
Optimization Techniquesfor Data-intensiveDecisionFlows

RichardHull
�
, FrancoisLlirbat

�
, BharatKumar

�
,

GangZhou
�
, GuozhuDong

�
, JianwenSu

�
�
Bell Laboratories,LucentTechnologies

600MountainAve.
Murray Hill, NJ 07974�

hull, kumar, gzhou� @lucent.com

�
I.N.R.I.A.

DomainedeVoluceau-ROCQUENCOURT
78153Le ChesnayCEDEX,FRANCE

francois.llirbat@inria.fr�
Dept.of ComputerScienceandEngineering

Wright StateUniversity
Dayton,OH 45435

gdong@cs.wright.edu

	
ComputerScienceDepartment

Universityof California
SantaBarbara,CA 93106

su@cs.ucsb.edu

Abstract

For an enterpriseto take advantageof theopportunities
affordedby electronic commerce it mustbe able to make
decisionsaboutbusinesstransactionsin near-realtime. In
the comingera of segment-of-onemarketing, thesedeci-
sionswill be quite intricate, so that customertreatments
can be highly personalized, reflecting customerprefer-
ences,the customer’s history with the enterprise, and tar-
getedbusinessobjectives.Thispaperdescribesa paradigm
called“decisionflows” for specifyinga formof incremental
decision-makingthat cancombinediversebusinessfactors
in near-realtime.

This paper introducesand empirically analyzesa va-
riety of optimizationstrategies for decisionflows that are
“data-intensive”, i.e., that involvemanydatabasequeries.
A primary focusis on theuseof parallelismandeagerness
(a.k.a. speculativeexecution)to minimizework and/or re-
duceresponsetime. A family of optimizationtechniquesis
developed,includingalgorithmsandheuristicsfor schedul-
ing tasksof thedecisionflow. Usinga prototypeexecution
enginethe techniquesare compared and analyzedin con-
nectionwith decision-makingapplicationshavingdiffering
characteristics.

1. Intr oduction

A variety of technologieswill be neededto supportthe
explosivegrowthof electroniccommerce.Onefamily of re-
searchchallengesconcernsthedevelopmentof new frame-
works,infrastructures,andprotocolsthatpermitenterprises
maximizetheireffectivenesswhenusinge-commerce.This
paper describesa paradigmcalled “decision flows” for

specifyingandexecutingin near-realtimehighly differen-
tiateddecisionsin (e-commerce)workflows. For example,
decisionflows can be usedto personalizethe experience
of web storefrontcustomersor to help manageresources
(e.g.,decidingwhatmachinesor humanagentsshouldper-
form tasks)in the workflows that supporte-commerceap-
plications. Decisionflows supporta form of incremental
decision-making,that can easily incorporatea myriad of
businessfactorsandspecifytherelativeweightsthey should
begiven. This paperpresentsalgorithmsandheuristicsfor
executingdatabase-intensive decisionflows, anddescribes
anempiricalanalysisfocusedon minimizing workloadand
responsetime.

A decisionflow consistsin a family of attributeswhich
maybeevaluatedduringexecution.Someof theattributes
will be “target” andembodythe outputof a decisionflow,
e.g.,whatpriority of serviceto give this customer, or what
promotionalimageto displayon thenext webpage.Other
attributescorrespondto intermediateresultsof thedecision
flow. For example,a “promo hit list” attribute might hold
a listing of potentialpromomessagesto display, alongwith
scorescombiningthe likelihood that a customerwill buy
the promo and the potentialprofit that might be derived.
Someintermediateattributesmight gatherdatafrom exter-
nal sources,suchasdatabases.Sinceattribute evaluation
canhavea realcost,enablingconditionsareusedto decide
which attributesshouldbe evaluated. (If an attribute
 is
disabled,it returnsthe null value � . Attributesthatuse

asinput mustbe ableto executeeven if � is producesby

 .) Thesetof dataflow andenablingflow dependenciesin
a decisionflow mustform anacyclic graph.The“attribute-
centric” perspective of decisionflows permitsa systematic
approachfor specifyingwhatfactorsshouldbeincorporated
asadecisionis beingmade.

Decisionflows were first introducedin [HLS � 99a] as
part of the Vortex workflow model, that permitsthe spec-

Jianwen Su
Proc. Int. Conf. on Data Engineering (ICDE), 2000

ification of workflow schemassupportinghighly differen-
tiated treatments. In the decisionflow model a variety
of mechanismsareprovided for specifyinghow attributes
shouldbe evaluated.This includesuser-definedfunctions,
databasedips, anda generalizedfrom of “businessrules”
(see[HLS � 99a] for details). Decisionflowsareespecially
usefulin customercareapplications(e.g.,e-commerce,call
centers,insuranceclaims processing).Increasingly, these
applicationscall for “segment-of-onemarketing”, i.e., pro-
viding very personalizedtreatmentto different customers
[PR93]. In many cases,relevant data is widely dis-
tributedacrossanenterprise,andmultiple databasequeries
areneededto processeachcustomercontact.Sincecurrent
e-commerceandcustomercareapplicationsmust support
thousandsor even millions of contactsper day, thereis a
tremendousneedfor optimizationof this kind of decision
making,in termsof boththroughputandresponsetime.

The primary focusof the currentpaperis to presentan
empirical study comparinga variety of optimizationsfor
data-intensivedecisionflows. Theoptimizationsfocuspri-
marily on the judicioususeof parallelismandspeculative
evaluationto reducethe work performedandthe response
time of processinginstancesof a decisionflow. The tech-
niqueof speculative executionhasbeenappliedin various
areas,suchaspipe-linedexecutionof machinelevel instruc-
tions in the field of computerarchitecture[PHG96]. Sim-
ilar to the prior work, dataflow playsan importantrole in
the currentapplication. In contrastwith prior work, how-
ever, is the presenceof enablingconditionson tasks.This
permitsforwardandbackwardpropagationof information
aboutquerieseligible for executionandqueriesunneeded
for successfulcompletionof thedecisionflow instance.

In
 2, anexampledecisionflow is presented,alongwith
a formal descriptionof thedecisionflow model. In
 3, we
presenta traditionalarchitecturefor parallelprocessingof
decisionflows basedon a prequalifieranda taskscheduler.
In
 4 a family of optimizationtechniquesis proposed,in-
cludingalgorithmsfor theprequalifierandheuristicsfor the
taskscheduler. We implementeda prototypeexecutionen-
ginebasedonthesetechniques.In asimulatedenvironment,
the techniquesare comparedand analyzedin connection
with decisionflow applicationshavingdifferingcharacteris-
tics. Theresultsof ourexperimentsaredetailedin
 5, along
with tuningguidelines.

Due to spacelimitations the presentationhereis quite
terse(see[HLS � 99b]). Also, to simplify thediscussionwe
assumethatall queriesaremadeagainstasingledatabase.

Additional related work. Decisionflows can be usedto
supportnear-realtimedecisionmaking,andarericher than
decisiontreesand traditional businessrules frameworks.
Decisionflowsaremorestructuredthanexpertsystems,and
therebyreducethepotentialfor a “ripple” effectwhenindi-
vidual rulesaremodified.Theuseof enablingconditionsin
decisionflows is reminiscentof their usein theThinkSheet
model[PYLS96]. Decisionflowsarecomplimentaryto de-
cisionsupportanddataminingsystems.Thosesystemspro-

vide tools to analyzelarge volumesof datathat chronicle
previousbusinesstransactions,to helpdevelopappropriate
policiesfor futuretransactions.Decisionflows canbeused
to implementthosepoliciesduringsubsequenttransactions.

Workflow systemssuch as Flowmark [LR94], Meteor
[KS95], and others specify work activities (for human
agentsor computers)usinggraphswhosenodesare tasks
andedgescorrespondingto enablingconditions.Although
decisionflows canserve asthebasisfor a workflow model
(see[HLS � 99a]), andworkflow systemscanuseadecision
flow engineas an adjunct, the currentpaperfocusespri-
marily ontheapplicationof decisionflowsfor near-realtime
automateddecision-making,wherenohumanagentsarein-
volved.

An arearelatedto data-intensivedecisionflowsis thatof
“expertdatabasesystems”which focuson theuseof oneor
moredatabasesystemstoexecuterulesetsagainstlargedata
setsin thespirit of expertsystems.For example,[BKK87]
focuseson caseswhereeachrule might be instantiatedby
a largenumberof tuples,andusesa horizontalpartitioning
of the underlyingdatasetto achieve effective parallelism.
In contrast,decisionflows areuseful in applicationssuch
ase-commerce,whereeachexecutionof thedecisionflow
involvesrelatively small datasetsobtainedfrom multiple
databases.

2. Data-intensive DecisionFlows

This sectionpresentsan exampleapplicationthat illus-
tratesdecisionflows. The sectionalso presentsa formal
definitionof decisionflows, that is usedto describetheex-
ecutionmodelandoptimizationalgorithmsdevelopedlater.

Decisionflow for selectingpromoswhen generatingweb
pages. Figure 1(a) shows part of a (simplified) decision
flow thatcouldbeusedto respondto customersinteracting
with theweb-basedstorefront of aclothingretailer. Thede-
cisionflow focusesonselectingitemsthatcanbepromoted,
andmight be executedeachtime a pageis generatedfor a
customer. Otherdecisionflows might beusedto decideon
thekind or level of service.

In Figure1(a),eachdatabaseicon and(solid boundary)
rectanglecorrespondsto a taskwhich might be performed
for a given decisionflow instance. Eachtask producesa
valuefor oneor moreattributeswhosevaluesmaybeused
by other tasksof the instance(“intermediate” attributes)
or returnedasan outputvalueof the instance(“target” at-
tributes).Thedashedrectangles(exceptfor thefar left one)
indicategroupingsof tasksinto modules; this helpssupport
scalabilityin thespecificationof decisionflows.

The input attributes for this decisionflow include the
profile of the customer, the currentvalueof the shopping
cart, information aboutpromosthat the businessis espe-
cially interestedin moving,etc.Basedondifferentenabling
conditions(shown asdiamondnodes)differentcategories
of promotionswill beconsideredby thedecisionflow. For

load on
inventory db

promos
given this
session

boy’s coat promo

. .
 .

presentation

image
retrievals

image
selection and
composition

text
selection

give_promo(s)?
 = true

price, profit and
match score of
available coats

promo
hit li st

men’s coat promo

at least one
boy’s item in
shopping cart,
or at least one
child’s item in
shopping cart
and customer
has purchased
boy’s item in
previous 2
years

. . .

searches
made this
session

image and text
assembly

input for generating
promos for next web page

give_
promo(s)?

at least one
coat available

at least one coat
has score > 80
or db load < 95%

hit li st of
appropriate

coatstrue

check inventory
for coats in

appropriate size

true

. . .

expendable
income > 0

true

true

true

true

true

true

women’s coat promo

current
climate of
cust home

identify images
with one or more

promo items

customer
expendable

incometrue

true

decision

customer profile
 promo history
 promo tolerance
 . . .

shopping
cart

catalog of
items for sale

(a)Module-basedversionof schemaintendedfor users

customer profile
 promo history
 promo tolerance
 . . .

shopping
cart

promos
given this
session

. .
 .

image
retrievals

image
selection and
composition

text
selection

price, profit and
match score of
available coats

promo
hit li st

searches
made this
session

image and text
assembly

(input for generating
promos for next web page)

give_
promo(s)?

C and
at least one
coat available

hit li st of
appropriate

coatsC

check inventory
for coats in

appropriate size

C

give_promo(s)?
 = true

give_promo(s)?
 = true

give_promo(s)?
 = true

true

give_promo(s)?
 = true

give_promo(s)?
 = true

current
climate of
cust home

identify images
with one or more

promo items

customer
expendable

incometrue

catalog of
items for sale

expendable
income > 0

load on
inventory db

C and
at least one coat
has score > 80
or db load < 95%

(b) “Flattened”versionof schema,with dataflow (dashed)andcontrolflow (solid) dependenciesshown

Figure 1. Decision flo w for selecting and generating promo images in web-based storefr ont

example,if thereis alreadyoneboy’s item in theshopping
cart,or if thereis achild’s item in theshoppingcartandthe
customerhasboughtsomethingfor a boy in the pasttwo
years,then a promo for a boy’s coat is considered.This
involvesdoing a databasedip to get informationaboutthe
climateat thecustomerhome,deriving a “hit list” of coats
that might be appropriateto the customer, checkingwith
inventoryfor coatsin the appropriatesize,andthencreat-
ing a listing of possiblecoatsto promo,alongwith info on
theprice,potentialprofit anddegreeof confidencethat the
promomatchescustomerinterest.

Thedecisionmodulewill estimatethecustomerexpend-
ableincome(basedon customerprofile, shoppingcart,and
perhapsother factors),andcreatea listing of promosob-
tainedso far. Basedon the businessvalueof the promos
andthelikelihoodof success,adecisionis thenmadeabout
whetherto givepromos.

Finally, if a promowill begiven,thepresentationmod-
ule identifiesimagesandtext thatcanbeusedto displaythe
promo(s),andassemblesthesefor inclusion in the gener-
atedwebpage.

Attributesand tasks. A decisionflow is attribute-centric:
themainobjective of theexecutionis to determinetheval-
uesof certainattributes,basedon other given or derived
attributevalues.Decisionsmadeby adecisionflow arerep-
resentedin theattributevalues.

Attributesarecomputedin decisionflows by two kinds
of tasks.A foreigntaskis externalto thedecisionflow ex-
ecutionengine(e.g.,databasequeries,webserver routines,
questionsto a human).In generalthesecanproduceoneor
moreattributevalue,but for brevity in thispaperweassume
thateachproducesa singleattribute. A synthesistaskpro-
ducesa single attribute value, specifiedby a user-defined
functionor usinga specializedframework involving “busi-
nessrules” (see[HLS � 99a]),

Dataflow andenablingflow. Thedecisionflow modelpre-
sentedto usersis modular, to supportscalabilityandlevels
of abstraction.However, for executionwe focuson a “flat-
tened”versionof the decisionflow model,which permits
morefreedomwith regardsto the orderof taskexecution.
Toflattenamodule� , wecombine(with the“and” connec-
tive) theenablingconditionfor � with theenablingcondi-
tion of eachtaskandsubmodulewithin � . The“flattened”
versionof thedecisionflow of Figure1(a) is shown in part
(b). (Ignorethelinesandarrowsfor now.) For example,the
enablingconditionfor theboy’scoatpromomodule(abbre-
viatedas ‘C’) hasbeen“anded” into eachof the enabling
conditionsfor thefour tasksinside.

More formally, a (flattened) decisionflow schemais a
4-tuple ��������������������� ��!#"%$�&'�)(+*�"-,.&/�10 where

1. ����� is a setof attributes. For eachnon-sourceattribute

 thereis auniqueforeignor synthesistaskwhichcom-
putesthevalueof
 .

2. � ��!#"%$�& and (+*�"-,.&/� are disjoint subsetsof ���-� , cor-
respondingto the source and target attributes,respec-

tively. Thetargetattributesareusedoutsideof thedeci-
sionflow. In anexecutionof thedecisionflow, a value
shouldbe producedfor eachtarget attribute that is en-
abled(seebelow).

3. ���2�3�5476�8:9<;�
 is anon-sourceattribute = is thesetof
enablingconditions,onefor eachnon-sourceattribute.

The flow of dataandenablingconditionsin a decision
flow is largely implicit. Associatedto a (flattened)deci-
sion flow schemais its dependencygraph, that highlights
thesetwo kinds of dependenciesbetweenattributes. Fig-
ure 1(b) shows the dataflow (using dashedlines and ar-
rows) andthe enablingflow (usingsolid linesandarrows)
for theexampledecisionflow. A dataflow edgeis included
from attribute
 to attribute > if
 is usedasinput for >
(e.g.,promo hit list to the moduleidentifying imagesthat
show thepromoitems). An enablingflow edgeis included
from attribute
 to attribute > if
 is usedin theenabling
condition for > (e.g., customer expendable income to
give promo(s)?.

A decisionflow schema? is well-formedif the depen-
dency graphof ? is acyclic. We consideronly well-formed
decisionflow schemas.

Executionof decisionflows. Beforepresentingthedeclar-
ative semanticsfor decisionflows we describeintuitively
how they can be implemented. During execution,an at-
tribute becomesstable if its enablingcondition becomes
true andthe taskspecifyingthe attribute hasexecutedand
returneda value,or if its enablingconditionbecomesfalse,
in which the attribute is assignedthe value � , i.e., null
value.(In [HLS � 99a] wedistinguishexceptionvaluesfrom
othervalues.) A taskcanbe executedafter all of its input
attributeshave becomestable.This andtheacyclicity con-
dition imply that attribute assignmentis monotonic: if an
attributevalueis assigned,thenit will neverbeoverwritten.

Tasksin a decisionflow must be capableof executing
oncetheir input attributesarestable,even if someof them
have value � . This requirementis appropriatein many e-
commerceapplications,wherea decisionmay have to be
madewith incompleteinformation, e.g., if a databaseis
down.

A straightforwardapproachto implementinga decision
flow is to proceedin anordergivenby a topologicalsortof
theattributesaccordingto thedependency graph.Whenan
attribute
 is considered,all of the inputs to the enabling
conditionof
 , andall thedatainputsfor
 , will bestable.
Thus, the enablingcondition of
 can be evaluated,and
if true, the task defining
 can be evaluated. This paper
developsoptimizationsof thatapproach,usingparallelism,
speculative evaluationandruntimealgorithmsthatanalyze
thestructureof decisionflow schemas.

Intuitively, a targetattributeis onethatmustbestablein
orderfor executionof a decisionflow instanceto success-
fully complete. In the examplethe only target attribute is
theonefor imageandtext assembly(shown in gray). If this
attribute is enabled,thenexecutionwill not completeuntil

a valueis obtained.If theattributebecomesdisabled,then
executioncanhalt immediately. (This attributewill bedis-
abledif attributegive promo(s)? is false,whichcanoccur
if customer expendable income = 0.)

Declarative semanticsof decisionflows. In the abstract,
during executionan attribute will have oneof four states:
UNINITIALIZED, ENABLED, VALUE or DISABLED. (Addi-
tional statesare possibleand describedwhenspecificex-
ecution details are involved; see
 3 below.) Sourceat-
tributesstartwith stateVALUE. An attribute will become
ENABLED if its enablingconditionbecomestrue,andit will
becomeDISABLED if its enablingconditionbecomesfalse.
If ENABLED, an attribute will take a value and will then
reachtheVALUE state.If DISABLED, theattributewill take
thenull value � .

The semanticsof decisionflows is declarative, andde-
finedusingthenotionof “completesnapshot”.A complete
snapshotis apair @A4B�-C��EDF0 , where

(a) thestatefunction C mapseachnon-sourceattributeinto
6 VALUE, DISABLED = ,

(b) the valuefunction D mapseachnon-sourceattribute

with stateVALUE into thevaluereturnedby thetaskpro-
ducing
 andmapseachnon-sourceattributewith state
DISABLED into thenull value � , and

(c) non-sourceattributes
 is in stateVALUE if the en-
abling condition 8:9 evaluatesto true (using the val-
uesgivenfor attributesoccurringin 8:9), andis in state
DISABLED otherwise.

Theacyclicity assumptionguaranteesthatthereis a unique
completesnapshotfor given sourceattribute values. An
executionof a decisionflow instanceis correct if it pro-
ducesstatesandvaluesfor thesetof targetattributes,andis
compatiblewith theuniquecompletesnapshot.(Thestates
andvaluesproducedor notproducedfor otherattributesare
viewedasirrelevant.)

In this paperwe assumethat for eachgiven instanceof
thedecisionflow, thedataneededby thedatabasequeriesto
computethe attribute valuesremainsfixed during the pro-
cessingof this decisionflow instance.This assumptionas
reasonablefor near-realtimedecisionsin e-commerceap-
plications.Thisassumptionpermitsflexibility in thetiming
of launchingqueriesandtheuseof speculativeexecution.

Snapshotscanprovide a basisfor reportingon the be-
havior of a decisionflow. In particular, a (possiblynested)
relationcanbeformed,whereeachtupleis thesnapshotof
oneexecutionof the decisionflow. Attributesconcerning
the successor failure of the decisioncanbe incorporated.
Manualandautomateddatamining techniquescanbeper-
formedon this relation,to discoverpossiblerefinementsto
thedecisionflow.

3. An Execution Model for DecisionFlows

This sectionpresentsthe executionmodel for decision
flowsandthearchitectureof theexecutionmodule.Thekey

DB Servers

Workflow Schema

Execution Engine

Web Servers

Decision Flow Execution Engine

Prequalifier Runtime Workflow Instances

. . .External Systems

Task SchedulerCandidate Tasks Pool

Figure 2. Architecture of execution module

featureof this executionmodelis its flexible schedulingof
parallelexecutionsof thetasksin thedecisionflow.

Architecture of the execution module. Figure 2 shows
the architectureof the executionmodule. The threeround
boxes representdata repositories. One containsdecision
flow schemas, andanothercontainsruntimeflow instances
of the decisionflows. Whenever a new case,e.g. a new
setof promosfor a webpageneedsto begenerated,a new
flow instanceis created.The rectanglesrepresentsoftware
modules.Theexecutionengineworkson thedecisionflow
instancesto executethetasksin thedecisionflow andprop-
agatetheeffectsof theexecutionsuntil thegoalis reached.
The engineworks in a multi-threadfashion,so that paral-
lel processingof multipleflow instances,andmultiple tasks
within one instanceis possible. To executethe tasks,the
engineconsultsthetaskschedulerthatdynamicallychooses
oneor moretasksfrom a pool of candidatetasks,i.e., the
roundboxcandidatetaskspool. Moreprecisely, thereis one
pool of tasksper flow instanceandthe schedulerchooses
tasksfor eachflow instanceindependentlyfrom the other
flow instances. The candidatepool is maintainedby the
prequalifier. Recallthatwe areassumingin this paperthat
eachtaskcomputesa singleattribute. This meansthat we
canidentify eachtaskby theattribute that that it produces.
Further, we interchangeablyrefer to executionof a taskor
evaluationof thecorrespondingattribute.

The execution algorithm. We now give a sketch of the
executionalgorithm, whichsummarizesthethreeimportant
phasesof executingdecisionflows. Thisalgorithmis based
on a generalizednotion of snapshot,which is described
shortly. Theexecutionprogramis invokedeachtime a new
decisionflow instanceis initiated,andeachtimenew values
of attributesareobtainedfor a runningflow instance.
(1) Evaluationphase:

(a) Constructa new snapshotthat incorporatesthenew
attributevalue(s).

(b) If a terminal snapshot(i.e., all the target attributes
arestable)is reached,thenexit.

(2) Prequalifyingphase(prequalifier): Identify asetof can-
didateattributesin thedecisionflow thatarereadyto be
evaluated.

COMPUTED

VALUE

ENABLED

DISABLED

READY+
ENABLED

READY

UNINITIALIZED

Figure 3. Finite state automata for states of
attrib utes

(3) Schedulingphase(scheduler): Selectone or more at-
tributes out of the candidateattribute set basedon
scheduling heuristics, and send their corresponding
queriesto theexternalserver(s).

Theprimary focushereis on optimizationtechniquesused
in theprequalifyingandschedulingphases.

The execution algorithm constructsa seriesof snap-
shots,eachone incorporatingnewly acquiredinformation
obtainedthroughthe evaluationof attributes. We now de-
scribe the extendedform of snapshotsused. As in Sec-
tion 2, theextendedsnapshotswill beorderedpairsof form
�GC��EDF0 . However, the setof possiblestatesfor attributesis
expanded,asindicatedin Figure3. The intuitive meaning
of anattribute
 beingin a stateof thefsais givennow.

States UNINITIALIZED, ENABLED, VALUE and
DISABLED retain the meaning from Section 2. The
statesVALUE andDISABLED areshown with doublecircles
becausethey are terminal statesfor attributes; when an
attribute movesto oneof thesestatesthenit is stable. An
attribute
 can move into state ENABLED (DISABLED)
if, basedon informationaccumulatedso far, the enabling
condition for
 is determinedto have value true (false).
An attributemovesfrom theENABLED stateto theVALUE
stateassoonits valuehasbeencomputed.ThestateREADY
indicatesthatall of theinput attributesfor anattributehave
stabilized(i.e., their statesareDISABLED or VALUE). If an
attribute is in stateREADY, then it canbe evaluatedspec-
ulatively. StateREADY+ENABLED indicatesboth that the
input attributesarestableandtheenablingconditionfor an
attributehasbeendeterminedto betrue.StateCOMPUTED
(andnot enabled),indicatesthat the valuefor
 hasbeen
computedspeculatively but the truth valueof the enabling
conditionis not yet determined.An attribute movesfrom
the COMPUTED state to the VALUE (DISABLED) state
assoonits enablingcondition is evaluatedto true (false).
Thereis a naturalpartial orderingon the statesof the fsa.
For example,we write READY H COMPUTED.

An executionpermittedby the executionalgorithmcan
be describedby a sequenceof snapshots(@JI , KJK/KF@ML , K/KJK ,
@JN) where @/I is theinitial snapshot(having valuesonly for

thesourceattributes),@ML3OQPSRUT��%V�W , aresnapshotscomputed
by theexecutionalgorithmand @MN is theterminalsnapshot
wheretargetattributesarestable. In [HLS � 99b], wedefine
sufficientconditionsfor executionsequencesto yield termi-
nalsnapshotsthatareconsistentwith thedeclarativeseman-
tics definedin
 2. We have usedthesesufficient conditions
to provethecorrectnessof theoptimizationalgorithmspre-
sentedin thefollowing section.

4. Optimization Strategies

We first state the optimization goals. Then we
presentouroptimizationstrategiesfor theprequalifyingand
schedulingphasesof the executionalgorithms. In this
andthefollowing sectionwe focusexclusively on decision
flowswhereall tasksaredatabasequeries.However, theop-
timizationspresentedheregeneralizeto othertypesof tasks,
includingsynthesistasksandweb-queries.

Optimization Goals. Motivatedby e-commerceandsimi-
lar applications,ouroptimizationgoalis to beableto guar-
anteeaqualityof servicein termsof responsetimewhatever
theworkloadconditionsare. Thuswe needto provide op-
timization techniquesthat both minimize (1) the response
time and (2) the work performedfor the executionof the
decisionflow instances.The first goal is motivatedby the
desireto serve web customersasquickly aspossible.The
secondgoal is motivatedby the fact thate-commercesites
can have bursty load, and can easily becomeoverloaded.
It is importantto understandtrade-offs betweentime and
work, andto beableto gracefullymove alongthosetrade-
offs dependingon currentload. For example,givena fixed
amountof work thatcanbeperformed,what is thebestre-
sponsetime possibleandhow canwe obtainit? In
 5 we
provideanswersto thisquestionin two contexts: wherethe
databaseresourceis essentiallyunlimited, andwhereit is
limited anddedicatedto supportingthedecisionflow.

Optimizations in the Prequalifying Phase.Weexpandthe
prequalifyingphaseof the executionalgorithmin
 4 with
the following two steps: (i) Identify maximal numberof
eligibleattributes;(ii) Eliminate“unneeded”attributesfrom
theeligibleattributesetto geta setof candidateattributes.

To obtainamaximalsetof candidateattributeswith min-
imal numberof unneededattributes,we usethe technique
of eagerevaluationof enablingconditions.In particular, we
perform partial computationof enablingconditionsbased
on the attribute valuesthat areavailable. As a simpleex-
ample, in Figure 1 the enablingcondition of the nodeto
checkcoatinventorymight beevaluatedto falseusingjust
the db load attribute. Suchreasoningcanbe usedto de-
terminethatanattribute is disabled,andhencetakesvalue
� beforetheattributeis READY andbeforeall attributesin
theenablingconditionarestable.Analogousreasoningwith
disjunctionscandeterminethatanattributeis enabled.This
canhelpto quickly move anattributeto stateENABLED or
READY+ENABLED, or from COMPUTED to VALUE.

Anotherusefulactivity in decisionflow executionis the
identificationof attributeswhosevaluesare unneededfor
successfulcompletionof a decisionflow instance. This
may arise from forward propagation of information, i.e.,
inferring thatanattributeis DISABLED by propagatingfor-
ward the fact thatattributesinvolvedin its enablingcondi-
tion arealsoDISABLED attributes. Inferenceof unneeded
attributesalsoarisesfrom backward propagation, which in-
volves inferring that althoughan attribute is or may be-
comeenabled,its valueis not neededfor successfulcom-
pletionof thedecisionflow instance.As oneexample,sup-
posethat expendableincomeis determinedto be 0. Then
give promo(s)?will be DISABLED andtake value � . The
condition “give promo(s)? = true” is false,and so the
five attributeshaving that as enablingcondition will also
be DISABLED. As a result, promo hit list is not needed
asinput for any enabledattributes.Forwardandbackward
propagationcanbecombined.

In [HLS � 99b] an algorithm, called here Propaga-
tion Algorithm, is describedthatperformseagerevaluation
of enablingconditionsand detectsunneededattributesat
runtime.Thealgorithmexecutesin anincrementalfashion,
incorporatingnew informationasit becomesavailablefrom
theexecutionof thedecisionflow. Importantly, thecostof
executingthealgorithmis linear in thesizeof thedecision
flow, regardlessof whatorderthetasksareexecutedin.

Optimizations in the SchedulingPhase. Given a candi-
dateattribute set, we typically needto selecta subsetof
attributesandexecutetheircorrespondingdatabasequeries,
becausetheunderlyingdatabaseserver cansupporta finite
multi-programminglevel. We focuson two heuristicsfor
schedulingcandidatequeries.
Topologically-earliestfirst: Choosethe nodes that are
topologically-earliestin the dependency graph. This may
help identify eligible and unneededattributesinitially us-
ing forwardpropagation,so thatmany otherattributescan
becomeeligibleassoonaspossible.
Cheapestfirst: Choosethenodesthathave theshortestes-
timatedexecutionduration.This canhave two advantages:
(1) The resultsof thesequerieswill comeback faster, so
that the correspondingattribute valuescan be propagated
throughthe graphsooner. (2) In casethe executedqueries
turn out to unneededlater, the wastedtime and resources
arelesscomparedto moreexpensivequeries.

5. PerformanceEvaluation

In this sectionwe evaluatethe effectivenessof our op-
timization strategies in a variety of settings. The section
begins with a descriptionof our experimentenvironment.
A key componenthereis a mechanismfor generatingdeci-
sion flow schemashaving a variety of different“patterns”
or characteristics.We thenpresentexperimentresultsthat
assumethe targeteddatabaseshave unboundedresources.
Fromthis, we developguidelinesthathelpa potentialuser

to choosethe bestoptimizationstrategy for a given appli-
cation. Last,we considerthemorerealisticcasewherere-
sourcesarebounded,i.e., wheredatabasesystemload has
an impact on the performance.We develop a simple an-
alytical model that canbe usedfor tuning performanceof
decisionflows,andexperimentallyverify its accuracy.

Experiment Envir onment. We implementedanexecution
module with all the optimization algorithmsand heuris-
tics discussedin
 4 built in. The externaldatabaseserver
is simulatedusing CSIM 18, in order to supporta fine
level of control over variousdatabaserelatedparameters,
e.g., databaseload, querycost etc. We usethe following
threeparametersto measureresponsetime andefficiency:
(i) TimeInUnits : Responsetime for processingdecision
flow instance,measuredin unitsof processing. This is used
in theabstractcontext of unboundedresources.In actuality,
thetime it takesfor eachunit of processingvariesdepend-
ing on systemload. (ii) TimeInSeconds: At theendof this
secionwestudythecontext of boundedresources,andthus
usethis absolutemeasureof time. (iii) Work : The total
numberof unitsof processingbeingperformedfor eachde-
cisionflow instance.As a simpleexample,if oneinstance
takestotal tenunitsof processingandthreeof theunitswere
processedin parallel,thenTimeInUnitsis 8 andWork is 10.
In general,Work is inverselyproportionalto theefficiency.

In theexperimentswe evaluatetheexecutionalgorithms
with thefollowing four options.

Propagation of information: In
 4 we describedhow for-
ward andbackward propagationcanidentify unneededat-
tributes. We usethe letter ‘P’ (for Propagation)to denote
the option wherewe performsuchpropagationanddo not
placeunneededtasksin thecandidatepool. Otherwise,we
usetheletter’N’ (for Naive).

Speculativevs. Conservative: We use the letter ‘S’ (for
Speculative) to denotetheoptionwheretheprequalifierse-
lects tasksthat are READY+ENABLED or READY for the
candidatepool. We usetheletter‘C’ (for Conservative) for
theoptionwheretheprequalifierselectsonly tasksthatare
READY+ENABLED.

Scheduling heuristics option: The schedulingheuristics
“topologically-earliestfirst”, and “cheapestfirst” are de-
notedby ’E’, and’C’, respectively.

Parallel processingoption: This determinesthepercentage
of the candidateattributesthat will be selectedfor execu-
tion. We denotethis option as%Permittedwhosevalueis
between0 and100, with theconstraintthatat leastoneat-
tributemustbeselectedfor execution.Hence,0 meansthat
for any giveninstance,only oneattributecanbecomputed
at a time (noparallelism).

We identify a particularexecutionstrategy, i.e., combi-
nationof theabove options,usinga sequenceof characters
correspondingto thesefour options.For example,PSE80%
denotesthestrategy thatuses’P’, ’S’, and’E’ optionswith
theparallelprocessingoptionsetto 80%. We use* to rep-

Parameter Range Description

nb nodes 64 # of internalnodes
nb rows [1,16] # of schemarows
%enabled [10,100] % of enablednodes
%enabler 50 % of potentialenablers
%enablinghop 50 maxenablingedgehop

(as% of total # of columns)
Min pred 1 min # of predicates

perenablingconditions
Max pred 4 max# of predicates

perenablingconditions
%addeddataedges [-25,+25] % of dataedgesaddedto skeleton
%datahop 50 maxdataedgehop

(as% of total # of columns)
modulecost [1,5] unitsof costfor executingamodule
num CPUs 4 # of CPUsin thedatabase
num disks 10 # of disksin thedatabase
unit CPU cost 1 # of unitsof CPU

perexecutionunit cost
unit IO cost 1 # of IO pagesperunit execution
%IO hit 50 probabilityof IO pagehit in buffer
IO delay 5 IO delayin msecs.

Table 1. Simulation parameter s

resentasetof strategies.For examplePC** denotesall the
strategiesthatusethe’P’ and’C’ options.

Weconductedabroadarrayof experimentsbasedontwo
basicdimensions:thetypeof decisionflow andthecharac-
teristicsof thesupportingdatabase.Table1 summarizesthe
variousdimensionsthatwe explored.

Decisionflow schemawith VFX VZY�[.\�@ =16, VFX]�Y_^�@ =4,` \MVZa#XcbG_[=50and
` \MVZa#XcbGO�V�d efY�g =50

Figure 4. Example schema pattern

To create a decision flow schema,we first build a
dataflow skeletonbasedon the parametersnb nodesand
nb rows. The nodesanddashededgesof Figure4 shows
a skeleton for VFX VZY�[._@h4iTMj and VFX]�Y_^�@k4ml , i.e.,
16 internal nodesand 4 rows. The skeletoncontainsone
sourceattribute,onetargetattribute,andnb nodesinternal
attributes.Thenumberof columnsin theskeletonis given
by N�n N�o1pcqsrN�n t1o%uZr . In theskeleton,datadependency edgesareor-
ganizedasfollows: Thesourceattributeis aninputattribute
of the first nodesof all the rows. Eachinternalnodeis an
input attribute of its successorin the samerow. The last
nodesof all the rows areinputsof the target attribute. By
varying VFX]�Y_^�@ for a fixednumberof nodes,we vary the
diameter N�n N�o%pcqErN�n t�oEuZr of the schema. Intuitively, the smaller
thediameteris, thehighertheparallelismcanbe,assuming
everythingelsebeingequal.

Wenow describehow skeletonsareusedto form schema

patternsEnablingconditionsarerestrictedto conjunctions
or disjunctions. The numberof predicatesin (enabling
edgesinto) eachenablingconditionis spreaduniformly be-
tween �7OvV gf]�_[and �wa.x gf]�_[. Thereare

` \MVZa)X�bG\M] at-
tributeswhosevaluesareusedin at leastoneenablingcon-
dition of anotherattribute. The maximumhop (as a per-
centageof the total numberof columnsin theschema)be-
tweenthe two nodesof an enablingedgeis given by the
parameter̀ e+Y�g . At the end of the execution

` \MVZa#XcbG_[
percentof theenablingconditionswill betrue. Thedashed
andsolid edgesof Figure4 takentogethershow a decision
flow patterngeneratedwith VFX VZY�['\54yTJj , VFX]�Y_^�@z4kl ,` \JVZa#Xcb-\M]w4m{2| , }~O�V g+]__[�4�T , }�a.x g+]__[�4�l and` efY�g�4i{2| . In an analogousmannerwe can add (or
delete)data flow edgesfrom the skeleton schemas. We
experimentedwith a rangeof addedanddeleteddataflow
edges,but focushereon the casewhereno dataedgesare
addedor deletedfrom theskeleton.For theexperiments,the
evaluationof eachattribute involvesexactly onedatabase
query. Thecostof thequeryis setrandomlyin therangeof
}~Y�['��bG\ ��Y2@J� .

To simulatea databasewe usea physicalmodel simi-
lar to [ACL87] wheredisksandCPUsaresimulatedusing
servicequeues.Thecostof a queryis specifiedin termsof
numberof unitsof processing.Thecostof aunit of process-
ing onthedatabaseis representedby theaveragenumberof
pagesthe query accessesand the averageCPU time con-
sumedby the query. The last six rows in Table1 describe
theparametersusedin our databasesimulation.

Experiment Resultswith Infinite Resources.Wenow ad-
dressthe questionof how the optimizationstrategies per-
form for decisionflows with differentpatterns.We assume
thesupportingdatabasehasinfinite resourcesandfocuson
minimizing work performedor minimizing responsetime
measuredin unitsof processing.

Basedon our experimentswe have found that VFX]�Y_^�@
and

` \MVZa#XcbG_[are two key characteristicsof a decision
flow schemathataffect theperformanceof theoptimization
strategies. VFX]_Y_^A@ controlsthe diameterof the schema,
andhasmajor impacton potentialparallelism.

` \MVZa#XcbG_[
is a key characteristicof decisionflow applications.It indi-
catestheaveragenumberof attributeswhosevaluesareac-
tually neededto computethetargetattributes.This clearly
impactstheamountof work thatcanbesaved.

Minimizing theamountof work To studyminimizingwork
we focuson*C*0% becausetheConservative option(’C’)
avoids executing attributes that will becomeDISABLED,
and no parallelism(

`�� \M]_}~O����s_[= | `) never increases
work. We answerthefollowing questions:(i) Whatarethe
benefitsof usingPropagationAlgorithm?(ii) Forwhichde-
cision flow patternsis PropagationAlgorithm is the most
efficient? (iii) What schedulingoption is performingthe
leastwork? (iv) Is thethebestschedulingoptiondependent
on decisionflow pattern?

Figures5(a) and 5(b) show the amountof work per-

0

50

100

150

200

10 20 30 40 50 60 70 80 90 100

PCC0
PCE0
NCC0
NCE0

%Enabled

Work

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8

PCC0
PCE0
NCC0
NCE0

Nbrows

Work

(a)
` \MVZa#XcbG_[is varying (b) VFX]�Y_^�@ is varying

Figure 5. Comparison of strategies for minimizing work

formed by the executionstrategies when we vary respec-
tively VFX]�Y_^�@ and

` \MVZa#XcbG_[. In Figure 5(a) VFX]�Y_^�@
is setto l . (Sincethereis no parallelism,thesefiguresalso
show theresponsetimefor thedifferentstrategies.)Thisfig-
ureshowstwo clustersof curvesbasedonwhethertheProp-
agationAlgorithm(option’P’) isusedornot. Whenit isnot
usedthe amountof work performedby programsNC*0%
is approximatively linearwith thepercentageof DISABLED
attributes(TJ|'|f� ` \MVZa#XcbG_[). Indeed,theC optionavoidsex-
ecutingattributesthatwill becomeDISABLED. With Prop-
agationAlgorithm, additionalunneededattributesaredis-
coveredand the amountof work is reducedfurther. Fig-
ure5(a)alsoindicatesthatdecisionflows with a largeper-
centageof disablednodesbenefitthe most from Propaga-
tion Algorithm. Thebestbenefitsareaboutj�| ` andareob-
tainedwhen

` \JVZa#Xcb-_[�4BTJ| ` . For Figure5(b),
` \MVZa#XcbG_[

is setto 75.
Now weexaminetheeffectsof theschedulingheuristics.

Theperformanceof the“cheapest”and“earliest”heuristics
arevery close,within TM| ` of eachother. WhentheP op-
tion is notused,“cheapest”schedulingalwaysgivesthebest
performance.In contrast,“earliest” givesthe bestbenefits
whencombinedwith the P option. Indeed,the “earliest”
schedulingallows moreaggressive forwardpropagationto
detecteligible and DISABLED attributes. Consequently,
more forward propagationproducesmore start points for
backwardpropagationto detectunneededattributes.This is
aninterestingresult,sincein mostapplicationareas“cheap-
est”is theheuristicof choice.Weexplorethisfurtherbelow.

Minimizing the responsetime We now turn to minimizing
responsetime. To this endwe assume100% parallelism,
andexplorethefollowing questions:(i) Whatbenefitsin re-
sponsetime canbeobtainedby combiningtheSpeculative
or Conservative strategieswith high parallelism?(ii) How
do thosebenefitsdependon decisionflow patterns? (iii)
What is the trade-off between�wY_]2� and ��Ov}~_�'V��AV Ov�E@ ,
or morepreciselyhow muchadditionalwork is necessary
to reduce��Ov}~_�'V��AV Ov�E@ ? To addressthesequestionswe

considerprogramsof theformP**100% andcomparetheir
performancewith PCE0% (which, accordingto Figure 5,
givesthe bestresponsetime whenthereis no parallelism).
Figure 6(a) shows that usingmaximal parallelismcan re-
ducesignificantly the responsetime. For example,using
PC*100% when VFX]�Y_^�@�4�l and

` \MVZa#XcbG_[�4��2{ `
leadsto a j'| ` reductionof responsetime. This result
is not very surprisingsinceparallelismtakesadvantageof
the eagerdetectionof eligible attributesmadeby Propa-
gationAlgorithm. Whenusingthe “Conservative” strat-
egy there is little increasein work. In contrast,Figure
6(a) shows that with the “Speculative” strategy a rather
smallgainover“Conservative” strategy (maximumof about
10%) can be achieved, but with a significant increasein
work (see 6(b)). For example,when

` \JVZa#Xcb-_[�4�{2| ` ,� | ` additionalwork is performed.This is dueto the fact
that“Speculative” strategyexecutesmany attributesthatbe-
come DISABLED afterwards. The “Speculative” strategy
becomesmoreprofitablewhen

` \JVZa#Xcb-_[is high, because
theincreasein work is lower.

Effect of “Earliest” and “Cheapest” Scheduling heuris-
tics. We now considertheimpactof varyingthedegreeof
parallelismon theperformanceof theoptimizations.To do
suchcomparisonwe considerprogramsof theform PCE*,
PSE*, PCC* PSC* andvary thedegreeof parallelism.

Figures 7(a) and (b) show respectively the valuesof
��Ov}~_�'V��AV Ov�E@ and ^�Y_]2� for variousdegreesof parallelism
whentheprogramsareexecutedon adecisionflow schema
with VFX]�Y_^�@<4�l and

` \JVZa#Xcb-_[�4��2{ ` . Figure 7(a)
shows that “Earliest” schedulingalwaysgivesa shorterre-
sponsetimethanthe“Cheapest”scheduling.Thebestgains
areobtainedwhenthedegreeof parallelismis betweenl'|
and �'| . When “Conservative” (C) strategy is used, the
gain of usingEarliestschedulingcomparedto Cheapestis
about T_{ ` whenthe parallelismis equalto l'| . It is

� | `
when “Speculative” (S) strategy is used. Moreover Fig-
ure 7(b) shows that Earliestand Cheapestheuristicscon-
sumeapproximatively thesameamountof work. Thereare

0

50

100

150

200

10 20 30 40 50 60 70 80 90 100

PC*100
PS*100

PCE0

%Enabled

TimeInUnits

0

50

100

150

200

10 20 30 40 50 60 70 80 90 100

PC*100
PS*100

PCE0

%Enabled

Work

(a)
` \JVZa#Xcb-_[vs.responsetime (b)

` \MVZa)X�bG_[vs.work

Figure 6. Comparison of strategies for minimizing response time

0

20

40

60

80

100

120

0 20 40 60 80 100

PCC*
PCE*
PSC*
PSE*

%Permitted

TimeInUnits

0

20

40

60

80

100

120

0 20 40 60 80 100

PCC*
PCE*
PSC*
PSE*

%Permitted

Work

(a)Parallelismvs. responsetime (b) Parallelismvs.work

Figure 7. Effect of diff erent levels of parallelism

two reasonswhy “Earliest” heuristicsis more profitable.
First by choosingattributes closer to the sourcethe ear-
liest strategy enhancesthe effectsof forward propagation,
andconsequentlytheeffectsof backwardpropagation(new
startpointsfor backward propagationarediscovered). As
a consequence,eligibleandunneededattributesarediscov-
eredearlier. Thesecondreasonis the fact thatanattribute
that is close to the sourcewill be discoveredDISABLED
(or ENABLED) soonerthanan attribute closeto the target.
By choosingattributes that are close to the sourcewhen
the “Speculative” strategy is used,the Earliestscheduling
limits the risk of choosingan attribute that will become
DISABLED afterwards.This explainstheadditionalgainof
using “Earliest” comparedto “Cheapest”(

� | ` insteadof
TM{ `) when“Speculative” (S) strategy is used.

Lessonslearned and guideline maps. Our experiments
suggestthefollowing guidelines.
Lesson1: Using option ’P’ (PropagationAlgorithm) re-
ducesboth responsetime andamountof performedwork.
Thebenefitsobtainedusingoption ’P’ aremostsignificant
whenthe proportionof potentialDISABLED nodesper in-

stanceis large(morethan20%).
Lesson2: Whenoption ’P’ is used,Conservative strategy
(option ’C’) is usually more profitable than the Specula-
tivestrategy (option’S’). TheSpeculativestrategy becomes
more profitablewhen the proportionof DISABLED nodes
perinstanceis low (lessthan ��{ `).
Lesson3: Whenoption’P’ is used,the“Earliest” schedul-
ing heuristicis themostprofitable.Thefact that“Earliest”
out-performs“Cheapest”is significantfor two reasons:(a)
“Earliest” is simplerandeasierto implementthan“Cheap-
est”, and(b) for mostapplicationsstudiedin the literature,
the“Cheapest”heursiticswinsover “Earliest”.

Our experimentplatformcanbeusedto predicttheper-
formanceof a particulardecisionflow schemaduring the
designphaseof thedecisionflow. Figure8 shows thekind
of guidelinemapsour tool canproduce.The curvesshow
the minimal TimeInUnitsthat canbe obtainedfor a given
boundon Work . It alsosuggestsa executionstrategy for
thatbound.For example,in Figure8(b) for a work limit of
40 units, the minimal responsetime canbe obtainedwith
PS*100% whenthe schemapatternhas � or l rows. The
expectedresponsetimesare � and T_� units,respectively. Fi-

0

20

40

60

80

100

120

0 50 100 150 200

%enabled = 10
%enabled = 25
%enabled = 50
%enabled = 75

%enabled = 100

Work

m
in

T

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

nb_rows = 1
nb_rows = 2
nb_rows = 4
nb_rows = 8

nb_rows = 16

Work

m
in

T PCE0%

PC*100%

PS*100%

PCE0%

PC*100%

PS*100%

(a)
` \MVZa#XcbG_[is varying (b) VFX]�Y_^�@ is varying

Figure 8. Guideline maps: minTvs. corresponding Work for various implementations

nally, no implementationcanguaranteea work limit of 25
units with schemasof 8 rows. Figure 8(b) shows similar
guidelineswhentheproportionof enablednodesis varying.

An Analytical Model for Finite DatabaseResources. In
thepreviousparagraphwork performedandresponsetime
aremeasuredin unitsof processing.Now we considerde-
cision flows (typically E-commerceapplications)that use
dedicateddatabases,wherethe load imposedby the deci-
sionflow processingonthedatabasesis thedominantfactor
impactingtheresponsetime for processingqueries.In this
sectionwe provide ananalyticalmodelthatcanbeusedto
determine(i) givena targetedthroughputwhat is themax-
imal amountof work the decisionflow canafford, and(ii)
given this limit what is the strategy that givesthe bestre-
sponsetime (in seconds).

We first presentour analyticalmodel, then tuning pre-
scriptions,andfinally experimentalverification.

Analytical model We develop an equationthat character-
izesthe relationshipof the responsetime for performinga
unit of processingvs.thenumberof decisionflow instances
being processedand the amountof work being done for
eachone. In the development,we simplify by assuming
thatthedecisionflow accessesasingledatabase;weexpect
thattheresultswill generalizein anaturalfashion.

We begin by introducingsomekey variables. In addi-
tion to Work andTimeInUnitsdefinedaboveweusethefol-
lowing variables:(i) Th: (Throughput)the numberof de-
cision flow instancesthat arebeingprocessedper second.
(ii) Lmpl: The averagemulti-programminglevel (or num-
berof queriesbeingexecutedin parallel)for eachdecision
flow instance.(iii) Impl: Numberof decisionflow instances
processingin parallel. (iv) Gmpl: Themulti-programming
levelof thedatabase(ornumberof unitsof processingbeing
executedin parallelon thedatabase).(v) TimeInSeconds:
Responsetime (on average)for processinga decisionflow
instance,measuredin seconds.(vi) UnitTime: Theresponse
time of the databaseto performa unit of processing.(vii)

Db: The function mappingthe multi-programminglevel
of the databaseto the responsetime of the databaseper
unit of processing.This is empiricallydeterminedfor each
database;thegraphof Db for our experimentaldatabaseis
shown in Figure9(a).

The following (straightforward) equationsdescribethe
relationshipsbetweenthesevariableswhentheexecutionis
in a stablestate. Here Equations(2), (3) and (4) can be
combinedto obtain(5), and(1) and(5) yield (6).�+�' ¢¡s£� ¢¤�¥§¦ ¨�©_ª�«¬¤:­)®¢¯

(1)°E¤±­#®²¦ £+³µ´¶£� ¢¤·¥s°E�'¸¹¥�ºs»J�#¼J½
(2)£� ¢¤�¥s°E�.¸#¥sºs»J�)¼J½ ¦ £� ¾¤·¥s°E�¿�f�. ¾¡À½¶´Á�+�' ¢¡s£� ¢¤�¥
(3)£� ¾¤·¥s°E�¿�f�. ¾¡À½ ¦ Âµ»JÃ�Ä�ÅQÆZ¤±­#®
(4)«¿¤:­#®Ç¦ °E¤±­#®3´µÆZ¤±­#®
(5)¦ ªc£+³µ´È£� ¢¤·¥s°E�'¸¹¥�ºs»J�#¼/½É¯¬´ÊÆ ¤:­#®

¦ ªc£+³µ´SÂË»/ÃsÄÌ´S�f�. ¢¡s£� ¢¤�¥�¯
�+�' ¢¡s£� ¢¤�¥§¦ ¨�©_ªc£+³Ë´SÂµ»JÃ�ÄÌ´Á�f�. ¾¡s£� ¢¤·¥�¯

(6)

Prescriptionsfor Tuning Equation(6) canbe appliedin
two ways.First,thisequationindicates,for agiventhrough-
put (�Í , anupperboundontheamountof work,measuredin
unitsof processing,thatcanbeperformedfor eachdecision
flow instance.In particular, this upperboundis the maxi-
mumvaluefor ÎÏ��"%Ð suchthatEquation(6) hasasolution.
For example,using the function Db of Figure 9(a) and a
throughputof ��| instancespersecond,this upperboundis
TJÑ units.TheupperboundonWork canbeusedin conjunc-
tion with theguidelinesmapsgivenin Figure8 to determine
whethera giventhroughputcanbesupportedat all. For ex-
ample,usingthe guidelinesin Figure8(b) we canseethat
only schemaswith VFX]_Y_^A@ equalto � and l cansupporta
throughputof �2| instancespersecondwithoutdelays.

Supposenow that the databasecan support a given
throughput. The secondapplicationof Equation(6) is to
choosetheexecutionstrategy thatwill minimizeoverall re-
sponsetime. We illustratethis applicationnow, assuming
the schemapatternin Figure 8(b) with VFX]�Y_^�@ equalto
l . Assumethat a given throughputlevel is given,andcan

Gmpl

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

DBperf

U
ni

tT
im

e
(m

s)

10

100

1000

10000

10 15 20 25 30 35 40 45 50

(a) UnitTime vs. work (ms)

(b) guidelines map (units of processing)

(c) predicted response time (ms)

(d) experimental response time (ms)

PC*100%

PC*100%
PSE80%

PSE80%

PSE100%

PSE100%

PSE40%

PCE0%
PCE80%

PCE0%
PCE80%

PCE0%
PCE80%

PSE80% PSE100%

(c)

(d)

(a)

(b)
PC*100%

Work
(a)UnitTimevs. Gmplfor

ourexperimentalDB (b) Findingmosteffectiveexecutionprogram

Figure 9. Graphs illustrating accurac y of analytic model

be supportedby the database.Thengraphssuchas those
shown in Figure9(b) canbe usedto choosethe bestexe-
cution program. The graph(a) in Figure 9(b) shows, for
a fixed throughput,the relationshipbetweendifferentval-
uesfor Work andthevalueof UnitTime, basedonEquation
(6). Thegraph(b) in Figure9(b) shows theguidelinesmap
from Figure 8(b) that gives for a value of Work the min-
imal responsetime that can be obtainedand the program
that shouldbe usedto obtain it. Finally, the graph(c) in
Figure9(b) combinesthe othertwo graphsusingmultipli-
cation,to show themappingfrom Work to TimeInSeconds,
i.e., thepredictedresponsetime per instance.For this par-
ticular throughput,we concludethat the optimal response
time is obtainedby theprogramsPC*100% andits valueis
220milliseconds(We areusinga log scalefor the Ò axis.)

We verified this analysisexperimentally. The graph(d)
in Figure9(b) shows the(average)responsetime measured
wheninstancesof the correspondingschemaareexecuted
againsttheexperimentaldatabasewith anarrival rateof 10
instancespersecond.We canseethatPC*100% givesthe
bestresponsetime. Moreoverthepredictionontheresponse
timewasquiteaccurate(lessthan10%error).

6. Conclusions

This paperprovidesan initial explorationof optimizing
data-intensive decisionflows, which canbeusedin a vari-
etyof e-commerceandotherbusinessapplications.Specific
propertiesof decisionflowspermitavarietyof optimization
strategies. This papershows the valueof detectionof eli-
gible andunneededattributesusingforwardandbackward
propagation,andstudiestrade-offs betweenresponsetime
andwork performedin variouscontexts. Theresultsof the
papercanbeusedto tuneanexecutionengineto minimize
responsetime andwork performedastheoverall workload
of thesystemchangesthroughtime.

A varietyof questionsareraisedby this study, e.g.,how
to optimize when several decisionflows will be executed
basedon overlappingdata, whetherqueriesfrom one or
several decisionflows shouldbe clusteredto reduceover-
all databaseaccesstime, andhow bestto incorporatethis
technologyinto existing workflow systems.

References

[ACL87] R. Agrawal, M.J. Carey, and M. Livny. Concurrency
control performancemodeling: Alternativesandimplications.
ACM Trans.onDatabaseSystems, 12(4):609–654,1987.

[BKK87] J.Bein,R.King, andN. Kamel.Moby: An architecture
for distributedexpertdatabasesystems.Proc.of Intl. Conf. on
VeryLarge DataBases, pp.13–20,1987.

[HLS Ó 99a] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong,
B. Kumar, andG. Zhou. Declarative workflows that support
easymodification and dynamic browsing. In Proc. of Intl.
Joint Conf. onWork ActivitiesCoordinationandCollaboration
(WACC), pages69–78,February1999.

[HLS Ó 99b] R. Hull, F. Llirbat, J. Su, G. Dong, B. Kumar, and
G. Zhou. Efficient supportfor decisionflows in e-commerce
applications(long version). Technicalreport,Bell Laborato-
ries,LucentTechnologies,MurrayHill, NJ,1999.http://www-
db.research.bell-labs.com/projects/vortex/ictec-full.ps.

[KS95] N. KrishnakumarandA. Sheth.Managingheterogeneous
multi-systemstasksto supportenterprise-wideoperations.Dist.
andParallel Databases, 3(2),1995.

[LR94] F. LeymannandD. Roller. Businessprocessmanagement
with FlowMark. In Proc.of IEEEComputerConf., 1994.

[PHG96] D. Patterson,J.Hennessy, andD. Goldberg. Computer
Architecture : A QuantitativeApproach. Morgan-Kaufmann
Publishers,Inc.,1996.

[PR93] D. PeppersandM. Rogers.TheOneto OneFuture. Dou-
bleday, New York, 1993.

[PYLS96] P. Piatko, R. Yangarber, D. Lin, and D. Shasha.
Thinksheet: A tool for tailoring complex documents. Proc.
ACM SIGMODSymp.on theManagementof Data, 1996.

