
Data Integration by Describing Sources with Constraint Databases

Xun Cheng1;� Guozhu Dong2;�� Tzekwan Lau1 Jianwen Su1;�

xun@cs.ucsb.edu gdong@cs.wright.edu tzekwan@cs.ucsb.edu su@cs.ucsb.edu
1 Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

2 Department of Computer Science and Engineering, Wright State University, Dayton, Ohio 45435, USA

Abstract
We develop a data integration approach for the efficient eval-
uation of queries over autonomous source databases. The ap-
proach is based on some novel applications and extensions of con-
straint databases techniques. We assume the existence of a global
database schema. The contents of each data source are described
using a set of constraint tuples over the global schema; each such
tuple indicates possible contributions from the source. The “source
description catalog” (SDC) of a global relation consists of its as-
sociated constraint tuples. Such a way of description is advanta-
geous since it is flexible to add new sources and to modify exist-
ing ones. In our framework, to evaluate a conjunctive query over
the global schema, a plan generator first identifies relevant data
sources by “evaluating” the query against the SDCs using tech-
niques of constraint query evaluation; it then formulates an eval-
uation plan, consisting of some specialized queries over different
paths. The evaluation of a query associated with a path is done
by a sequence of partial evaluations at data sources along the path,
similar to side-ways information passing of Datalog; the partially
evaluated queries travel along their associated paths. Our SDC-
based query planning is efficient since it avoids the NP-complete
query rewriting process. We can achieve further optimization us-
ing techniques such as emptiness test.

1. Introduction
When a collection of autonomous data sources are to work
together in a loosely coupled setting, serious problems arise
[22, 26, 18, 29, 13]. Examples of such applications include
digital libraries [4] and electronic commerce [6, 7]. Two
of the fundamental issues in developing such data integra-
tion applications are: (1) managing semantic heterogeneity
(schema integration) and (2) efficiently evaluating queries
that are often distributed in nature (query optimization).

Among current approaches to data integration, data
warehousing integrates relevant data sources into a repos-
itory that can be fully materialized [12], fully virtual, or a
combination [14]. Queries are formulated against the in-
tegrated schema at the data warehouse and are evaluated
either locally at the data warehouse when it is fully mate-
rialized or decomposed into subqueries that are evaluated
at the sources when some or all of the data are not mate-
rialized. Wrappers and mediators [30, 8, 25, 28] present
an alternative. Intuitively, a semantic wrapper of a data
source exports both the structure and query capabilities of
the source. When a query is received, a mediator will pro-
cess the query (e.g., decomposition and result merging) by
requesting necessary input from the wrappers available to
� Supported in part by NSF grant IRI-9411330 and IRI-9700370.
�� Supported in part by a grant from the Australian Research Council while
at the University of Melbourne. Part of work done while visiting UCSB.

it. Unlike the case of data warehousing where the integra-
tion is mostly “hardwired”, as long as the wrappers for new
sources are developed and properly introduced to the medi-
ators, the new sources can be added but this may cause sig-
nificant changes to mediators. The agent-based approach
[17, 3, 16, 9] uses simple formal languages such as de-
scription logics (see [13]) to wrap data sources in terms
of some global model (ontology). To evaluate a query, an
agent determines the sources capable of answering (a part
of) the query using the techniques of rewriting (conjunctive)
queries with (conjunctive) views [20, 24, 16]. The advan-
tage of using such information agents is that it is very easy
to add new sources since the language for defining wrap-
per is highly conceptual and simple. However, the inher-
ent difficulty (NP-complete) to query rewriting using views
prohibits efficient implementation of information agents.

In this paper we propose a data integration framework
for the efficient evaluation of queries over multiple au-
tonomous data sources (databases). Our approach com-
bines both the wrappers/mediator and information agent
approaches. The structural integration assumes a global
schema but uses wrappers and lightweight mediators to rep-
resent source databases. In principle, the contents of each
data source are described using a set of constraint tuples
over the global schema; each such tuple indicates possible
contributions from the wrapped source. In this, we only
allow selections and projections, rather than arbitrary con-
junctive views, in describing the contents of data sources.
In addition, we organize the source descriptions into a con-
straint database [15], called “source description catalogs”
or “SDCs”, and then extend the constraint query evaluation
techniques [10] and constraint solving techniques [11] in
constructing query evaluation plans. As a result, we not
only retain the flexibility of adding new sources as in infor-
mation agents, but also are able to provide efficient (poly-
nomial time) query evaluation algorithms.

We also develop a scalable framework of evaluating
queries, assuming each source provides simple querying ca-
pabilities. Our approach is applicable when sources can
only do selections and projections, and is also applicable
and perhaps more efficient when the source wrappers can
do semi-joins. Using constraint-based SDCs, a plan gen-
erator decomposes a query into many “evaluation paths”
through which some constrained copies of the query will
travel in parallel. For each such path, the associated query

Jianwen Su
Proc. Int. Conf. on Data Engineering (ICDE), 1999

... maker ...

... Fujitsu ...

... Dell ...
.

Onsale
... maker model cpu mem hd price
... Fujitsu 565Tx 120 16 1.0 1049
... IBM S62 133 16 2.1 2099

.

... model cpu mem hd price

... M133ST 133 16 0.85 1500

... M166ST 166 32 1.6 4269
.

Dell

... Fujitsu 565Tx ...
.

... Dell M133ST ...
.

NEC
... ... mod cpu mem hd

.
...

Result Collector

Q
Query

(Q) (Q and (price=1500))

Figure 1. Evaluation of Q

moves from one source to the next in a sequential fashion,
and each site performs a partial evaluation (either (*) selec-
tion and projection with iteration or (**) with semi-join) to
contribute what it can towards the answer. We also consider
query optimization issues aiming at reducing the amount of
data to be transferred between sources. In particular, we
study both static and dynamic optimization techniques. For
static optimization, we use SDCs to tighten selection condi-
tions, and order subqueries to “push selections down”. We
also consider the optimization of the SDC before generat-
ing the evaluation plans, in order to reduce communication
cost. For the dynamic part, we prune evaluation paths that
will not contribute to the answers, tighten selection condi-
tions after partial evaluations, and also consider sharing of
common prefix of many evaluation paths.

Our approach of “cataloging” data sources by (1) struc-
tural wrappers with lightweight mediators and (2) view-like
descriptions of wrapped sources provides a modularized
method to data integration, it is extensible (allow changes
to sources) and allows tractable query processing. It is
also practical since the wrappers and source descriptions are
very easy to build and query evaluation is based on exsiting
techniques and generic.

Our distributed evaluation approach is related to but dif-
ferent from Mariposa [27], where query evaluation is based
on decomposing a query into subqueries which are then
posted for data sources to bid, and different from the or-
dering of semi-joins in mediators [1].

We illustrate the main ideas with a motivating example in
x2. x3 introduces the basic notions including data sources,
and queries over a collection of data sources, while x4 de-
fines the source description model. x5 and x6 discuss how
to construct evaluation plans for queries. x7 presents a basic
algorithm for (distributed) evaluation of queries, and x8 in-
cludes a discussion on optimization and improvements over
the basic algorithm. x9 discusses future work.

2. A Motivating Example
We illustrate the main ideas of our approach with a sim-
plified example concerning online information and sales of
personal computer systems. Existing on the web are the fol-
lowing services: (1) online catalogs containing the config-
uration and pricing information of computer systems from
vendors or manufacturers, (2) reviews of systems/vendors.

Currently, shoppers who use these information services
need to deal with the semantic differences of data and in-

... Fujitsu 565Tx ...
.

.
... Dell M133ST ...

... maker ...

... Dell ...
.empty

.
... Dell M133ST ...

reviewer model maker rank ...
PC Weird M133ST Dell 2 ...

PC Weird

.

(Q, partial result from Onsale)

(Q, partial result from Dell)

Result Collector

Figure 2. Partial evaluation of Q0 at sources

terfaces, and often find unsatisfactory answers. Some exist-
ing integrated services (e.g., www.uvision.com) copy peri-
odically everything from the sources; such an approach not
only is unscalable but also incurs high maintenance cost. It
is unsuitable for frequently changed catalogs.

In our framework, we first design a global relation sche-
ma Sys(v ;mk ;mod ; cpu;mem; p) representing the infor-
mation about vendor, maker, model, cpu speed (in MHz),
memory size (in MB), and price of computer systems. The
individual data sources are described in a constraint relation
[15] such as the following.

vendor maker model cpu mem price site
? NEC > > 75 [4; 128] ? NEC

Dell Dell > > 90 [8; 128] > 1500 DELL
Onsale > > > > > ONSALE
� � �

Here “>;?” are two special symbols which indicate if the
site has (does not have) data about the corresponding at-
tribute. Such a constraint relation is called a “source de-
scription catalog.” A tuple t in this catalog is used to indi-
cate that the data source may contain relational tuples (for
those non-? columns of t) satisfying this t as a constraint;
and the catalog is used to indicate that each relational tuple
at a data source should satisfy at least one of the catalog
tuples about the data source.

Consider a queryQ that lists all systems that have at least
a 100 MHz cpu, 16 MB memory, and cost 6 $1; 500. By
evaluating Q against the source description catalog (which
tells us among other things that the NEC site has no price
information), we found that the answer to the query is the
union of at least two subqueries (Fig. 1): one (modified from
Q by further requiring price = 1500) is sent to DELL, and
another (Q itself) is sent to ONSALE.

Suppose we have a relation for reviews Rev(reviewer,
mod, mk, rank, yr). Consider the query Q0: find the same
systems as specified by Q that are ranked among the top 20
by PC Weird. By evaluating Q0 against the SDC, we found
that the answer to the query is the union of at least two sub-
queries (Fig. 2): one to join the information at DELL with
that at PC Weird with some selection conditions; another to
join the information at ONSALE with that at PC Weird.

3. Conjunctive Queries
We assume standard notions of relational databases includ-
ing relation/database schemas/instances [2] and also allow
domains with a dense or discrete order <. A conjunctive
query Q is an expression of the form:

ans(�x) r1(�y1); :::; rk(�yk); '
where each ri is a relation name, �x; �yi 's are sequences of

(not necessarily distinct) typed variables, and ' is a con-
junctive formula consisting of equality and order compar-
isons, among constants and variables in �x; �yi, satisfying typ-
ing constraints. Each ri(�yi) is also called a subgoal of Q.
Without loss of generality, we assume throughout this pa-
per that the variables in ri(�yi) part are always distinct, since
equalities can be pushed into the formula '. A variable in
Q is essential if it occurs in the head, or is involved in a
predicate in ' with a constant or a variable other than itself.

Example 3.1 Consider the queryQ0 in the online shopping
example in x2. Q0 can be expressed as:

ans(x1; x3; x4; x6) Sys(x1; :::; x6);Rev(x7; :::; x11);
x2=x9; x3=x8; 1006x4; 166x5;

x661500; x7=“PC Weird”; x10620:
All but x11 are essential variables.

In the context of data integration, each data source needs
to have a “semantic wrapper” [13] so that both the infor-
mation contents and the query capabilities can be offered
to the outside. It is important to have a scalable integrated
query evaluation framework, in addition to schema integra-
tion. The work in this paper is a step towards this goal.

We assume that a global schema is available and the col-
lection of data from all data sources represents a (possibly
incomplete) database over the global schema. Specifically,
for each global relation r, a data source � may contain a
subset of �X (r), whereX are some attributes of r. When it
is clear, we denote the subset as ��r.

Example 3.2 Consider again the global relation schema
Sys(v ;mk ;mod ; cpu;mem; p) in the example in x2. Since
NEC is not a direct vendor, the data source at NEC may con-
tain a subset �necSys � �mk;mod; cpu;memSys .

In Information Manifold a data source may contain a
subset of a conjunctive view over the global database. In
this sense our model of data sources is a simplified version
of Information Manifold. However, as we will describe in
the next section, we use constraint database techniques in
representing the content descriptions instead of containment
rules. Consequently, we are able to develop a scalable query
evaluation framework and optimization techniques.

Let r be a relation schema. If t is a tuple in some data
source and t contains values for only attributes in S where S
is a proper subset of r, then we view t as a generalized tuple
(in the sense of constraint databases) over r where all other
attributes are existentially quantified: ~t = 9A1���9Akt with
A1; :::; Ak being all attributes in r but not in S. Therefore,
each data source contains a set of generalized tuples over
the global schema. The union ~d of the sets of generalized
tuples at all data sources is called a generalized database.
A generalized database is an incomplete database and rep-
resents a set of possible databases.

Given a conjunctive query Q over the global schema D
and a generalized database ~d, the definite answer of Q in
~d is the intersection of all answers of Q in all databases ~d

represents. In other words, the definite answer of a query is
the logic consequence of Q and ~d. Notice that the definite
answer of a query is a set of tuples (not generalized tuples).
In the remainder of the paper, we focus on definite answers
of conjunctive queries and we will use the word “answers”
for the phrase “definite answers”.

4. Source Description Catalogs (SDCs)
In our approach to describing data sources, we assume the
existence of a global database schema (also called an “on-
tology” in the literature), similar to the information-agent
based approaches [17, 21, 3, 16, 9]. The contents of the
autonomous data sources are described using constraints in
terms of the global schema. The relevant information from
a data source, for each relation in the global schema, is de-
scribed as quantifier-free (first-order) formulas using equal-
ity and order (dense or discrete) predicates; the set of all
such descriptions will be called a “source description cat-
alog” (SDC) for the given relation. An SDC is actually a
“constraint relation” in the sense of [15] over dense [10] or
discrete order domains.

Our constraint-database description of data sources is
more advantageous, by allowing flexible addition and mod-
ification of sources, than approaches such as Tsimmis [8]
where the correspondence between sources and the global
schema is compiled into the mediators. As we shall see
later, our SDC-based query planning is more efficient than
approaches such as Information Manifold [17] by avoiding
their NP-complete query rewriting process. Furthermore,
we also achieve some query-evaluation time advantages:
The evaluation is completely distributed; there is no need
for processing after receiving the answers except collecting
them; and the data being transmitted from sites to sites are
much tighter and more relevant to answering the query.

Let >;? be two new symbols not in any domains, A an
attribute, and � a domain. The descriptive values (d-values)
of A:� are defined as follows. (1) A=> and A=? are d-
values, (2) A�c is a d-value if � is an order/equality predi-
cate on the domain � and c a value in � , (3) �^ , �_ , :�
are d-values if �; are d-values that do not involve?;>.

Each data source is identified by an unique address of the
source. Let R = (A1:�1; :::; An:�n) be a relation schema.
A descriptive tuple (d-tuple) of R is a tuple [v1; :::; vn; �]
where each vi is a d-value of Ai:�i and � an address. (This
notion is generalized to include many addresses in the next
section.) A source description catalog (SDC) of the relation
R, denoted by CR, is a finite set of d-tuples of R.

Intuitively, a d-tuple t about the data source � indi-
cates that �may contain (relational) tuples (for those non-?
columns of t) satisfying t as a constraint. The set of d-tuples
in CR about � indicates that each tuple at � should satisfy
at least one of these d-tuples.

Example 4.1 Consider the Sys relation in the online shop-

ping example of x2. Suppose �n is the address for NEC.
The SDC of Sys contains the following d-tuple t1:

[v=?;mk=NEC;mod=>; 756cpu; 46mem6128; p=?; �n]

For simplicity, we abbreviate t1 as [?;nec;>; [75;1);
[4; 128];?; �n]: The d-tuple t1 indicates that the data source
�n may contain tuples of form (nec; x; y; z) where 75 6 y

and 4 6 z 6 128. Observe that �n does not contain values
for the attributes marked with ? in t1.

Our approach to source descriptions is different from
those of [17, 21, 3, 16, 9], where the contents of a data
source are described as conjunctive views. Our SDCs can
clearly be viewed as descriptions of the query processing
capabilities of wrappers (e.g. [8]).

5. Locating Sources
An algorithm is given in this section to locate combinations
of data sources that may contribute to the user query; the
generation of an evaluation plan and the evaluation algo-
rithm are discussed in x6 and x7.

To generate an evaluation plan for a conjunctive query
Q over the global schema, we first evaluate a constraint
database query ([15]) Q� against the SDCs of the involved
relations. The answer toQ� gives a set of sequences of data
source addresses, which may contribute to the answer of Q.
For each such sequence, we will (1) perform a global opti-
mization to narrow the selection conditions in the query, (2)
order the subgoals of the query, and (3) construct a query
evaluation plan (steps (2) and (3) will be described in x6).

The evaluation of Q� is similar to but generalizes that
for dense-order constraint queries [10] due to the presence
of discrete orders. To describe the algorithm for locating
data sources, we use the standard notion of an interval. We
will need to manipulate the lower and upper bounds of in-
tervals that can be open or closed. We use notations like
(a, [a for lower bounds and a), a] for upper bounds with the
obvious meanings. We allow comparisons between lower
bounds and between upper bounds; the truth value of such a
comparison is determined by: [a and (a are smaller than [b
and (b for all a < b, [a is smaller than (a, and a) is smaller
than a]. If l (u) is a lower (upper) bound, we define:

up(l)=

�
(a if l = (a and the domain order is dense, or l = [a
(a+1 if l = (a and the domain order is discrete

down(u)=

�
a) if u=a) and the domain order is dense, or u=a]

a) if u=a+1) and the domain order is discrete
where a+1 denotes the successor of a for a discrete order.

A condition over distinct variables x1; :::; xn is a tuple
C = (v1; :::; vn; (�ij)) where each vi is an interval limiting
the domain of xi and (�ij) is an n�n matrix where �ij is in
f=;6; <;>; >; ?g restricting the relationships between the
variables. Clearly, C can be expressed by a formula �(C).

Let ' be a conjunctive formula over (distinct) variables
x1; :::; xn involving predicates =;6; <. A condition C is

said to be a representation of ' if �(C) is logically equiv-
alent to '. A representation C of ' is canonical if the in-
tervals in C are tight, and whenever two variables xi; xj are
connected by a sequence of variable comparisons in ', the
symbol �ij in C is also tight.

A canonical representation of a conjunctive formula '
over x1; :::; xn is constructed in two steps. For the matrix,
we first construct an edge-labeled directed graph G' with
nodes x1; :::; xn and edges (xi; xj) with label 6 (or <) if
xi 6 xj (resp. xi < xj) is in '. If G' has a cycle in-
cluding an edge labeled <, ' is unsatisfiable and the query
answer is empty. Otherwise, we find the strongly connected
components (SCCs) of G'. For each pair of distinct nodes
xi; xj , if they are in the same SCC, let �ij be “=”; if there
is a path from xi to xj we let �ij be “<” if an edge on some
path from xi to xj is labeled “<”, and “6” otherwise.

To obtain the intervals, let Li=(�1 andUi= +1) be the
initial lower and upper bounds (resp.) for each 16i6n. We
improve the bounds using comparisons between variables
and constants. For example, if the comparison is “c<xi”, let
Li = maxfLi; (cg, if it is “xi < c” let Ui = minfUi; c)g.
We then use G' to propagate lower bounds upward and up-
per bounds downward:
1. For each SCC S of G and each xi 2 S, let Li =

maxfLj j xj 2 Sg and Ui = minfUj j xj 2 Sg;
2. If G has an edge (xi; xj) labeled “6”, let Lj =

maxfLi; Ljg and Ui = minfUi; Ujg; and
3. If G has an edge (xi; xj) labeled “<”, let Lj =

maxfup(Li); Ljg and Ui = minfUi; down(Uj)g.
If any pair Li; Ui defines an empty interval, ' is not satisfi-
able. Otherwise, let B' be the set of variables xi such that
Li 6= (�1 or Ui 6=+1).

The construction of the intervals in the canonical repre-
sentation is similar to an algorithm in [11] and can be done
in linear time in the length of the formula.
Example 5.1 Consider the formula ' = 3 < x1 6 x2 <
x3 ^ x2 6 9 ^ x4 < x5 < 6 where x1; x2; x3 are real
variables and x4; x5 are int variables. A canonical repre-
sentation of the formula is C =0
B@(3; 9]; (3; 9]; (3;+1); (�1; 5); (�1; 6);

2
64
= 6< ? ?
> = < ? ?
> > = ? ?
? ? ? = <
? ? ? > =

3
75
1
CA

Let Q : ans(�x) r1(�y1); :::, rk(�yk); ' be a satisfiable
conjunctive query with essential variables x1; :::; xn. Sup-
pose C=(v1; :::; vn, (�ij)) of ' is the canonical representa-
tion of '. We evaluate the following constraint query
sites(�1; :::; �k) Cr1(�x1; �1); :::; Crk(�xk ; �k); '

against the SDCs of the database as follows. We compute
the join C = Cr1 ./ � � � ./ Crk (with proper attribute renam-
ing) where ? is not equal to anything. For each d-tuple t
in C and each attribute A, if t:A is ? and the corresponding
variable in Q is essential, t is removed. Otherwise Algo-
rithm 1 given below checks satisfiability of the conjunction

of t and C, and if satisfiable, produces (1) a set of selection
conditions (intervals) for each variable and (2) boundness
information of variables.

Since SDCs are constraint relations, possibly with or-
ders, each column of a SDC is a set of intervals. We can
build indexes on the attributes of SDCs and apply efficient
join algorithms for constraint relations [31].

LetA1; :::; An be the attributes for the essential variables
in Q. Then t:Ai 6= ? for each Ai. Since each d-value
t:Ai is quantifier-free, t:Ai defines a finite set of intervals.
For a given pair t and C = (v1; :::; vn; (�ij)), Algorithm 1
will output (I1; :::; In; B), where each Ii is a set of (tight)
intervals for the variable xi andB � fx1; :::; xng is a set of
bound variables (i.e., having selection conditions).

Algorithm 1: Generation of Sites and Conditions
Step 1: Let B = ; and Ii be the set of intervals represented
by the d-value t:Ai for each i.
Step 2: For each i let Ii := Ii \ vi. If Ii = ; for some i,
t ^ ' is not satisfiable and no site sequence is produced.
Step 3: We iteratively modify the Ii's until no changes can
be made. Suppose Li; Ui; Lj ; Uj are the least lower and
greatest upper bounds of all intervals in Ii; Ij (resp.). The
modification rules depend on �ij being
(=) Let Ii := Ij := Ii \ Ij .
(6) Let1 Ii := Ii \ (�1; Uj) and Ij := Ij \ (Li;+1).
(<) Let Ii:=Ii\(�1; down(Uj)) and Ij :=Ij\(up(Li);+1).
(>) Let Ii := Ii \ (Lj ;+1) and Ij := Ij \ (�1; Ui).
(>) Let Ii:=Ii\(up(Lj);+1) and Ij :=Ij\(�1; down(Ui)).
Step 4: Finally we add to B each xi where the value of Ii
has been changed and each xi in B'.

Example 5.2 Consider the canonical representation C in
Example 5.1. Initially let I1=f(0; 3); (4:5; 5]; [7; 8)g, I2=

f(3:5;+1)g, I3=f[4; 7:5)g, I4=f[�5; 0); (1; 10]g, I5=f(�1;

�10]; [�7; 3]g. Step 2 of Algorithm 1 results in I1:=I1\v1
=f(4:5; 5]; [7; 8)g, I2:=I2\v2=f(3:5; 9]g, I3:=I3\v3=f[4; 7:5)g,
I4:=I4\v4=f[�5; 0); (1; 4]g, I5:=I5\v5=f(�1;�10]; [�7; 3]g.
Step 3 further tightens the Ii's. For example, since x 16x2,
we set I1 as I1\(�1; U2) and set I2 as I2\(L1;+1), where
U2= 9] is the greatest upper bound for I2, and L1= (4:5 is
the least lower bound for I1. This results in a new value
I2=f(4:5; 9]g. For integer variables (discrete order domain),
bound propagation is different. For x4<x5, we get I4:=
I4\(�1; down(U5))=f[�5; 0); (1; 2]g where U5 = 3] and
down(3]) = 2] since the order is discrete. The final val-
ues of Ii 's are I 1 = f(4:5; 5]; [7; 7:5)g, I2 = f(4:5; 7:5)g,
I3 = f(4:5; 7:5)g, I4 = f[�5; 0); (1; 2]g, I5 = f[�4; 3]g.

6. Subgoal Ordering and Plan Generation
In this section we consider the generation of efficient query
evaluation plans. The main task is to (re-)order data sources

1The last “)” in “(�1; Uj)” is added for clarity reasons.

to reduce the sizes of temporary results. More general opti-
mization techniques will be the focus of x8.

As illustrated in x2, a query over the global schema will
be partially evaluated at the relevant sites, and the tempo-
rary (or final) results will be sent to the subsequent sites.
Similar to the processing of joins in central or distributed
databases, the size of the temporary results is a dominant
factor in complexity for our situation: larger results would
require more communication time and may lead to longer
evaluation time at the next site. The size of temporary re-
sults is dependent on the ordering of subqueries.

Example 6.1 Continuing with the online shopping exam-
ple in x2, consider the queryQ: find systems ranked among
the top 5 in the most recent PC Weird ranking:

ans(x1; x2; :::; x7) Sys(x1; :::; x6);Rev(x7; :::; x11);
x2=x9; x3=x8; x10 6 5; x7=“PC Weird”; x11=1998:

One way to answer the query is to join Sys at Onsale with
Rev at PC Weird. One can start the query at Onsale, and
send the result to PC Weird for further evaluation, or vice
versa. Suppose that there are 100 tuples in Sys at Onsale. If
we first evaluate the query at Onsale, we have to send 100
tuples to PC Weird. On the other hand, if we first evaluate
Q at PC Weird, we only need to send 5 tuples to Onsale.

The subgoal ordering problem for our situation is differ-
ent from the traditional central or distributed processing en-
vironment, since the systems are autonomous and indexing
(information) is generally not available. As we will discuss
in the next section, the query evaluation is performed by it-
erating through tuples in a temporary relation received by
a site, performing a selection and projection, and sending
the result to the next site on a path. Clearly the smaller the
sizes of the intermediate relations are, the more efficient the
evaluation process will be. The ordering problem resembles
sideways information passing in Datalog optimization and
it can be addressed with the adornment technique [2].

Let Q be a conjunctive query involving k subgoals
r1; :::; rk and with n essential variables x1; :::; xn. For each
d-tuple t in the join Cr1./:::./Crk , we use Algorithm 1 to
determine if t and Q are consistent and, if they are, to gen-
erate the set B of bound variables and the variable compar-
ison matrix (�ij). Algorithm 2 below derives an ordering
f , the schemas of temporary relations si (1 6 i 6 k), and
sets of bound variables bi (1 6 i 6 k) for subgoals (so that
selection conditions can be constructed during evaluation).

Algorithm 2: Subgoal Ordering
Step 1: Let g = fr1; :::; rkg.
Step 2: For i := 1::k do:
2.1: We select (and remove) rj from g such that rj has the

fewest number of unbound essential variables. Let f(i)=j.
2.2: Let si be the set of essential variables x such that x

is in s` for some ` 6 i and x appears in the goal (answer)
or is compared (in �ij) with some variable in a subgoal in g
Let bi be the set of bound variables in rj .

p 1path p2

SDC R S . . .

PG

Users
PG

PG

query Q

Q"

Q’

Partial Evaluation

Data Source (DS)

SDC

local data . . .

DS DS

path p1

p 1
p 2

AC
 Q

AC
 Q’

AC
 Q"

p 2

Plan Generators (PG)
(qid, # of paths)creation Answer Collectors (AC)

:

Figure 3. Queries travel along paths
Add toB (1) all essential unbound variables occurring in rj ,
(2) all essential variables that are equal to some variables in
B according to the comparison matrix �ij .
Step 3: Output the function f , schemas s1; :::; sk, and vari-
able sets b1; :::; bk.

Example 6.2 Consider the following conjunctive query
ans(x1; x8; x9) r1(x1; x2; x3); r2(x4; x5; x6);

r3(x7; x8; x9); x3=x5; x6=x7; x2=a; x4=b:

All variables are essential. Let B=fx2; x4g be the initial
set of bound variables. The first step of the ordering is to
compute the bound-free conditions of each essential vari-
able: rfbf1 ; rb�2 , and r�f3 . Since both r1; r2 have 2 unbound
variables, r2 is chosen at random. Then, x5; x6 and conse-
quently x3; x7 become bound and the adornments are r fbb1

and rb�3 . Now r1 is favored since it has fewer unbound
essential variables. Thus f(1)=2; f(2)=1 and f(3) = 3.
Also, b1 = fx4g; s1 = fx5; x6g; b2 = fx2; x3g; s2 =
fx1; x6g; b3 = fx7g; s3 = fx1; x8; x9g.

An evaluation path for the d-tuple t of the form pt

=(�f(1); rf(1); b1; s1; :::; �f(k); rf(k); bk; sk; I1; :::; In; �ij) can
now be produced, where �i is the address for the relation
ri, Ii 's are the interval sets for the essential variables, (� ij)
is the matrix in a canonical representation of the formula in
Q, f is the ordering function, si's are schemas, and b i 's are
bound variables sets.

Example 6.3 Consider the query Q0 in Example 3.1. The
following is an evaluation path t:
(�p;Rev(x7; :::; x11); fx10g; s1(x8; x9); �o; Sys(x1; :::; x6);

fx2; x3; x4; x5; x6g; s2(x1; x3; x4; x6); I1; :::; I10; (�ij))
where I1=fOnsaleg; I2=I3=I8=I9=f(�1;+1)g; I4=f[100;

+1)g, I5=f[16;+1)g, I6=f(�1; 1500]g, I7=fPC Weirdg,
I10=f(�1; 20]g, and (�ij) represents x2=x9 ^ x3=x8.

Suppose t1; :::; t` are all d-tuples in SDCs that are satisfi-
able with Q, the evaluation plan for Q is a set of evaluation
paths fpt1 ; :::; pt`g.

Theorem 6.4 (1) For each evaluation path, the selection
conditions (or the interval sets) for essential variables are
tight. (2) The evaluation plan for Q can be generated in
polynomial time in the size of SDCs.

7. Partial Evaluation
For each queryQ, the plan generator constructs the evalua-
tion plan ofQ using Algorithms 1 and 2 and creates an (an-
swer) collector for Q (Fig. 3). The plan generator also con-
structs a “path envelope” (described below), for each path

in the plan, which is then sent to the first site in the path.
When a source receives a path envelope, it constructs a lo-
cal query from the envelope and evaluates the query. If the
result is nonempty and there are more sites in the path, it
composes a new path envelope and sends it to the next site.
Otherwise, the result to the local query is sent to the collec-
tor. When the collector has received the results from all
paths, the entire evaluation of the query is completed.

The evaluation strategy developed in this paper differs
from those mediator-based strategies [8, 25] or agent-based
ones [17, 21, 3, 16]. In these cases, the mediator or agent
plays a greater role: it not only decomposes the query into
subqueries (e.g., subgoals) and sends them to data sources,
but also needs to perform further manipulations on the re-
sults from the sources to produce the final answer. Our
approach distributes the task of result merging to the data
sources and there is no “central controller” for merging re-
sults. The entire process of query evaluation is in polyno-
mial time in the sizes of databases and SDCs. Although
this requires slightly more query processing ability at data
sources, it can be easily provided by a thin wrapper.

A path envelope contains (1) a partially evaluated query
with ordered subgoals, (2) a temporary relation (the result
of completed partial evaluations to be used), and (3) condi-
tions for selections and joins. A path envelope of a query
Q has the following general form (qid ; �a; s0; t), where qid
is the unique identifier of Q, �a the address of the answer
collector, s0 a (temporary) relation, and t some suffix of an
evaluation path of Q.

When a path envelope (qid ; �a; s0; t) reaches a source �
where t = (�; r; b; s; :::, I1; :::; In; (�ij)) is a suffix of an
evaluation path, the current source constructs a local query2

�X(�F (s0 ./ ��r)), where X is the set of all attributes
in s, ��r is the local part of the relation r, and F a selec-
tion condition obtained from I1; :::; In; (�ij), and the bound
variables in b. If the answer s0 to the local query is empty,
the evaluation path will definitely not contribute any answer
tuple, and an empty set is sent to the collector �a. Oth-
erwise, if there is a next source �0, a new path envelope
(qid ; �a; s

0; t0) is sent to �0, where t0 is the result of delet-
ing �; r; b; s from t; otherwise, s0 is sent to �a.

Algorithm 3: Partial Evaluation
Let the input path envelope be (qid ; �a; s0; t) where t =
(�; r; b; s; :::; I1; :::; In; (�ij)).
Step 1: Compose a query E = �X�F (s0./��r), where
��r is the local relation for r, X the set of all attributes in s,
and F constructed such that, whenever xi; xj are essential
and occurring in s0 or r (either xi or xj must occur in r),
� if �ij 6= “?”, F includes the condition xi�ijxj , and
� if xi is in b, F has the selection for Ii.

Step 2: Evaluate E locally and get the answer s0.

2(s0 ./ ��r) is similar to a semi-join; if the source is incapable of
performing a join, a thin wrapper to iterate through tuples in s0 is needed.

Step 3: If s0 = ; or � is the last, send s0 to �a and stop.
Step 4: Otherwise, let �0 be the next source and send the
new path envelope (qid ; �a; s

0; t0) to �0, where t0 is ob-
tained from t by deleting �; r; b; s.

When a plan generator constructs the first path envelope,
the temporary relation has no attributes but is nonempty (so
that the join at the first source will not be always empty).

Example 7.1 The path envelope for the path t in Exam-
ple 6.3 is p=(qid ; �a; rtrue ; t), where rtrue is the nonempty
relation with no attributes. We show how Algorithm 3
works on p. Initially p is sent to �p. After the evaluation at
�p, a new envelope p1=(qid ; �a; s1(x8; x9); t1) arrives at �o,
where t1=(�o; Sys(x1; :::; x6); fx2; :::; x6g; s2(x1; x3; x4; x6);

I1; :::; I10; (�ij)). The local query at �o is E=�x1;x3;x4;x6
�F (s1./��o

Sys) where F � (x2=x9)^(x3=x8)^(1006x4)^

(166x5) ^ (x661500). After E is evaluated, the result s2 is
sent to �a since �o is the last source on the path t.

Theorem 7.2 For each conjunctive query Q, the answer
obtained by our evaluation methods is its definite answer.

8. Query Optimization
There are many interesting query optimization problems.
Here we mainly consider global optimization techniques
which allow us to reduce the size of query plans and the
size of messages between data sources.

In general, optimization can be static or dynamic. Static
optimization is done during plan generation; examples in-
clude finding the tightest interval for each essential vari-
able, ordering subgoals based on binding patterns of vari-
ables and SDC optimization. The algorithms in x4 and x5
have included the first two kinds; SDC optimization will be
introduced in x8.2. Dynamic optimization is done during
query traveling. This is interesting because after some par-
tial evaluation at a source, the result may suggest alternative
ways for the subsequent evaluation. For example, if the re-
sult becomes empty, continued evaluation becomes unnec-
essary (Step 3 of Algorithm 3); otherwise, the interval sets
may be further tightened and the remaining subgoals can be
reordered according to the result.

Example 8.1 Consider an envelope (qid ; �a; s; t) where t =
(�1; r1(x1; x2); fx1g; s1(x2), ..., �2; r2(x3; x4); fx3g; s2(x4);

:::; I1=f(0; 5]g, I2=I3=f(�1; 200)g, I4 = f(�1;+1)g; :::;

(�ij)) and �23 is “=”. Suppose the evaluation of the local
query at �1 only produces tuples satisfying x2<100. Clearly
we can update both I2; I3 to (�1; 100) since x2=x3.

The dynamic optimization technique illustrated in the
above example is called constraint narrowing. Basically,
new constraints need to be extracted from the new partial
result and are used to modify (narrow) those constraints in
the current path envelope. Then the remaining subgoals
are reordered based on the new binding information and

the schemas of temporary relations are re-generated before
relaying the envelope to the next data source. To extend
the basic algorithm with constraint narrowing, we introduce
two operations:
� extract(E) which extracts new constraints from a set

of tuples E (a result to a local query) in terms of equality,
minimum, maximum constraints.
� narrow(t) which modifies a path t based on the out-

put of extract(E). It is similar to the algorithms in x4 and
x5. Specifically, it does the satisfiability checking, interval
tightening and subgoal reordering.

8.1. Sharing of Evaluation Paths
Suppose t`=(�

`
1; r

`
1; b

`
1; s

`
1; :::; �

`
k; r

`
k; b

`
k; s

`
k; I

`
1; :::; I

`
n; (�ij)

`);

`=1; 2, are two evaluation paths of a query Q. For each
positive integer i, t1 and t2 are i-prefix sharable if (1)
�1
j=�

2
j ; r

1
j=r

2
j ; s

1
j=s

2
j for 16j6i � 1, (2) �1

i=�
2
i ; r

1
i=r

2
i ,

and (3) E1
j and E2

j are equivalent for 16j6i � 1, where
E`
j ; `=1; 2, is the constructed local query at the source �j in

Algorithm 3.
It is straightforward to extend i-prefix sharable to more

than two paths. Also if a set of paths are i-prefix sharable,
they are also j-prefix sharable for each j 6 i.
Proposition 8.2 For two given evaluation paths t1; t2 of a
query and a positive integer i, it can be determined if t1; t2
are i-prefix sharable in polynomial time.

We briefly discuss how to perform partial evaluations
to include prefix sharing. After constructing all paths of a
query, the plan generator finds the prefix sharable relation-
ships among those paths and organizes them into a “prefix”
tree. The root of the tree is always the plan generator and
the other nodes are data sources. Each path from the root to
a leaf represents an evaluation path. If two evaluation paths
share one (tree) path starting from the root with length i,
they are i-prefix sharable. To construct the prefix tree, the
set of paths are first partitioned based on 1-prefix sharing.
Each partition has one common edge starting from the root.
The child nodes are the first data sources in those common
prefix. The label of the edge is the set of paths in the corre-
sponding partition. Then each 1-prefix sharing partition is
further partitioned based on 2-prefix sharing and the child
nodes of 1-prefix sharing partition nodes are created for the
second data sources. The labels for edges are assigned in
the same way as before. This process will continue until
k-prefix sharing where k is the length of each path (i.e. the
number of predicates in the user query).

After constructing the prefix tree, the notion of an enve-
lope can be extended to represent a set of paths with shar-
ing and the partial evaluation algorithm can be altered to
support the “splitting” of paths.

8.2. SDC Optimization
Optimization of the SDCs is also instrumental in reducing
the overall communication cost for evaluating a user query.

To reduce the overall communication cost, we can optimize
the SDCs for evaluation plan generation. The objective is
to transform the SDC for each relation so that different con-
straint tuples describe disjoint sets of tuples in the corre-
sponding relation. This can be achieved by Algorithm 4.

Algorithm 4: SDC Optimization
Step 1: For each attribute A and each site �, we build the
following set of base intervals so that different base in-
tervals are disjoint: f[ai; ai] j �1<ai< + 1; 16i6ng [

f(ai; ai+1) j 16i<ng, where a1; :::; an is the result of sorting
all the end points of all the intervals for A and �.
Step 2: For each site �, each d-tuple t in the SDC for �, and
each attribute A, we find all the nonempty intersections of
the interval t:A with the base intervals for this attribute and
this site. The cross product of the intervals for the different
attributes gives the set of constraint tuples equivalent to t.

The running time of the SDC optimization algorithm is
a polynomial in the length of the SDC.

9. Future Work
There are many interesting problems related to query op-
timization that remain to be studied. For example, how
to minimize the number of paths and to reduce duplicates
among different paths. In particular, the current SDC model
does not have enough information for further optimization.
It will be interesting to extend the model towards query op-
timization. Related to the schema integration aspect, SDC
can also be extended to include data quality information
(such as completeness [23, 19]), binding patterns [24, 16],
and integrity constraints [5], which may also be used for
optimization purposes.

References
[1] S. Abiteboul, H. Garcia-Molina, Y. Papakonstantinou, and
R. Yerneni. Fusion query optimization. Technical report, Stan-
ford University, 1996.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Data-
bases. Addison-Wesley, 1995.

[3] Y. Arens, C. Knoblock, and W. Shen. Query reformulation for
dynamic information integration. Journal of Intelligent Informa-
tion Systems, 1996.

[4] Digital Library Initiative. IEEE Computer, May 1996.
[5] O. M. Duschka and A. Y. Levy. Recursive plans for informa-
tion gathering. In Proc. IJCAI, 1997.

[6] Electronic Commerce and the Internet. CACM, June 1996.
[7] Electronic Commerce. IEEE Computer, May 1997.
[8] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajara-
man, Y. Sagiv, J. Ullman, V. Vassalos, and J. Widom. The TSIM-
MIS approach to mediation: Data models and languages. Journal
of Intelligent Information Systems, 1997.

[9] M.R.Genesereth, A.M.Keller, and O.M.Duschka. Infomaster:
An information integration system. In Proc. ACM SIGMOD, 1997.

[10] S. Grumbach and J. Su. Dense order constraint databases. In
Proc. ACM Symp. on Principles of Database Systems, 1995.

[11] S.Guo, W.Sun, and M.A.Weiss. Solving satisfiability and
implication problems in database systems. ACM TODS, 21(2),
1996.

[12] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and
Y. Zhuge. The stanford data warehousing project. IEEE Data
Engineering Bulletin, 6, 1995.

[13] R. Hull. Managing semantic heterogeneity in databases: A
theoretical perspective. In Proc. ACM Symp. on Principles of
Database Systems, 1997.

[14] R. Hull and G. Zhou. A framework for supporting data in-
tegration using the materialized and virtual approaches. In Proc.
ACM SIGMOD, 1996.

[15] P. Kanellakis, G. Kuper, and P. Revesz. Constraint query lan-
guages. Journal of Computer and System Sciences, 51(1), 1995.

[16] C. T. Kwok and D. S. Weld. Planning to gather information.
In Proc. AAAI, 1996.

[17] A. Levy, A. Rajaraman, and J. J. Ordille. Querying hetero-
geneous information sources using source descriptions. In Proc.
VLDB, 1996.

[18] A. Levy, D. Srivastava, and T. Kirk. Data model and query
evaluation in global information systems. Journal of Intelligent
Information Systems, 1995.

[19] A. Y. Levy. Obtaining complete answers from incomplete
databases. In Proc. VLDB, 1996.

[20] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In Proc. ACM Symp. on Princi-
ples of Database Systems, 1995.

[21] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Query answering
algorithms for information agents. In Proc. National Conf. on
Artificial Intelligence, 1996.

[22] W. Litwin, L. Mark, and N. Roussopoulos. Interoperabil-
ity of multiple autonomous databases. ACM Computing Surveys,
22(3):267–293, 1990.

[23] A. Motro. Integrity = validity + completeness. ACM Trans-
actions on Database Systems, 14(4):480–502, 1989.

[24] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. In Proc. ACM
Symp. on Principles of Database Systems, 1995.

[25] M. T. Roth and P. Schwarz. Don't scrap it, wrap it! A wrap-
per architecture for legacy data sources. In Proc. VLDB, 1997.

[26] A. P. Sheth and J. A. Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous databases.
ACM Computing Surveys, 22(3):183-236, 1990.

[27] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: a wide-area distributed
database system. VLDB Journal, 5(1):48-63, 1996.

[28] V. S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. J. Lu,
A. Rajput, T. J. Rogers, R. Ross, and C. Ward. Hermes: Hetero-
geneous reasoning and mediator system. Technical report, Uni-
versity of Maryland.

[29] J. D. Ullman. Information integration using logical views. In
Proc. Int. Conf. on Database Theory, 1997.

[30] G. Wiederhold. Mediators in the architecture of future infor-
mation systems. IEEE Computer, 25(3):38–49, 1992.

[31] H. Zhu, J. Su, and O. H. Ibarra. Efficient evaluation of linear
constraint queries with interval B+-trees. In Proc. ICDE, 1999.

