loop nest. Bitwidth analysis calculates the minimum
width for each operand in the dependence graph.

The next step groups operations of similar width into clus-

ters. This cluster information is then used to drive the down-
stream components of the compiler: FU allocation and modulo
scheduling. FU allocation selects function units for each cluster.
The modulo scheduler subsequently binds operations to hard-
ware resources and to time slots. In binding, the scheduler may
choose any compatible unit within the operation's cluster.

3 Bitwidth Analysis

PICO uses two separate, complementary approaches to finding
required bitwidths: a priori bounds on values for specific vari-
ables, and an iterative constraint propagation analysis that we
describe below. In transforming the original program to paral-
lel form, PICO introduces a number of variables into the code.
Bounds on their values are generally known at compile time,
and their required widths are therefore known. In addition, we
allow the user complete control over bitwidths of variables; a
pragma containing an arbitrary bitwidth of a variable (e.g., 5
bits) may be optionally supplied after each variable declara-
tion. These bitwidths are passed down automatically through the
PICO frontend to help the later iterative constraint propagation
phase achieve better results.

PICO then infers minimum bitwidths for all values by itera-
tively propagating width constraints through the program. The
width of a variable is constrained by two factors. First, the width
is limited by the amount of useful data available when the vari-
able is defined. This is referred to as the def constraint. Second,
a value need not retain more bits than the number needed by its
uses. This is referred to as the use constraint. For example, a
32-bit quantity contains an excess of data if it is only used in
10-bit add operations.

The individual operations are connected via define-use and
use-define chains such that every define of a variable is con-
nected to the operations that consume that value and the reverse.

We repeatedly apply the def and use constraints to get ever
tighter restrictions on variable widths until we converge to a sta-

if () goto Loop

2 2
I1§=§+i M:x=4+1 M:x=a+1
32 32 11 .15 * 11 .15 4* i
I2:y=x*b I2:y=x"b 12:y = x
Loop Loop:e‘2 o 2 Loop:1 . 5
|33;=3)§+i ‘ 13:y=y+1 ‘ I3:y=13?+1

if () goto Loop

if () goto Loop

16 32 32 16

[4:z=y+C

l4:z=y+C

32 16 16 16
l4:z=y+cC

original code

after forward prop

after backward prop

Figure 2: Example application of bitwidth analysis.

ble solution. The forward propagation phase utilizes the def
constraint to limit the output width of each operation. The re-
quired width of the output of an operation is determined as a
function of the operation being performed (add, multiply, etc.),
the current width of the inputs, the value of any literal input, and
the semantics of C. For example, when two 6-bit quantities are
added, it is known the result is not larger than 7 bits. The values
of literal inputs provide key constraints to the output width: the
bitwise AND of a 32-bit variable and the literal OxFF produces
an 8-bit result. The forward propagation phase is applied iter-
atively across all operations in the program until a fixed point
solution is reached.

The backward propagation phase enforces the use constraints
to limit the input widths of each operation based on its output
widths, and to limit the width of each variable based on the
widths of all of its uses. As in the forward propagation phase,
input widths are constrained based on the operation being per-
formed, the width of the outputs, the actual value of any lit-
eral inputs, and the semantics of C. For example, an add oper-
ation with a 15-bit result needs inputs of no more than 15 bits.
More interesting, left shift operation with an 8-bit output and
shift amount of the literal 3 constrains the other input to be no
more than 5 bits. As with the forward propagation phase, the
backward phase is applied iteratively across all operations until
a fixed point solution is reached.

To illustrate the application of bitwidth analysis, consider the
example in Figure 2. The original code consists of 4 instruc-
tions, two sequential instructions, a third within a loop, and a
fourth after the loop. For this example, the trip count of the loop
is unknown. The initial widths provided by the user are anno-
tated above each variable in the original code. Forward prop-
agation applies the def constraint to propagate right-hand side
constraints to the left-hand side for each instruction. For I1, the
addition of a 3-bit and 2-bit quantity, produces at most a 4-bit
result, hence the width of x is no more than 4 bits. For 12, the
4-bit value for x is propagated downward from I1. Then, it is
known that the multiplication of n bits by m bits yields at most
n+m bits. Thus, the width of y is concluded to be no more than
15 bits. Similar propagation is applied to the other instructions.

Since I3 is within a loop, the forward propagation will iterate un-
til a fixed point solution is reached which concludes y could be
32 bits. This result makes sense as the loop iterates an unknown
number of times.

Backward propagation is applied next. The constraint of the
final output, z, being no more than 16 bits is propagated. This
effects the width of y and c in I4 and I3 because the 16-bit out-
put requires only 16-bit inputs be available. I1 and 12 are not
affected by the backward propagation because they already con-
tain stronger width constraints. In this example, further iteration
of forward and backward propagation yields no further improve-
ment.

4 Width Clustering

This section motivates and describes PICO's pre-schedule deter-
mination of operation and function unit clusters.

After bitwidth analysis, PICO has a loop with known widths
for all values. It has a library of function units (FUs) each with
cost C(FU) and opcode repertoire. It is going to allocate a set of
function units and create a modulo schedule that schedules each
operation at a time step and binds it to a function unit. In a mod-
ulo schedule, every II cycles a loop iteration begins execution; 11
is called the initiation interval. PICO allows the user to specify
II. PICO's job is to find a low-cost processor that achieves this
predetermined II.

There are two opposing forces that PICO must balance. The
modulo schedule binds up to IT operations to a function unit. The
function unit's hardware realization is as wide as the widest of
these operations. If operations of the same width are scheduled
on the same unit, then the widths of the units will be minimized.
But if operations of different types are bound to a unit, its op-
code repertoire is expanded and it becomes more expensive. So
the opposing tendency is to schedule operations with the same
opcode but different widths to the same function unit, which pro-
duces wider units having a limited repertoire.

PICO balances these competing forces by forming clusters of
operations having similar type or similar width before schedul-
ing and allocating function units for each cluster. This clustering

promotes the use of narrow units for narrow operations. It also
channels expensive operations like divides into a single cluster
to avoid proliferation of expensive FUs. Within a cluster, the
function units are chosen without regard to data width, favoring
cost reduction by specialization. We call this technique width
clustering. We describe it in detail below.

Width clustering consists of the following three steps: 1) vir-
tual FU assignment, 2) virtual FU clustering, 3) creation of clus-
tered machine description. The width clustering process identi-
fies a final set of hardware FUs to implement each cluster and a
mapping of operations to clusters. This is then used by a modulo
scheduler.

Virtual FU assignment is a preliminary mapping of opera-
tions to FUs that is directed by the cost of implementing the
operations on heterogeneous function units. It is derived with-
out using any data dependence information. Virtual FU (VFU)
assignment provides a sample mapping from which further clus-
tering decisions are made. It does not constrain the actual bind-
ings that are finally made.

VFU assignment begins by identifying a cheapest FU for each
operation. An operation's cheapest FU (CFU(op)) is the least
expensive FU among those capable of executing the operation.
The cheapest FU cost (C(CFU(op)) is used to determine an op-
eration's inherent cost. After inherent costs are calculated, oper-
ations are sorted from highest cost to lowest.

At each step in the VFU assignment procedure a seed opera-
tion is selected from which a VFU is grown. The seed operation
is the costliest that has not already been bound to a VFU.

Given a seed operation, a candidate virtual FU (CVFU) is
grown for each hardware FU in the library that implements the
seed. Initially only the seed operation is bound to each CVFU.
CVFUs gain additional bindings as the list of unbound opera-
tions is traversed from highest to lowest priority. As each oper-
ation is considered, the operation is bound to each CVFU that
implements the operation and does not already have II opera-
tions bound to it. This process continues until every CVFU has
IT bound operations or the prioritized list of operations is ex-
hausted. When complete, a set of CVFUs has been formed. Each
CVEFU - cvfu has a set of operations OPS(cvfu), and a hardware
implementation cost for cvfu - C(FU(cvfu)). The VFU, for the
seed, is selected as the best CVFU using the desirability function

D(cvfu) =

opeoPs(cviu)

> w — C(FU(evfu)) (1)

Desirability measures how close the cost of the hardware im-
plementation for each candidate FU is to the sum of the inherent
costs for all assigned operations. The CVFU having highest de-
sirability is chosen as the VFU. After a VFU is identified, the
process continues by selecting the next seed and growing a new
VFU until all operations have been bound.

VFU clustering is then used to group VFUs based on width.
The width of each VFU is determined by the widest operation
assigned to that VFU. The VFUs are sorted from highest to low-
est in width. A cluster is initialized when the widest unbound
VFU is added to it. The width of this VFU defines the cluster
width. The ratio of the cluster width to each of the remaining un-
bound VFUs is calculated. VFUs are added to the cluster until
this ratio falls below some threshold (e.g., 2.0). When the clus-
ter is complete, the widest unbound VFU is again selected as a
seed to form a new cluster. The process repeats until all VFUs
are assigned to clusters. Finally, each VFU cluster gives rise to
an operation cluster (all operations mapped to VFUs in a VFU
cluster) and the VFUs are no longer of any interest.

Creation of the clustered machine description completes
the width-clustering process. For each operation cluster, an op-
timal set of FUs is selected using integer linear programming.
A machine description is assembled, for each cluster, by com-
posing primitive machine descriptions for each FU within that
cluster. The modulo scheduler will only bind an operation to an
FU within its cluster.

To illustrate the application of width clustering, the exam-
ple in Figure 3 is presented. The example consists of 4 oper-
ations, 3 adds and a subtract, and an II of 2 is used. The ex-
ample FU library has three elements: adder, subtracter, adder-
subtracter. The ops are sorted by their inherent cost, yielding
an order of I1-I3-12-14. The first seed is the head of the list
or I1. It can be implemented using either an adder (option A)
or an adder-subtracter (option B). With option A, the highest
cost operation that is compatible is 12, yielding a desirability of:
(((320 + 60)/2) — 320) = —130. With option B, the highest
cost operation that is compatible is I3, yielding a desirability of:
(((320 + 320)/2) — 416) = —96. Hence, option B is chosen.
The next seed chosen is 12, and with a similar calculation, option
A is chosen. After virtual FU assignment is complete, there are
2 FUs: a 32-bit adder-subtracter assigned operations 11 and I3;
and a 6-bit adder assigned operations 12 and I4.

Virtual FU clustering is then performed. Assuming a cluster
ratio of 2, each virtual FU is assigned its own cluster. Hence af-
ter width clustering is complete, there are 2 clusters, (I1,13) and
(I2,14). The creation of the clustered machine description se-
lects an adder-subtractor for the first cluster and an adder for the
second cluster. For this simple example, integer linear program-
ming happens to select the same FUs as those that were selected
during VFU assignment.

5 Evaluation

To evaluate the effectiveness of bitwidth analysis and width clus-
tering, the PICO system is used to design NPAs for a set of loop
nests. These loop nests were chosen from a variety of domains
including imaging, communications, and networking. For these
experiments, the performance is held constant for each loop nest

Available FUs:
=2

Adder: 10 gates/bit
Subtractor: 10 gates/bit
Adder-Subtractor: 13 gates/bit

Input instructions:

I1: add, 32-bit, mincost = 320
12: add, 6-bit, mincost = 60
13: sub, 32-bit, mincost = 320
|14: add, 5-bit, mincost = 50

Choose option A

Seed: 1 A: Adder, 32-bit, I1, 12, Des =-130
Choose option B | B: Adder-Subtractor, 32-bit, I1, 13] Des = -96 |
Seed: 12 A: Adder, 6-bit, 12, 14,[Des = -5 |

B: Adder-Subtractor, 6-bit, 12, 14, Des = -35

After virtual FU
assignment:

Adder-Subtractor: 32-bit, cost = 480, I1, 13
Adder: 6-bit, cost = 60, 12, |14

After cluster
assignment:

Cluster 1: 11, I3, width range = 32-bit to 32-bit
Cluster 2: 12, 14, width range = 6-bit to 5-bit

Figure 3: Example application of width clustering.

as specified by the II. The figure of merit is the cost of the design
that achieves the specified performance level. PICO measures
cost using a gate count estimates for each hardware component.
Each component has an associated parameterized cost formula
(e.g., an adder is 10 gates/bit). To derive the total cost, the hard-
ware components are instantiated and the cost of the components
are summed.

Table 1 presents the results of the evaluation for 19 loop
nests and the geometric mean across all of the loops. The ta-
ble is broken down into normalized cost for just the FUs and
for the entire NPA. There are three variants of the NPA com-
piler: no width cognizance where all C integer operators are
32-bit (none), bitwidth analysis enabled but clustering disabled
(A only), bitwidth analysis and width clustering enabled (A and
C). The percentages in the parenthesis correspond to the percent
change from the current column to the column to the immediate
left. For example, adpcm with bitwidth analysis achieves a nor-
malized FU gate count of 0.728 or a 27.2% improvement over
no analysis. Similarly, adpcm with bitwidth analysis and width
clustering achieves a normalized gate count of 0.613 or a 15.8%
improvement over bitwidth analysis alone.

From the table, bitwidth analysis provides large reductions
in both FU and total gates across most of the loops. In gen-
eral, these applications utilize a significant portion of narrow
data. Hence, large savings are derived by through the analy-
sis by instantiating narrow hardware components for the NPA.
There is one notable exception to this behavior, matmul. This is
just matrix multiplication of 2 integer matrices with 32-bit data.
In this loop, there is no narrow data and thus no opportunity for
bitwidth sensitive techniques. The table also shows that larger
reductions are observed in the total gate count than the FU gate
count with bitwidth analysis. This behavior occurs primarily be-
cause the reduction in width of operations does not necessarily

lead to the reduction in FU size. A FU is as wide as the widest
operation bound to it. Thus, a FU cost savings results only nar-
rowed when bitwidth analysis can narrow all operations bound
to that FU. Conversely, other parts of the NPA such are registers
are reduced in cost when a single variable is narrowed.

The third variant of the study shows the effects of width clus-
tering after bitwidth analysis. Width clustering is directed at
reducing the FU cost which leads to a reduction in total cost.
It can have indirect impact on other parts of the design such as
the size of a multiplexor at the FU input or the amount of inter-
connect between FUs. The indirect effect is generally small, but
can sometimes be noticeably negative as shown for heat where
the normalized FU gates are reduced from 0.956 to 0.895. But,
the total gates are increased from 0.936 to 1.023. Overall, the
table shows that width clustering is reasonably effective at re-
ducing FU cost. Larger than 10% reductions are observed in
most cases with a maximum of 33% for chain. Chain contains
two mostly independent threads of multiplications, one wide and
one narrow. Unfortunately, the scheduler frequently binds wide
and narrow multiply operations to the same FUs. Thus, most of
the FUs end up wide even though only half the computation is
wide. Width clustering fixes this problem by ensuring the narrow
operations are grouped into one cluster and the wide operations
in another cluster. The FU cost gains are cut by about a factor
of three to derive the overall cost savings using width clustering.
This makes sense as FUs comprise about 1/3 of the total cost in
a typical PICO design.

6 Conclusion

In this paper, we investigate the exploitation of integer bitwidth
in an automatic design system for custom nonprogrammable
hardware accelerators. The goal is to reduce the cost of our

Normalized FU gates Normalized total gates

Application | None | A only Aand C None | A only Aand C

adpcm 1.000 | 0.728 (27.2%) | 0.613 (15.8%) | 1.000 | 0.591 (40.9%) | 0.580 (1.8%)
cell 1.000 | 0.213 (78.7%) | 0.181 (14.8%) | 1.000 | 0.155 (84.5%) | 0.143 (7.3%)
chain 1.000 | 0.924 (7.6%) | 0.618 (33.0%) | 1.000 | 0.673 (32.7%) | 0.605 (10.1%)
channel 1.000 | 0.895 (10.5%) | 0.704 (21.4%) | 1.000 | 0.708 (29.2%) | 0.651 (8.0%)
conv2d 1.000 | 0.739 (26.1%) | 0.546 (26.1%) | 1.000 | 0.484 (51.6%) | 0.476 (1.6%)
dct 1.000 | 0.807 (19.3%) | 0.724 (10.3%) | 1.000 | 0.693 (30.7%) | 0.647 (6.6%)
encode 1.000 | 0.783 (21.7%) | 0.684 (12.6%) | 1.000 | 0.335 (66.5%) | 0.321 (4.2%)
fir 1.000 | 0.841 (15.9%) | 0.763 (9.3%) | 1.000 | 0.823 (17.7%) | 0.761 (7.5%)
fsed 1.000 | 0.520 (48.0%) | 0.457 (12.1%) | 1.000 | 0.468 (53.2%) | 0.442 (5.5%)
heat 1.000 | 0.956 (4.4%) | 0.895(6.4%) | 1.000 | 0.936 (6.4%) | 1.023 (-9.3%)
huffman 1.000 | 0.672 (32.8%) | 0.602 (10.3%) | 1.000 | 0.313 (68.7%) | 0.306 (2.2%)
linescreen 1.000 | 0.418 (58.2%) | 0.359 (13.9%) | 1.000 | 0.386 (61.4%) | 0.369 (4.5%)
lyapunov 1.000 | 0.853 (14.7%) | 0.679 (20.3%) | 1.000 | 0.526 (47.4%) | 0.455 (13.4%)
matmul 1.000 | 1.000 (0.0%) | 1.000 (0.0%) | 1.000 | 1.000 (0.0%) | 1.000 (0.0%)
rls 1.000 | 0.957 (4.3%) | 0.894 (6.6%) | 1.000 | 0.895 (10.5%) | 0.874 (2.4%)
sharp 1.000 | 0.630 (37.0%) | 0.561 (11.1%) | 1.000 | 0.543 (45.7%) | 0.536 (1.3%)
sobel 1.000 | 0.685 (31.5%) | 0.600 (12.5%) | 1.000 | 0.562 (43.8%) | 0.546 (2.8%)
taub 1.000 | 0.737 (26.3%) | 0.627 (15.0%) | 1.000 | 0.416 (58.4%) | 0.395 (5.2%)
viterbi 1.000 | 0.473 (52.7%) | 0.394 (16.7%) | 1.000 | 0.211(78.9%) | 0.203 (3.8%)
G-mean 1.000 | 0.690 (31.0%) | 0.590 (14.4%) | 1.000 | 0.509 (49.1%) | 0.487 (4.3%)

Table 1: Effects of bitwidth sensitive code generation on NPA cost. The study compares three configurations of the NPA compiler:
standard C widths for all components (none), bitwidth analysis only (A only), bitwidth analysis and width clustering (A and C).

NPAs by identifying narrow data in the application and build-
ing narrow hardware to operate on that data. Bitwidth sensitive
code generation is comprised of two phases: bitwidth analysis
and width clustering. Bitwidth analysis computes the number
of bits necessary for each program variable. Width clustering
is then used to intelligently map operations of varying bitwidth
onto hardware units by grouping operations of similar bitwidth
into clusters. Preliminary experiments show that bitwidth anal-
ysis provides an average of a 31% reduction in FU gates and a
49% reduction in total gates. Width clustering provides an addi-
tional 14% reduction in FU gates and 4% in total gates.

Acknowledgements

The authors thank Santosh Abraham for his help in designing
and developing bitwidth analysis; the Compiler and Architec-
ture Research Group at HP Labs for their many discussions and
useful feedback.

References

[1] A. Cilio and H. Corporaal, “Efficient code generation for
ASIPs with different word sizes,” in Third Annual Confer-

(2]

(3]

(4]

(5]

ence of the Advance School for Computing and Imaging,
(The Netherlands), June 1997.

M. Budiu, S. Goldstein, K. Walker, and M. Sakr, “Bitvalue
inference: Detecting and exploiting narrow bitwidth com-
putations,” in Euro-Par 2000 Parallel Processing (A. Bode,
T. Ludwig, W. Karl, and R. Wismiiller, eds.), vol. 1900 of
Lecture Notes In Computer Science, pp. 969-979, Springer-
Verlag, 2000.

M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth
analysis with application to silicon compilation,” in Pro-
ceedings of the SIGPLAN '00 Conference on Programming
Language Design and Implementation, pp. 108-120, June
2000.

P.Lowney et al., “The Multiflow trace scheduling compiler,”
The Journal of Supercomputing, vol. 7, pp. 51-142, Jan.
1993.

R. Schreiber et al., “High-level synthesis of nonpro-
grammable hardware accelerators,” in Proceedings, The In-
ternational Conference on Application-Specific Systems, Ar-
chitectures, and Processors (E. E. Swartzlander, G. A. Jul-
lian, and M. J. Schulte, eds.), pp. 113-124, July 2000.

