Monitoring the Initial DNS Behavior of Malicious Domains

Shuang Hao (Gatech), Nick Feamster (Gatech), Ramakant Pandrangi (Verisign, Inc.)
DNS: A Critical Internet Service

- A distributed database mapping host names to IPs
 - Most network connections are preceded by DNS lookups

More than 215 million domain name registrations across all top-level domains (TLDs) (Source: Zooknic, Verisign, July 2011)
Why Monitor DNS Activities?

• Domains are registered to host malicious content
 – Direct to scam, phishing or malware sites
 Hey, you look funny in that video... http://bad-domain.com/bcddf
 – > 56% malicious domains are second-level domains
 (source: SIE)

• Monitor domains’ behaviors to mitigate threats
 – Investigation is usually triggered after attacks take place

• Domain registration grows quickly
 – ~150 thousand new .com and .net domains every day

It is challenging to monitor DNS activities!
Highlights of Our Study

“Monitoring the Initial DNS Behavior of Malicious Domains”

Start monitoring as soon as a new domain is registered

1) Active queries to authoritative servers periodically to fetch resource records
2) DNS lookups collected from Verisign top-level domain servers

Domains identified by appearance in spam traps
Motivation

Questions

– *When does a malicious domain start to be used in attack after registration?*
 Purpose: The potential time window to prevent attack happening

– *What networks are the resource records mapped to?*
 Purpose: Re-used IPs or ASes to identify bad domain registration

– *Who looks up which domains?*
 Purpose: Global DNS traffic to find patterns across malicious domains
Talk Outline

• Motivation

• **DNS Data Monitoring**
 – Categorizing malicious and legitimate domains
 – Collecting snapshots of resource records
 – Monitoring DNS lookups

• Findings in the DNS Characteristics

• Conclusion
Categorizing Malicious & Legitimate Domains

• Target domains
 – Newly registered second-level domains (2LDs) under .com and .net during March 2011
 • On average, 150 thousand 2LDs get registered everyday
 • Continuous monitoring throughout the month

• Define as “malicious”
 – 5,988 2LDs identified in spam trap (including spamhaus) during March 2011

• Legitimate domain samples
 – Sample 6,000 new domains that have not appeared in any blacklist
Collecting Snapshots of Resource Records

• Resolved IPs from resource records (RRs)

<table>
<thead>
<tr>
<th>record type</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>the authoritative name server</td>
</tr>
<tr>
<td>MX</td>
<td>a mail server for the domain</td>
</tr>
<tr>
<td>A</td>
<td>IP address of a host</td>
</tr>
</tbody>
</table>

• Collection process
 – Zone update logged at TLD servers (NS-type RRs)
 • Include alerts of new domain registration

 add-new example.com NS ns1.example.com
 – Continuous active querying (NS, MX, A types of RRs)
 • Daily queries dispatched from PlanetLab
Monitoring DNS Lookups

• Collection process *
 – Querying /24 subnets aggregated every day

 example.com 111.111.111.0 , 222.222.222.0

* Similar monitoring point used in “Detecting Malware Domains at the Upper DNS Hierarchy”. In USENIX Security (2011).
Talk Outline

• Motivation

• DNS Data Monitoring

• Findings in the DNS Characteristics
 – How long is the delay until attack?
 – What networks are the resource records mapped to?
 – Who looks up which domains?

• Conclusion
Time Between Registration and Attack

- Time when first observing records about the malicious domains, to the earliest time when the domains appeared in the spam messages.

Finding: About 55% of the malicious domains showed in spam more than one day after they were registered.
Resolved DNS Records across IP space

- The A records of 2.6 million 2LDs registered in March 2011 were mapped to 300 thousand IPs (similar statistics for NS and MX records)

Finding: A small fraction of IP space is heavily used to host malicious domains, even within the pre-attack period.
Lookup Patterns across Networks

- If two domains are queried by the same set of recursive DNS servers, they may be the same type of domains.
- Intuition: A user clicking a URL in spam might click on other spam URLs.
Lookup Patterns across Networks

- If two domains are queried by the same set of recursive DNS servers, they may be the same type of domains
- Intuition: A user clicking a URL in spam might click on other spam URLs

\[
S(D_A, D_B) = \frac{(J_1 + J_2 + \ldots + J_n)}{n}
\]

* Jaccard index of two sets = the size of the set intersection divided by the size of union
Lookup Patterns across Networks (Cont.)

- Clustering based on initial querying /24s (5-day from March 1--5, 2011)

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>malicious</th>
<th>legitimate</th>
<th>% spam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1404</td>
<td>463</td>
<td>941</td>
<td></td>
<td>33.0%</td>
</tr>
<tr>
<td>157</td>
<td>156</td>
<td>1</td>
<td></td>
<td>99.4%</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0</td>
<td></td>
<td>100.0%</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td></td>
<td>100.0%</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td></td>
<td>100.0%</td>
</tr>
</tbody>
</table>

- **Finding**: Malicious domains in the same campaign are looked up by similar group of recursive servers
Conclusion

- *How long is the delay until attack?*
 Purpose: The potential time window to prevent attack happening
 Finding: 50% malicious domains have more than one day inactivity before attack

- *What networks are the resource records mapped to?*
 Purpose: Re-used IPs or ASes to identify bad domain registration
 Finding: Some networks have more IPs pointed from bad domains' RRs

- *Who looks up which domains?*
 Purpose: Abnormal lookup patterns indicating malicious activities
 Finding: Similar groups could query multiple malicious domains

http://www.cc.gatech.edu/~shao