
Reachability Analysis for Some Models
of Infinite-State Transition Systems

Oscar H. Ibarra�, Tevfik Bultan��, and Jianwen Su∗

Department of Computer Science
University of California

Santa Barbara, CA 93106, USA

Abstract. We introduce some new models of infinite-state transition
systems. The basic model, called a (reversal-bounded) counter machine
(CM), is a nondeterministic finite automaton augmented with finitely
many reversal-bounded counters (i.e. each counter can be incremented
or decremented by 1 and tested for zero, but the number of times it
can change mode from nondecreasing to nonincreasing and vice-versa is
bounded by a constant, independent of the computation). We extend a
CM by augmenting it with some familiar data structures: (i) A push-
down counter machine (PCM) is a CM augmented with an unrestricted
pushdown stack. (ii) A tape counter machine (TCM) is a CM augmented
with a two-way read/write worktape that is restricted in that the number
of times the head crosses the boundary between any two adjacent cells of
the worktape is bounded by a constant, independent of the computation
(thus, the worktape is finite-crossing). There is no bound on how long
the head can remain on a cell. (iii) A queue counter machine (QCM)
is a CM augmented with a queue that is restricted in that the number
of alternations between non-deletion phase and non-insertion phase is
bounded by a constant. A non-deletion (non-insertion) phase is a period
consisting of insertions (deletions) and no-changes, i.e., the queue is idle.
We show that emptiness, (binary, forward, and backward) reachability,
nonsafety, and invariance for these machines are solvable. We also look at
extensions of the models that allow the use of linear-relation tests among
the counters and parameterized constants as “primitive” predicates. We
investigate the conditions under which these problems are still solvable.

1 Introduction

Since the introduction of efficient automated verification techniques such as sym-
bolic model-checking [BCM92], finite-state machines have been widely used for
modeling reactive systems. However, due to their limited expressiveness, finite-
state models are not suitable for specifying most infinite-state systems. To over-
come this limitation researchers have used 1) abstraction techniques to gener-
ate finite state abstractions of infinite-state systems [DF95,DGG97,BLO98], 2)
semi-decision procedures which prove or disprove a property if they converge,
but are not guaranteed to converge [BG96,WB98], or 3) conservative approxi-
mation techniques which are guaranteed to converge but may not always return
� Supported in part by NSF grants IRI-9700370 and IIS-9817432.

�� Supported in part by NSF grant CCR-9970976.

Jianwen Su
Proc. 11th Int. Conf. on Concurrency Theory, 2000



a definite answer [HRP94,BGP99]. Another promising approach for verification
of infinite-state systems is finding/identifying models which can represent such
systems and have decidable verification queries such as reachability, invariance,
etc. It is well-known that, in general, verification problems for infinite-state sys-
tems are undecidable [Esp97]. In fact, even for systems with only two variables
(or counters) that can be incremented or decremented by 1 and tested for 0,
we already know that the halting problem is undecidable (hence, the emptiness,
reachability, and other problems are also undecidable) [Min61]. However, cer-
tain restrictions can be placed on the workings of these systems that make them
amenable to analysis. Some models that have been shown to have decidable prop-
erties are: various approximations on multicounter machines [CJ98,BW94,FS00],
timed automata [AD94] (and real-time logics [AH94,ACD93,HNSY94]), push-
down automata [BEM97,FWW97,Wal96]. [BER95] studies models of hybrid sys-
tems of finite automata supplied with (unbounded) discrete data structures and
continuous variables and obtains decidability results for several classes of sys-
tems with control variables and observation variables. [DIBKS00] investigates
discrete timed automata (i.e., timed automata with integer-valued clocks) aug-
mented with a pushdown stack.

In this paper, we introduce some new models of infinite-state systems. The ba-
sic model, called a (reversal-bounded) counter machine (CM), is a nondetermin-
istic finite automaton augmented with finitely many reversal-bounded counters
(i.e., each counter can be incremented or decremented by 1 and tested for zero,
but the number of times it can change mode from nondecreasing to nonincreas-
ing and vice-versa is bounded by a constant, independent of the computation).
This model was first introduced and studied in [Iba78]. We extend a CM by
augmenting it with one of the following data structures: i) an unrestricted push-
down stack; ii) a finite-crossing read/write worktape; ii) a restricted queue. We
show that emptiness, (binary, forward, and backward) reachability, nonsafety,
and invariance for these machines are solvable. We also look at extensions of
the models that allow the use of linear-relation tests among the counters and
parameterized constants as “primitive” predicates. We investigate the conditions
under which these problems are still solvable.

Our results can be used in automated verification of infinite-state systems
in following ways: (1) By reducing a given infinite-state system to one of the
models we present in this paper, one can prove that certain verification queries
for the given system are decidable and can be verified without any abstractions
or approximations (for example, this approach was used in [DIBKS00] to show
the decidability of binary reachability problem for discrete pushdown timed au-
tomata by reducing it to the emptiness problem for pushdown counter machines);
(2) By restricting the behaviors of a given infinite-state system using properties
such as reversal-boundedness one can obtain a conservative approximation of the
given system (in the sense that when an error is found in the restricted system
this implies that the error exists in the original system); and (3) The proofs of
decidability of properties such as emptiness and reachability can be used as a
basis for algorithms for verification of such properties.



The paper is organized as follows. Section 2 defines the new models and
summarizes the main results. Section 3 gives proof sketches. Section 4 looks at
some generalizations of the models. Section 5 is a brief conclusion.

2 The Models and Main Results

Many verification problems for systems that can be modeled by automata (finite-
or infinite-state) can often be reduced to the emptiness problem: Given a machine
M , does it accept at least one input? Decidability (existence of an algorithm) of
emptiness can lead to decidability of questions such as reachability, nonsafety,
invariance, containment, and equivalence, which are at the heart of verification
procedures. While these problems are decidable for finite-state systems, they
are, in general, undecidable for infinite-state systems. However, with appropri-
ate restrictions, some infinite-state models have been shown to have decidable
properties.

In our discussion of computational models below, we consider two types of
machines: one with a one-way read-only input tape and the other without an
input tape. When we are interested in “language recognition/acceptance”, we
consider machines with input. In verification problems (reachability, safety, etc.),
we use the machines mostly as systems specifications rather than language rec-
ognizers, since the interest is more on the “behaviors” they generate; so these
machines have no input. However, machines with input tape are also of interest
for “parametric” systems, where the parameters can be specified on the input
tape (we discuss this in Section 4). Also, many of the proofs of the results con-
cerning verification problems on machines without an input tape are reductions
to the decidability of the emptiness for machines with an input tape. It will be
clear from the context, which type of machine we are dealing with.

The basic model is a nondeterministic finite-state machine augmented with k
“reversal-bounded”counters (for some k). Thus, each counter can be incremented
or decremented by 1 and tested for zero and is reversal-bounded in that the
number of alternations between nondecreasing mode and nonincreasing mode
is bounded by a constant, independent of the computation. Without loss of
generality, we assume that the counters can only store nonnegative integers,
since the finite-state control can remember the signs of the numbers. We call
this basic model a CM. Note that, by convention, a CM has no input tape. If
we attach a one-way read-only input tape, we call it a CM acceptor. We can
generalize the CM by augmenting it with some well-known data structures:

1. A pushdown counter machine (PCM) is a CM augmented with an unrestricted
pushdown stack.

2. A tape counter machine (TCM) is a CM augmented with a two-way read/write
worktape that is restricted in that the number of times the head crosses the
boundary between any two adjacent cells of the worktape is bounded by a
constant, independent of the computation (i.e. the worktape is finite-crossing).
There is no bound on how long the head can remain (“sit”) on a cell.

3. A queue counter machine (QCM) is a CM augmented with a queue that is
restricted in that the number of alternations between non-deletion phase and



non-insertion phase is bounded by a constant. A non-deletion (non-insertion)
phase is a period consisting of insertions (deletions) and no-changes, i.e., the
queue is idle.

counter

produced

counter

consumed

Nondeterministic 
Finite State Control

Nondeterministic 
Finite State Control

PRODUCER CONSUMER

queue

Fig. 1. A producer-consumer system with an unbounded buffer

Example 1: We give an example of a system that can be modeled by a QCM.
Consider the producer-consumer system given in Fig. 1. The finite state control
of the producer has a produce state, and the finite state control of the consumer
has a consume state. When the producer is in produce state it can take the
write transition which increments the counter produced by one and writes an
item from a queue alphabet {a, b, c, d} to the FIFO queue. When the consumer
is in consume state and the queue is not empty, it can take the read transition
which increments the counter consumed by one, removes an item from the FIFO
queue, and stores the symbol read from the FIFO queue in its finite state control.
Note that counters produced and consumed are reversal bounded since they are
nondecreasing. If we limit the behavior of the queue, so that the alternations
between non-write and non-read phases are bounded by a constant, this system
can be represented by a QCM. Note that this limitation does not bound the size
of the queue, or counters. We can effectively verify properties such as invariance
for this restricted system (see Example 2). If we find out that the restricted
system does not satisfy an invariant, this implies that the unrestricted system
does not satisfy it either.

Clearly, QCMs can effectively be simulated by TCMs. Thus, decidability
results for TCMs apply to QCMs. PCMs and TCMs are more powerful than
CMs. A PCM is incomparable with a TCM (note that the pushdown in a PCM
is unrestricted, i.e., there is no restriction on the number of alternations between
non-popping and non-pushing). The restriction that the worktape of a TCM is
finite-crossing is necessary; otherwise, the tape would be equivalent to a Turing
machine (TM). Similarly, the restriction on the QCM is necessary; otherwise,
the queue would be equivalent to a TM. It is also easy to see that a QCM with
two restricted queues can simulate a TM.
Convention: By convention, throughout, CM, PCM, ... will refer to a machine
without an input tape. When they have an input tape, they will be called CM
acceptor, PCM acceptor, ... In this case the computation starts with all counters
zero and the pushdown stack (worktape/queue ) empty (blank). Unless otherwise
specified, all machines are nondeterministic.

Define a configuration of a PCM to be a string of the form:

0q#0i1#0i2#...#0ik#w



where q in {1, 2, ..., n} represents the state, 0ij represents the value of counter
j (in unary), and w represents the contents of the stack, with the rightmost
symbol of w the top of the stack. For for certain problems, we can have w given
in “reversed”.

For a TCM, since the worktape is two-way read/write, the tape contents w in
the configuration has to indicate the position of the read/write head within the
tape. For a QCM, the left (right) end w corresponds the rear (front) of the queue.
For a CM, the configuration has no tape and is of the form 0q#0i1#0i2#...#0ik .

TCM (PCM, QCM) acceptors are quite powerful. For example, a TCM ac-
ceptor (even a much restricted version) M can accept the language over the
alphabet {a, b, c, d} consisting of all strings x#x such that x has the property
that the sum of the lengths of all runs of c’s occurring between pairs of symbols
a and b (in this order) equals the number of d’s. For example, x = dacbacaccbdd
satisfies the property, but x = ddacbacaccbdd does not. M has one counter and
operates in the following manner. Given input x#y, M copies x on the work-
tape and checks that x = y and resets the worktape head to the left end of x.
It computes the sum in its counter by looking at the worktape and whenever
it sees an a, it first checks that there is a matching b to the right and that all
symbols in-between are c’s. It then moves left (to a), adding the length of the
run of c’s to the counter. The process is repeated until the whole string has been
examined. (So far, M crosses any boundary between two adjacent cells on the
worktape at most 7 times.) M then resets the worktape head to the left end of
the tape and checks that the number of d’s is equal to the sum in the counter.
Thus, M is 9-crossing, although worktape head makes an unbounded number of
(left-to-right and right-to-left) turns, i.e., it is not finite-turn. Note also that M
does not re-write the worktape and is deterministic.

Even a CM is quite powerful. For example, let L be the language consisting
of all strings x#y#z, such that x, y, z are pair-wise distinct binary strings. A
CM acceptor M with 3-counters, each making exactly one reversal, can accept
L. M uses one counter to check that x is different from y, a second counter to
compare x and z, and a third counter to check that y is different from z. To
verify that x is different from y, M “guesses” a position of discrepancy (within
the string x). It does this by incrementing the first counter by 1 for every symbol
it encounters while moving right on x, and nondeterministically terminating the
counting at some point, guessing that a position of discrepancy has been reached.
M records in it’s finite-control the symbol in that position. M uses the value
in the counter to arrive at the same location within y where a discrepancy was
guessed to occur. The second and third counters are used in a similar way to
compare x with z and y with z.

Decidability/complexity results concerning CMs have been obtained in
[Iba78,GI81]. These results were used recently to prove the decidability (and
derive the complexity) of some decision problems (containment, equivalence,
disjointness, etc.) for database queries with linear constraints [IS99,ISB00].

CMs, PCMs, QCMs, and TCMs (these have no inputs!) can generate rather
complex behaviors. For example, one can show that a PCM with one counter can



start in its initial state with empty pushdown stack and reach a configuration
where the pushdown contains a string x with the property described in the first
example above.

The main results of the paper are:
1. (Emptiness) The emptiness problem for a class of machine acceptors is the

problem of deciding, given a machine M in the class, whether the language
L(M) accepted by M is empty. We can show that the emptiness problems for
PCM and TCM acceptors are decidable.

2. (Binary-Reachability) If M is a PCM (TCM), define its binary reachability
set, R(M), to be set of all pairs (α, β) of configurations such that α can reach β
in 0 or more transitions. (Note that a pair of configurations can be represented
as a string. For a PCM, the stack word component of β is written in reversed.)
We can effectively construct, given a PCM (TCM) M, a PCM(TCM) acceptor
accepting R(M).

3. (Forward-Reachability) Let M be a PCM (TCM) and S be a set of config-
urations accepted by a CM acceptor. We can effectively construct a PCM
(TCM) acceptor accepting FM (S) = the set of all configurations of M that
are reachable from configurations in S in 0 or more transitions.

4. (Backward-Reachability) Let M be a PCM (TCM) and S be a set of con-
figurations accepted by a CM acceptor. We can effectively construct a PCM
(TCM) acceptor accepting BM (S) = the set of all configurations of M that
can reach configurations in S in 0 or more transitions.

5. (Nonsafety) We can effectively construct, given a PCM (TCM) M and two
sets of configurations I (initial set) and B (bad set) accepted by CM acceptors,
a PCM (TMC) M ′ that accepts a configuration α if and only if (i) α is in I,
and (ii) M when started in α can reach a configuration in B. Thus nonsafety
is decidable.

6. (Invariance) We can effectively construct, given a PCM (TCM) M and two
sets of configurations I (initial set) and G (good set) accepted by CM acceptor
and deterministic CM acceptor respectively, a PCM (TMC) M ′ that accepts
a configuration α if and only if (i) α is in I, and (ii) M when started in α can
reach a configuration not in G. Thus invariance is decidable.

Obviously, the above results hold for CMs and, as previously observed, QCMs
can effectively be simulated by TCMs; so the results hold for these machines
as well. In contrast, emptiness is undecidable for PCMs and TCMs with mul-
tiple pushdown stacks (finite-crossing worktapes). In fact, it follows from the
undecidability of the Post Correspondence Problem [Pos46] that emptiness is
undecidable for machines with only two pushdown stacks, even if the stacks are
restricted to making only one alternation from non-popping to non-pushing.
Example 2: Consider again the producer-consumer system given in Fig. 1 and
the QCM M that is constructed from it by restricting the behavior of the queue.
An invariance property for this system can be defined as follows: I is defined
as the set of configurations where both produced and consumed are 0 and the
queue is empty, and G is defined as the set of configurations where produced −
consumed is equal to the number of items in the queue, and the number of a’s in



the queue is � the number of b’s and the number of c’s is � the number of d’s.
We want to verify that for all the configurations in I (which represent the initial
configurations of the system) the set of reachable configurations is contained
in G, i.e., G is an invariant. We can construct deterministic CM acceptors for
both these sets; hence, we can construct a QCM M ′ which will recognize all
the configurations in I which can reach a configuration that is not in G. If the
language accepted byM ′ is not empty, this means thatM (and the corresponding
unrestricted system) has an error. If the language accepted by M ′ is empty,
however, this only proves that the restricted system is correct. It does not prove
the correctness of the unrestricted system. Hence, the restricted system is a
conservative approximation, in the sense that there are no false negatives but
there could be false positives. If a given input system can be reduced to a QCM
both negative and positive results would be exact.
Example 3: Consider a CM M , and suppose we are interested in the set T
of pairs of configurations (α, β) of M such that there is a computation path
(i.e., sequence of configurations) from α to β that satisfies a property that can
be verified by a PCM (QCM, TCM) acceptor. Then T is computable and can
be accepted by a PCM (QCM, TCM) acceptor. For example, suppose that the
property is for the path to contain two non-overlapping subpaths (i.e., segments
of computation) which go through the same sequence of states, and the length
of the subpath is no less than a third of the length of the entire path. Clearly,
T can accepted by a QCM acceptor or by a TCM acceptor.

We also study extensions of PCM and TCM acceptors in Section 4. In par-
ticular, we look at acceptors that allow as “primitive” predicates the use of
linear-relation tests among the counters and parameterized constants, e.g., tests
like “Is 3x − 5y + 11z − 2D1 + 9D2 < 12?”, where x, y, z are counters and D1

and D2 represent parameterized constants whose domain is the set of all inte-
gers (+,−, 0). Note that directly implementing such tests using the standard
“testing for zero” would result in a machine that is not reversal-bounded. We in-
vestigate the conditions under which the emptiness problem and other problems
are decidable for these extended models.

3 Proof Sketches

We now give proof sketches of the results. We start with the emptiness problem.
Theorem 1. The emptiness problem for PCM acceptors is decidable.
Proof. This result was already shown in [Iba78]. For completeness, we describe
the idea of the proof. Let A be an alphabet consisting of k symbols a1, ..., ak, N

the set of nonnegative integers. For each string (word) w in A∗, we define
f(w) = (i1, ..., ik), where ij is the number of occurrences of aj in w.

If L is a subset of A∗, we define f(L) = {f(w) | w ∈ L}.
In [Iba78], it was shown that if M is a PCM acceptor with input alphabet

A, then f(L(M)) is an effectively computable semilinear set (or, equivalently,
definable by a Presburger formula), where L(M) is the language accepted by
M . Hence, L(M) is empty iff f(L(M)) is empty, which is decidable since it is
Presburger.



Obviously, the above theorem holds for machines with no pushdown stack:
Corollary 1. The emptiness problem for CM acceptors is decidable.

It has been shown in [GI81] that the emptiness problem for CM acceptors is
decidable in nckr time for some constant c, where n is the size of the machine,
k is the number of counters, and r is the reversal-bound on each counter. We
believe that a similar bound could be obtained for the case of PCM acceptors.

To prove the decidability of the emptiness problem for TCM acceptors, we
need some lemmas.
Lemma 1. Let M be a TCM acceptor. We can effectively construct a TCM
acceptor M ′ such that L(M) = L(M ′) and M ′ is non-sitting in that in any
computation, its read/write head does not sit on any tape cell (i.e., it always
moves left or right of a cell in every step).
Proof. Note that M ′ cannot just simulate a sitting step by a left (or right) move
followed by a right (or left) move. This is because the read/write head can sit on
a cell an unbounded number of steps, and this would makeM ′ not finite-crossing.

What M ′ can do is to use a new “dummy” symbol, say #. M ′ begins the
simulation of M by writing a finite-length sequence of #’s on the worktape,
the length being chosen nondeterministically. M ′ simulates M , but whenever M
writes a symbol on a new tape cell, M ′ also writes to the right of this cell a
finite-length sequence of #’s (again the length is chosen nondeterministically).
Thus, at any time, the worktape contains a string where every pair of non-
dummy symbols (i.e. symbols in the worktape alphabet of M) is separated by a
string of #’s. During the simulation, M ′ uses/moves on the #’s to simulate the
sitting moves of M (this is possible if there are enough #’s between any pair
of non-dummy symbols). To simulate a nonsitting move of M , M ′ may need
to “skip over” the #’s to get to the correct non-dummy symbol. Clearly, M ′ is
non-sitting and accepts L(M).
Lemma 2. Let M be a TCM acceptor. We can effectively construct a TCM M ′

(with no input tape!) such that L(M) is nonempty if and only if M ′ when started
with a blank worktape and zero counters has a halting sequence of moves. (Note
that since the machine is nondeterministic, not all sequences of moves may halt.)
Proof. The construction of M ′ is straightforward. In the simulation of M , M ′

nondeterministically guesses the symbols comprising the input tape.

Theorem 2. The emptiness problem for TCM acceptors is decidable.

Proof. From Lemma 2, we need only show that the halting problem for TCMs is
decidable. Let M be a TCM. By Lemma 1, we assume that M is non-sitting. We
may also assume, without loss of generality, that each counter ofM makes exactly
one reversal (since a counter making k reversals can be simulated by (k + 1)/2
counters, each making exactly one reversal), halts with all the counters zero and
the worktape head at the right end of the tape, and that in any computation,
every counter becomes positive.

Consider a halting sequence of moves of M and look at position (cell) p of
the worktape, p = 1, 2, ...n, for some n. In the computation, position p will be
visited many times. Let t1, ..., tm be the times M visits p.



Corresponding to the time sequence (t1, ..., tm) associated with position p, we
define a crossing vector R = (I1, ..., Im), where for each i, Ii = (d1, q1, r1, r2, d2),
1. d1 is the direction from which the head entered p at time ti;
2. q1 is the state when it entered p;
3. r1 is the instruction that was used in the move above;
4. r2 is the instruction that was used at time ti + 1 when it left p;
5. d2 is the direction from which it left p at time ti + 1.

We construct a TCM M ′ which simulates a halting computation of M by
nondeterministically guessing the sequence of crossing vectors R1, ..., Rn as it
processes the worktape from left to right, making sure that Ri and Ri+1 are
compatible for 1 � i � n. Corresponding to each counter C of M , machine M ′

uses two counters C1 and C2. C1 is used to record the increases in C, while C2

is used to record the decreases in C. When M ′ completes the simulation of M ,
C1 and C2 must contain the same value, and this can easily be checked by M ′.

The theorem follows from Corollary 1 since deciding whether a TCM (which
has no input tape) has a halting sequence of moves is easily reducible to deciding
the emptiness problem for a CM.

The restriction that the worktape in a TCM is finite-crossing is necessary;
otherwise (i.e., if it is unrestricted), the machine becomes a Turing machine. In
fact, even for a special case, emptiness is undecidable. Restrict the worktape
to be a pushdown stack which can only push (i.e., write) but cannot pop (i.e.,
erase), but can enter the stack in a read-only mode. Moreover, once it enters the
stack in a read-only mode, it can no longer push. There is no restriction on the
number of times the stack head can cross the boundary between any two stack
cells. This restricted worktape is called a “checking” tape. Call this machine
CCM. (CCM acceptors without counters have been studied in [Gre68].)

Theorem 3. The emptiness problem for CCM acceptors is undecidable.

Proof. The proof uses the undecidability of Hilbert’s Tenth Problem (HTP)
[Mat70], which is to decide for a given polynomial p(x1, ..., xn) with integer
coefficients whether it has a nonnegative integral root. We omit the construction,
but the idea is to show that we can effectively construct, given a polynomial
p(x1, ..., xn), a CCM acceptor Mp such that p has no integral solution if and
only if L(Mp) is empty.

We consider next binary reachability.

Theorem 4. We can effectively construct, for a given PCMM , a PCM acceptor
M ′ accepting R(M) = the set of all pairs (αβ) of configurations such that α can
reach β in 0 or more transitions.

Proof. Given a PCM M , we construct a PCM acceptor M ′ that accepts R(M).
M ′ when given (αβ), reads configuration α and sets its counters and pushdown
stack to α. Then M ′ simulates the computation of M starting in this configura-
tion. At some point M ′ guesses that it has reached the configuration β, which it
can verify by reading the input (note that since the pushdown is last-in-first-out,
β must have the stack word given in “reversed”).



The same construction works for a TCM acceptor, but the stack word in
configuration β does not have to be given in reversed on the input, since the
read/write head is two-way.
Theorem 5. We can effectively construct, for a given TCMM , a TCM acceptor
M ′ accepting R(M).

We now look at nonsafety.
Theorem 6. We can effectively construct, given a PCM (TCM) M and two
sets of configurations I (initial set) and B (bad set) accepted by CM acceptors,
a PCM (TMC) M ′ that accepts a configuration α iff (i) α is in I, and (ii) M
when started in α can reach a configuration in B. Thus nonsafety is decidable.
Proof. We only prove the PCM case; the proof for TCM is similar. Let MI and
MB be CM acceptors accepting I and B, resp. We construct a PCM acceptor
M ′ which, when given an input α, sets its counters and pushdown stack to
this configuration while also checking that the configuration is accepted by MI .
(Note that this can be done with additional counters without popping the stack).
Then M ′ simulates the computation of M starting in this configuration. At some
point M ′ guesses that it has reached a configuration β in B, which it can verify
by simulating MB on β. In the simulation of MB , M ′ uses the pushdown stack
which contains w to simulate the action of MB on this input. M ′ reads w from
the right by “popping”. There is a slight problem in that M ′ will be working on
the reverse of w, not w. However, it can be shown that if a language is accepted
by a CM acceptor, then its reverse can also be accepted by a CM acceptor. Hence,
we can use the CM acceptor accepting the reverse of the language accepted by
MB in the computation of M ′ to decide if β is in B.
Corollary 2. We can effectively construct, given a PCM (TCM) M and two
sets of configurations I (initial set) and G (good set) accepted by CM acceptor
and deterministic CM acceptor resp., a PCM (TMC) M ′ that accepts a configu-
ration α iff (i) α is in I, and (ii) M when started in α can reach a configuration
not in G. Thus invariance is decidable.
Proof. It can be shown that if G is accepted by a deterministic CM acceptor
MG, then we can effectively construct a deterministic CM acceptor accepting
the set of bad configurations B = the complement of G. (Note that this is not
true if MG is not deterministic.) The result follows from the above theorem.

Next, we show that forward reachability is computable.
Theorem 7. We can effectively construct, given a PCM (TCM) M and a set of
configurations S accepted by a CM acceptor, a PCM (TCM) acceptor accepting
FM (S) = the set of all configurations that can be reached from configurations in
S in 0 or more transitions.
Proof. Let M be a PCM and S be a set of configurations accepted by a CM
acceptor MS . We construct a PCM acceptor M ′, which when given a configu-
ration β (with the stack word given in reverse), nondeterministically guesses a
configuration α by simultaneously setting its counters and pushdown stack to
this configuration and checking that α is in S. Then M ′ simulates the computa-
tion of M starting in this configuration. At some point, M ′ guesses that it has
reached β, which it can check by reading the input. The proof for the case of
TCM M is similar.



Theorem 8. We can effectively construct, given a PCM (TCM) M and a set of
configurations S accepted by a CM acceptor, a PCM (TCM) acceptor accepting
BM (S) = the set of all configurations that can reach configurations in S in 0 or
more transitions.
Proof. Let M be a PCM and S be a set of configurations accepted by a CM
acceptor MS . We construct a PCM acceptor M ′, which when given a configu-
ration α, sets its counters and pushdown stack to this configuration. Then M ′

simulates the computation of M starting in this configuration. At some point
M ′ guesses that it has reached a configuration in S (which is accepted by MS)
and verifies this as in the proof of Theorem 6. The proof for the case of TCM
M is similar.

Clearly, all the results above hold for CMs and QCMs. In fact, some of the
results can be strengthen for CMs, for example:
Theorem 9. Let M be a CM and S be a set of configurations. Then BM (S) is
accepted by a CM acceptor iff S is accepted by a CM acceptor.
Proof. The “if part” follows from the construction in Theorem 8. Conversely,
given M and S, suppose BM (S) is accepted by a CM acceptor M ′. We show
that S can be accepted by a CM acceptor M ′′.

Given β on its input tape, M ′′ guesses and stores in k+ 1 counters a config-
uration α. By using additional counters and employing M ′, M ′′ checks that α
is in BM (S). Then M ′′ simulates M to check that α can reach β.

We say that a set of configurations S of a CM, which are strings of form
0q#0i1#0i2#...#0ik , is Presburger if the set of (k+1)-tuples (q, i1, ..., ik) corre-
sponding to the configurations in S is definable by a Presburger formula.

It known that a set of configurations is accepted by a CM acceptor if and
only if it is Presburger [Iba78]. Hence, we have:
Corollary 3. Let M be a CM and S be a set of configurations. Then BM (S) is
Presburger if and only if S is Presburger.

The last two results above also hold for FM (S).

4 Extensions of the Models

In this section we look at some extensions of PCM (TCM) acceptors. We will only
deal with the emptiness problem since the other problems (reachability, safety,
etc.) are reducible to emptiness, as we have seen in the previous section. The
proofs of the theorems below are generalizations of the proofs of similar results
for the corresponding extensions of CMs in [ISDBK00]. Related results can be
found in [FS00], where decidability of reachability problems for some classes of
two counter machines which allow resetting a counter to zero and transferring
the value of one counter to another were shown.

The first extension is to allow the counters of a PCM (TCM) to store negative
numbers, and allow the counters to increment/decrement by c and allow tests
of the form: “Is xθc?”, where x is a counter, c is any integer constant (there are
many such constants in the specification of the machine), positive, negative, or
zero, and θ is one of <,>,=.



One can easily show that any PCM (TCM) M that uses the generalized in-
structions above can be converted to an equivalent machine M ′ using standard
instructions such that L(M) = L(M ′). The construction of M ′ is straightfor-
ward. M ′ “remembers” the signs of the counters in the states, so the counters
do not have to store negative values. To handle predicates like x < c, M ′ uses
fixed-size “buffers” in the states to translate the origin, etc.

Next, consider a PCM (TCM) that allows tests like, “Is 5x− 3y + 2z < 7?”,
where x, y are counters. To be precise, let V be a finite set of variables over
integers. An atomic linear relation on V is defined as

∑
v∈V avv < b, where av

and b are integers. A linear relation on V is constructed from a finite number of
atomic linear relations using ¬ and ∧. Note that standard symbols like >,=,→
(implication), ∨ can also be expressed using the above constructions.

Suppose we allow a PCM (TCM) M to use tests of the form: “ Is L ”,
where L is a linear relation on the counters. The emptiness problem becomes
undecidable, even for deterministic CMs. In fact, the following can be shown
using the undecidability of the halting problem for unrestricted two counter
machines [Min61]:

Consider only deterministic CMs (no input) with 3 counters (initially zero)
which can only be incremented by 0 or 1 (thus decrementing is not allowed),
and the only tests are of the form “Is x = y?”, where x, y are counters. The
halting problem for such machines is undecidable.

Note that in the above undecidability, the 3-counter CM is 0-reversal bounded
because the mode of each of the counters is always nondecreasing. Interestingly,
the emptiness problem is decidable for 2-counter CMs using the standard instruc-
tions and the test “Is x = y?”. This follows from Theorem 1 and the observation
that the pushdown stack can be used to keep track of the difference x− y.

In defining reversal-boundedness, we only had two modes: nondecreasing and
nonincreasing. Suppose we refine these to three modes: increasing, decreasing,
no-change. Say that a counter is mode-bounded if the number of changes in its
mode during any computation is bounded by a constant. Clearly, a counter that
is mode-bounded is reversal-bounded, but the converse is not true. For example,
a counter that displays the pattern “122334455 · · ·” correspond to 0-reversal, but
is not mode-bounded (since although it is nondecreasing, the number of changes
from no-change to increasing and vice-versa is unbounded). Call a PCM (TCM)
mode-bounded if the counters are mode-bounded. We can show the following:
Theorem 10. The emptiness problem is decidable for mode-bounded PCM
(TCM) acceptors that can use linear-relation tests on the counters.

We can further generalize the machines by allowing parameterized constants
in the linear relations. So for example, we can allow tests like “Is 3x−5y−2D1+
9D2 < 12?”, where D1 and D2 represent parameterized constants whose domain
is the set of all integers (+,−, 0). We can specify the values of these parameters
by including them in the input tape. Thus, the input to the machine with t
parameterized constants will have the form: “#d1%· · ·%dk%w#”, where d1, ..., dk

are integers (+,−, 0) that the parameterized constants D1, ...,Dk assume for this
run, and % is a separator. We assume that the di’s are represented in unary along
with their signs. We can prove the following:



Theorem 11. The emptiness problem is decidable for mode-bounded PCM
(TCM) acceptors that can use linear-relation tests on the counters and parame-
terized constants.

As we have seen, Theorem 10 is not true for machines whose counters are
reversal-bounded but not mode-bounded. However, suppose we require that in
every linear- relation L, every atomic linear-relation in L involves only the pa-
rameterized constants and at most one counter so, e.g., 4D1 + 9D2 < 7 and
5x− 4D1 + 9D2 < 7 are allowable, but 5x+ 2y − 4D1 + 9D2 < 7 is not (where
x and y are counters, and D1 and D2 are parameterized constants). Call such a
relation L a restricted linear-relation. Then we can prove:
Theorem 12. The emptiness problem is decidable for PCM (TCM) acceptors
that can use restricted linear-relation tests on the counters and parameterized
constants.

5 Conclusions

We introduced some new models of infinite-state transition systems by aug-
menting the finite-state machine with reversal-bounded counters and suitably
restricted data structures (such as pushdown stack, queue, read/write tape) and
showed that emptiness, (binary, forward, backward) reachability, nonsafety, and
invariance for these models are solvable. We also studied generalizations of the
models.

As we have seen in Examples 2 and 3, the results can be used to verify
properties that are not verifiable using previous techniques. We give some more
examples below.

For a configuration α, αxi
and αw denote the value of counter xi and the

stack word (or worktape contents) of α, respectively. #a(w) denotes the number
of occurences of symbol a in a stack word (or worktape contents) w.

Consider the following property concerning a PCM M :
For any pair of configurations (α, β) if α reaches β, then (βx2 = αx1 +2αx2 ∧
2#a(βw) = 3#b(αw)).

This property can be verified, by showing that its negation can be verified. From
Theorem 4, R(M) can be accepted by a PCM acceptor M ′. We construct a
PCM acceptor M ′′ which simulates M ′ and at the same time (using additional
counters) checks that (βx2 = αx1 + 2αx2 ∧ 2#a(βw) = 3#b(αw)) is false. Then
L(M ′′) is empty if and only if the property is false. Hence, the property can be
verified. Note that:
– Even without counters, 2#a(βw) = 3#b(αw) defines a nonregular set of stack

word pairs. Hence, this property cannot be verified by the model checking
procedures for pushdown systems [BEM97,FWW97,Wal96].

– Even without the pushdown stack, βx2 = αx1 + 2αx2 is not a “clock region”
[AD94]. Hence, the classical region technique cannot verify this property. This
is also pointed out in [CJ99].

As another example, since invariance is decidable from Corollary 2, we can verify
the following property concerning a TCM M :



Starting from a configuration α satisfying: #a(αw) = #b(αw), M can only
reach a configuration β satisfying: (βx1 = 2βx1 + βx2 ∧#a(βw) = 3#b(βw)).

The reason is that set of α’s and β’s satisying the the stated properties can be
accepted by deterministic CM acceptors.

In the future we would like to investigate the decidability of liveness prop-
erties for the computational models we presented in this paper. More generally
we would like to consider decidability of various temporal logic properties such
as CTL, LTL, and µ-calculus. We would also like to investigate the complexity
of verification procedures for these infinite-state models.

References

[ACD93] R. Alur, C. Courcoibetis, and D. Dill. Model-checking in dense real time.
Information & Computation, 104(1):2-34, 1993.

[AD94] R. Alur and D. Dill. Automata for modeling real-time systems. Theoretical
Computer Science, 126(2):183-236, 1994.

[AH94] R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):181-204,
1994.

[BCM92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. H. Hwang.
Symbolic model checking: 1020 states and beyond. Information & Computation,
98(2):142–170, June 1992.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown
Automata: Application to Model-Checking. CONCUR 1997, pp. 135-150.

[BER95] A. Bouajjani, R. Echahed and R. Robbana. “On the Automatic Verification
of Systems with Continuous Variables and Unbounded Discrete Data Structures.”
In Hybrid Systems II, LNCS 999, 1995.

[BG96] B. Boigelot and P. Godefroid. “Symbolic verification of communication pro-
tocols with infinite state spaces using QDDs.” In Proc. Int. Conf. on Computer
Aided Verification, 1996.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model Checking Concurrent Systems
with Unbounded Integer Variables: Symbolic Representations, Approximations,
and Experimental Results. ACM Trans. on Programming Languages and Systems,
21(4):747-789, July 1999.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite
state systems compositionally and automatically. In Proc. 10th Int. Conf. on
Computer Aided Verification, 1998.

[BW94] B. Boigelot and P. Wolper, Symbolic verification with periodic sets, Proc. 6th
Int. Conf. on Computer Aided Verification, 1994

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Pres-
burger arithmetic. Proc. 10th Int. Conf. on Computer Aided Verification, 1998.

[CJ99] H. Comon and Y. Jurski. Timed Automata and the Theory of Real Numbers.
Proc. CONCUR, 1999.

[DIBKS00] Z. Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su. Binary
reachability analysis of discrete pushdown timed automata. To appear in Int. Conf.
on Computer Aided Verification, 2000.

[DF95] J. Dingel and T. Filkorn. Model checking for infinite state systems using data
abstraction. Proc. 7th Int. Conf. on Computer Aided Verification, 1995.

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM Trans. on Programming Languages and Systems, 19(2):253-291,
March 1997.



[Esp97] J. Esparza. Decidability of Model Checking for Infinite-State Concurrent Sys-
tems. Acta Informatica, 34(2):85-107, 1997.

[FS00] A. Finkel and G. Sutre. Decidability of reachability problems for classes of two
counters automata. STACS’2000, 346-357, Springer, 2000.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. INFINITY, 1997.

[GI81] E. M. Gurari and O. H. Ibarra. The complexity of decision problems for finite-
turn multicounter machines. JCSS, 22:220-229, 1981.

[Gre68] S. A. Greibach. Checking automata and one-way stack languages. SDC Docu-
ment TM 738/045/00, 1968.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model
Checking for Real-time Systems. Information & Computation, 111(2):193-244,
1994.

[HRP94] N. Halbwachs, P. Raymond, and Y. Proy. Verification of linear hybrid systems
by means of convex approximations. In Proc. Int. Symposium on Static Analysis,
B. LeCharlier ed., vol. 864, September 1994.

[Iba78] O. H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM, Vol. 25, pp. 116-133, 1978.

[IS99] O. H. Ibarra and J. Su, A Technique for the Containment and Equivalence of
Linear Constraint Queries. JCSS, 59(1):1-28, 1999.

[ISB00] O. H. Ibarra, J. Su, and C. Bartzis, Counter Machines and the Safety and
Disjointness Problems for Database Queries with Linear Constraints, to appear in
Words, Sequences, Languages: Where Computer Science, Biology and Linguistics
Meet, Kluwer, 2000.

[ISDBK00] O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. Kemmerer, Counter Ma-
chines: Decidable Properties and Applications to Verification Problems, To appear
in Proc. MFCS’2000.

[Mat70] Y. Matijasevic. Enumerable sets are Diophantine. Soviet Math. Dokl, Vol. 11,
1970, pp.354-357.

[Min61] M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics
in the theory of Turing machines. Ann. of Math., 74:437-455, 1961.

[Pos46] E. Post. A variant of a recursively unsolvable problem. Bull. Am. Math. Soc.,
52:264-268, 1946.

[Wal96] I. Walukiewicz. Pushdown processes: games and model checking. In Proc. Int.
Conf. on Computer Aided Verification, 1996

[WB98] P. Wolper and B. Boigelot. Verifying systems with infinite but regular state
spaces. In Proc. Int. Conf. on Computer Aided Verification, 1998.




