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Abstract

For an enterpriseto take advantae of the opportunities
afforded by electionic commece it mustbe able to male
decisionsaboutbusinesdransactionsn nearrealtime In
the coming era of sggment-of-onemarketing, thesedeci-
sionswill be quite intricate, so that customertreatments
can be highly personalized, reflecting customer prefer
ences the customers history with the enterprise and tar-
getedbusinesobjectivesThispaperdescribes paradigm
called“decisionflows” for specifyinga formof incremental
decision-makinghat can combinediverse businesgactors
in nearrealtime

This paper introducesand empirically analyzesa va-
riety of optimizationstrategiesfor decisionflowsthat are
“data-intensive”, i.e., thatinvolvemanydatabasequeries.
A primary focusis on the useof parallelismand eagerness
(a.k.a. speculativeexecution)to minimizework and/or re-
duceresponsdime. A family of optimizationtechniquesis
developedjncludingalgorithmsandheuristicsfor schedul-
ing tasksof the decisionflow. Using a prototypeexecution
enginethe techniquesare compaed and analyzedin con-
nectionwith decision-makingpplicationshavingdiffering
characteristics.

1. Intr oduction

A variety of technologieswill be neededo supportthe
explosive growth of electroniccommerce Onefamily of re-
searchchallengesoncernghe developmentof new frame-
works,infrastructuresandprotocolsthatpermitenterprises
maximizetheir effectivenesavhenusinge-commerceThis
paper describesa paradigm called “decision flows” for
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specifyingand executingin nearrealtimehighly differen-
tiateddecisionsin (e-commerceyvorkflows. For example,
decisionflows can be usedto personalizethe experience
of web storefrontcustomersor to help manageresources
(e.g.,decidingwhatmachinesor humanagentsshouldper
form tasks)in the workflows that supporte-commerceap-
plications. Decisionflows supporta form of incremental
decision-makingthat can easily incorporatea myriad of
businesg$actorsandspecifytherelative weightsthey should
be given. This paperpresentalgorithmsandheuristicsfor
executingdatabase-inteng decisionflows, and describes
anempiricalanalysisfocusedon minimizing workloadand
responsdime.

A decisionflow consistsin a family of attributeswhich
may be evaluatedduring execution. Someof the attributes
will be*“target” andembodythe outputof a decisionflow,
e.g.,whatpriority of serviceto give this customeror what
promotionalimageto displayon the next web page.Other
attributescorrespondo intermediateesultsof thedecision
flow. For example,a“promo hit list” attribute might hold
alisting of potentialpromomessaget display alongwith
scorescombiningthe likelihood that a customerwill buy
the promo and the potential profit that might be derived.
Someintermediateattributesmight gatherdatafrom exter-
nal sources suchas databasesSinceattribute evaluation
canhave arealcost,enablingconditionsareusedto decide
which attributesshouldbe evaluated. (If an attribute A is
disabled,t returnsthe null value L. Attributesthatuse A
asinput mustbe ableto executeevenif L is producesby
A.) Thesetof dataflow andenablingflow dependenciem
adecisionflow mustform anacgyclic graph.The“attribute-
centric” perspectie of decisionflows permitsa systematic
approacHor specifyingwhatfactorsshouldbeincorporated
asadecisionis beingmade.

Decision flows were first introducedin [HLS1994 as
part of the Vortex workflow model, that permitsthe spec-
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ification of workflow schemasupportinghighly differen-
tiated treatments. In the decisionflow model a variety
of mechanismsre provided for specifyinghow attributes
shouldbe evaluated. This includesuserdefinedfunctions,
databaselips, and a generalizedrom of “businessrules”
(see[HLS 1994 for details). Decisionflows areespecially
usefulin customeicareapplicationge.g.,e-commercegall
centers,insuranceclaims processing).Increasingly these
applicationscall for “segment-of-onemarketing”, i.e., pro-
viding very personalizedreatmentto different customers
[PRO]. In mary cases,relevant datais widely dis-
tributedacrossan enterpriseandmultiple databasejueries
areneededo processeachcustomercontact.Sincecurrent
e-commerceand customercare applicationsmust support
thousandsr even millions of contactsper day, thereis a
tremendousieedfor optimizationof this kind of decision
making,in termsof boththroughputandresponségime.

The primary focus of the currentpaperis to presentan
empirical study comparinga variety of optimizationsfor
data-intensie decisionflows. The optimizationsfocuspri-
marily on the judicious useof parallelismand speculatie
evaluationto reducethe work performedandthe response
time of processingnstancef a decisionflow. The tech-
nigue of speculatie executionhasbeenappliedin various
areassuchaspipe-linedexecutionof machindevelinstruc-
tionsin the field of computerarchitecturdPHG94. Sim-
ilar to the prior work, dataflow playsanimportantrole in
the currentapplication. In contrastwith prior work, how-
ever, is the presencef enablingconditionson tasks. This
permitsforward and backward propagatiorof information
aboutquerieseligible for executionand queriesunneeded
for successfutompletionof the decisionflow instance.

In §2, anexampledecisionflow is presentedalongwith
a formal descriptionof the decisionflow model. In §3, we
presenta traditional architecturefor parallelprocessingpf
decisionflows basedon a prequalifieranda taskscheduler
In §4 a family of optimizationtechniqueds proposed;jn-
cludingalgorithmsfor theprequalifierandheuristicsfor the
taskscheduler We implementeda prototypeexecutionen-
ginebasednthesdechniqueslin asimulatedcernvironment,
the techniquesare comparedand analyzedin connection
with decisionflow applicationshaving differing characteris-
tics. Theresultsof our experimentsaredetailedin §5, along
with tuningguidelines.

Due to spacelimitations the presentatiorhereis quite
terse(see[HLST99H). Also, to simplify thediscussiorwe
assumehatall queriesaremadeagainsta singledatabase.

Additional relatedwork. Decisionflows canbe usedto
supportnearrealtimedecisionmaking,andarericherthan
decisiontreesand traditional businessrules frameworks.
Decisionflows aremorestructuredhanexpertsystemsand
therebyreducethe potentialfor a“ripple” effectwhenindi-
vidualrulesaremodified. The useof enablingconditionsin
decisionflows is reminiscenof their usein the ThinkSheet
model[PYLS9§. Decisionflows arecomplimentaryto de-
cisionsupportanddatamining systemsThosesystemgpro-

vide tools to analyzelarge volumesof datathat chronicle
previous businesdransactionsto help develop appropriate
policiesfor futuretransactionsDecisionflows canbe used
toimplementthosepoliciesduringsubsequerttansactions.

Workflow systemssuchas Flowmark [LR94], Meteor
[KS95], and others specify work actvities (for human
agentsor computersysing graphswhosenodesare tasks
andedgescorrespondingo enablingconditions. Although
decisionflows cansene asthe basisfor a workflow model
(see[HLS1994d), andworkflow systemsanuseadecision
flow engineas an adjunct, the currentpaperfocusespri-
marily ontheapplicationof decisionflowsfor nearrealtime
automatediecision-makingwhereno humanagentsarein-
volved.

An arearelatedto data-intensie decisionflows is thatof
“expertdatabasesystems’which focuson the useof oneor
moredatabassystemdo executerule setsagainstargedata
setsin the spirit of expertsystems.For example,[BKK87]
focuseson caseswvhereeachrule might be instantiatedoy
alarge numberof tuples,andusesa horizontalpartitioning
of the underlyingdatasetto achieve effective parallelism.
In contrast,decisionflows are usefulin applicationssuch
ase-commercewhereeachexecutionof the decisionflow
involvesrelatively small datasetsobtainedfrom multiple
databases.

2. Data-intensive DecisionFlows

This sectionpresentsan exampleapplicationthat illus-
tratesdecisionflows. The sectionalso presentsa formal
definition of decisionflows, thatis usedto describethe ex-
ecutionmodelandoptimizationalgorithmsdevelopedater.

Decisionflow for selectingpromoswhen generatingweb

pages. Figure 1(a) shows part of a (simplified) decision
flow thatcould be usedto respondo customersnteracting
with theweb-basedtorefront of aclothingretailer Thede-
cisionflow focusen selectingtemsthatcanbe promoted,
andmight be executedeachtime a pageis generatedor a
customer Otherdecisionflows might be usedto decideon

thekind or level of service.

In Figure 1(a), eachdatabasécon and(solid boundary)
rectanglecorrespondso a taskwhich might be performed
for a given decisionflow instance. Eachtask producesa
valuefor oneor moreattributeswhosevaluesmay be used
by other tasksof the instance(“intermediate” attributes)
or returnedas an outputvalue of the instance(“target” at-
tributes).The dashedectanglegexceptfor thefarleft one)
indicategroupingsof tasksinto modulesthis helpssupport
scalabilityin the specificatiorof decisionflows.

The input attributesfor this decisionflow include the
profile of the customerthe currentvalue of the shopping
cart, information about promosthat the businessis espe-
cially interestedn moving, etc. Basedn differentenabling
conditions(shovn as diamondnodes)different categories
of promotionswill be consideredy the decisionflow. For
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Figure 1. Decision flow for selecting and generating promo images in web-based storefr ont



example,if thereis alreadyoneboy’sitemin the shopping
cart,or if thereis achild’sitemin theshoppingcartandthe
customerhasboughtsomethingfor a boy in the pasttwo

years,thena promofor a boy’s coatis considered. This
involvesdoing a databaselip to getinformationaboutthe
climateat the customehome,deriving a “hit list” of coats
that might be appropriateto the customer checkingwith

inventoryfor coatsin the appropriatesize,andthencreat-
ing a listing of possiblecoatsto promo,alongwith info on

the price, potentialprofit anddegreeof confidencehatthe
promomatchesustomeinterest.

Thedecisionmodulewill estimatehecustomerexpend-
ableincome(basedon customeiprofile, shoppingcart,and
perhapsotherfactors),and createa listing of promosob-
tainedso far. Basedon the businessvalue of the promos
andthelik elihoodof successa decisionis thenmadeabout
whetherto give promos.

Finally, if a promowill be given,the presentationmod-
uleidentifiesimagesandtext thatcanbeusedto displaythe
promo(s),and assembleshesefor inclusionin the gener
atedwebpage.

Attributesand tasks. A decisionflow is attribute-centric
the main objective of the executionis to determinetheval-
uesof certainattributes, basedon other given or derived
attributevalues.Decisionamadeby a decisionflow arerep-
resentedn theattributevalues.

Attributesarecomputedn decisionflows by two kinds
of tasks.A foreigntaskis externalto the decisionflow ex-
ecutionengine(e.g.,databasgueriesweb sener routines,
guestiongo a human).In generathesecanproduceoneor
moreattributevalue,but for brevity in this papemwe assume
thateachproducesa singleattribute. A synthesidaskpro-
ducesa single attribute value, specifiedby a userdefined
functionor usinga specializedramework involving “busi-
nessules” (see[HLST994),

Dataflow and enablingflow. Thedecisionflow modelpre-
sentedo usersis modular to supportscalabilityandlevels
of abstraction However, for executionwe focuson a “flat-
tened” versionof the decisionflow model, which permits
more freedomwith regardsto the order of task execution.
ToflattenamoduleM , we combineg(with the“and” connec-
tive) the enablingconditionfor M with the enablingcondi-
tion of eachtaskandsubmodulewithin M. The“flattened”
versionof the decisionflow of Figure1(a)is shavn in part
(b). (Ignorethelinesandarrowsfor now.) For example the
enablingconditionfor theboy’s coatpromomodule(abbre-
viatedas'C’) hasbeen“anded”into eachof the enabling
conditionsfor thefour tasksinside.

More formally, a (flattened decisionflow schemais a
4-tuple(Att, Cond, Source, Target) where

1. Att is asetof attributes For eachnon-sourceattribute
A thereis auniqueforeignor synthesigaskwhich com-
putesthevalueof A.

2. Source and Target are disjoint subsetsof Att, cor-
respondingto the source andtarget attributes, respec-

tively. Thetargetattributesareusedoutsideof the deci-
sionflow. In anexecutionof the decisionflow, a value
shouldbe producedfor eachtarget attribute that is en-
abled(seebelow).

3. Cond = {C4 | Aisanon-sourcettribute} is thesetof
enablingconditions,onefor eachnon-sourcettribute.

The flow of dataand enablingconditionsin a decision
flow is largely implicit. Associatedto a (flattened)deci-
sion flow schemais its dependencygraph, that highlights
thesetwo kinds of dependenciebetweenattributes. Fig-
ure 1(b) shows the dataflow (using dashedines and ar
rows) andthe enablingflow (usingsolid lines andarrows)
for theexampledecisionflow. A dataflow edgeis included
from attribute A to attribute B if A is usedasinput for B
(e.g.,promo_hit_list to the moduleidentifying imagesthat
shav the promoitems). An enablingflow edgeis included
from attribute A to attribute B if A is usedin the enabling
conditionfor B (e.g., customer_expendable_income to
give_promo(s)?.

A decisionflow schemas is well-formedif the depen-
deng graphof S is agyclic. We consideronly well-formed
decisionflow schemas.

Execution of decisionflows. Beforepresentinghedeclar
ative semanticsor decisionflows we describeintuitively
how they can be implemented. During execution, an at-
tribute becomesstableif its enablingcondition becomes
true andthe task specifyingthe attribute hasexecutedand
returnedavalue,or if its enablingconditionbecomedalse,
in which the attribute is assignedthe value L, i.e., null
value.(In [HLST994 we distinguishexceptionvaluesfrom
othervalues.) A taskcanbe executedafter all of its input
attributeshave becomestable. This andthe agyclicity con-
dition imply that attribute assignments monotonic if an
attributevalueis assignedthenit will never be overwritten.

Tasksin a decisionflow mustbe capableof executing
oncetheir input attributesare stable,evenif someof them
have value L. This requiremenis appropriatén mary e-
commerceapplications,wherea decisionmay have to be
madewith incompleteinformation, e.g., if a databases
down.

A straightforward approacho implementinga decision
flow is to proceedn anordergivenby atopologicalsortof
theattributesaccordingto the dependenggraph.Whenan
attribute A is consideredall of the inputsto the enabling
conditionof A, andall the datainputsfor A, will bestable.
Thus, the enablingcondition of A can be evaluated,and
if true, the task defining A canbe evaluated. This paper
developsoptimizationsof thatapproachusingparallelism,
speculatre evaluationandruntimealgorithmsthatanalyze
the structureof decisionflow schemas.

Intuitively, a targetattribute is onethatmustbe stablein
orderfor executionof a decisionflow instanceto success-
fully complete. In the examplethe only target attribute is
theonefor imageandtext assemblyshavnin gray). If this
attribute is enabled thenexecutionwill not completeuntil



avalueis obtained.If the attribute becomeslisabled then
executioncanhaltimmediately (This attribute will bedis-
abledif attribute give_promo(s)? is false,which canoccur
if customer_expendable_income =0.)

Declarative semanticsof decisionflows. In the abstract,
during executionan attribute will have one of four states:
UNINITIALIZED, ENABLED, VALUE or DISABLED. (Addi-
tional statesare possibleand describedwhen specific ex-
ecution details are involved; see §3 belon.) Sourceat-
tributesstartwith stateVALUE. An attribute will become
ENABLED if its enablingconditionbecomegrue,andit will
becomeDISABLED if its enablingconditionbecomedgalse.
If ENABLED, an attribute will take a valueandwill then
reachthe VALUE state.If DISABLED, theattributewill take
thenull value L.

The semanticof decisionflows is declaratve, and de-
fined usingthe notion of “completesnapshot”. A complete
snapshots apairs = (o, 1), where

(a) thestatefunctiono mapseachnon-sourceattributeinto
{VALUE, DISABLED},

(b) the valuefunction u mapseachnon-sourceattribute A
with stateVALUE into thevaluereturnedby thetaskpro-
ducing A andmapseachnon-sourcettribute with state
DISABLED into thenull value L, and

(c) non-sourceattributes A is in state VALUE if the en-
abling condition C'4 evaluatesto true (using the val-
uesgivenfor attributesoccurringin C4), andis in state
DISABLED otherwise.

Theagyclicity assumptiorguaranteethatthereis a unique

completesnapshoffor given sourceattribute values. An

executionof a decisionflow instanceis correct if it pro-

ducesstatesandvaluesfor the setof targetattributes,andis

compatiblewith the uniquecompletesnapshot(The states
andvaluesproducedr not producedor otherattributesare
viewedasirrelevant.)

In this paperwe assumehat for eachgiven instanceof
thedecisionflow, the dataneededy thedatabasguerieso
computethe attribute valuesremainsfixed during the pro-
cessingof this decisionflow instance.This assumptioras
reasonabldor nearrealtimedecisionsin e-commerceap-
plications.This assumptiorpermitsflexibility in thetiming
of launchingqueriesandthe useof speculatre execution.

Snapshotgan provide a basisfor reportingon the be-
havior of a decisionflow. In particular a (possiblynested)
relationcanbe formed,whereeachtupleis the snapshobf
one executionof the decisionflow. Attributesconcerning
the succesr failure of the decisioncanbe incorporated.
Manualandautomatediatamining techniquesanbe per
formedon this relation,to discover possiblerefinementgo
thedecisionflow.

3. An Execution Model for DecisionFlows

This sectionpresentghe executionmodelfor decision
flows andthearchitectureof theexecutionmodule. Thekey
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Figure 2. Architecture of execution module

featureof this executionmodelis its flexible schedulingof
parallelexecutionsof thetasksin thedecisionflow.

Architecture of the execution module.

Figure 2 shavs

the architectureof the executionmodule. The threeround
boxes representdatarepositories. One containsdecision
flow schemas andanothercontainsruntime flow instances
of the decisionflows. Wheneer a new case,e.g. a new
setof promosfor a web pageneedsto be generateda new
flow instanceis created.The rectanglesepresensoftware
modules.The executionengineworks on the decisionflow
instancego executethetasksin thedecisionflow andprop-
agatethe effectsof the executionsuntil the goalis reached.
The engineworks in a multi-threadfashion,so that paral-
lel processingf multiple flow instancesandmultiple tasks
within oneinstanceis possible. To executethe tasks,the
engineconsultghetaskschedulerthatdynamicallychooses
oneor moretasksfrom a pool of candidatetasks,i.e., the
roundbox candidateaskspool. More preciselythereis one
pool of tasksper flow instanceandthe schedulerchooses
tasksfor eachflow instanceindependentlyfrom the other
flow instances. The candidatepool is maintainedby the
prequalifier Recallthatwe areassumingn this paperthat
eachtaskcomputesa single attribute. This meansthatwe
canidentify eachtaskby the attribute thatthatit produces.
Further we interchangeablyeferto executionof a taskor
evaluationof the correspondingttribute.

The execution algorithm. We now give a sketch of the
executionalgorithm, which summarizeshethreeimportant
phase®f executingdecisionflows. This algorithmis based
on a generalizednotion of snapshotwhich is described
shortly. The executionprogramis invokedeachtime anew
decisionflow instancas initiated,andeachtime new values
of attributesareobtainedfor arunningflow instance.

(1) Evaluationphase:

(a) Constructa new snapshothatincorporateghe new
attribute value(s).

(b) If aterminalsnapshofi.e., all the target attributes
arestable)is reachedthenexit.

(2) Prequalifyingphasdprequalifier): Identify asetof can-

didateattributesin thedecisionflow thatarereadyto be
evaluated.
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(3) Schedulingphase(schedule): Selectone or more at-
tributes out of the candidateattribute set basedon
scheduling heuristics, and send their corresponding
gueriedo theexternalsener(s).

The primary focushereis on optimizationtechniquesised
in the prequalifyingandschedulingphases.

The execution algorithm constructsa seriesof snap-
shots,eachone incorporatingnewly acquiredinformation
obtainedthroughthe evaluationof attributes. We now de-
scribe the extendedform of snapshotsised. As in Sec-
tion 2, the extendedsnapshotsvill be orderedpairsof form
(o, 1). However, the setof possiblestatesfor attributesis
expandedasindicatedin Figure3. Theintuitive meaning
of anattribute A beingin a stateof thefsais givennow.

States UNINITIALIZED, ENABLED, VALUE and
DISABLED retain the meaning from Section 2. The
statesVALUE andDISABLED areshonvn with doublecircles
becausethey are terminal statesfor attributes; when an
attribute movesto one of thesestatesthenit is stable. An
attribute A can move into state ENABLED (DISABLED)
if, basedon information accumulatedso far, the enabling
conditionfor A is determinedto have value true (false).
An attribute movesfrom the ENABLED stateto the VALUE
stateassoonits valuehasbeencomputed . ThestateREADY
indicatesthatall of theinput attributesfor anattribute have
stabilized(i.e., their statesareDISABLED or VALUE). If an
attribute is in stateREADY, thenit canbe evaluatedspec-
ulatively. StateREADY+ENABLED indicatesboth that the
input attributesare stableandthe enablingconditionfor an
attribute hasbeendeterminedo betrue. StateCOMPUTED
(and not enabled),ndicatesthat the valuefor A hasbeen
computedspeculatiely but the truth value of the enabling
conditionis not yet determined.An attribute movesfrom
the COMPUTED state to the VALUE (DISABLED) state
as soonits enablingconditionis evaluatedto true (false).
Thereis a naturalpartial orderingon the statesof the fsa.
For example,we write READY < COMPUTED.

An executionpermittedby the executionalgorithmcan
be describedby a sequenceof snapshotgsg, --- s;, -,
sn) Wheresy is theinitial snapshothaving valuesonly for

the sourceattributes),s; i € [1, n], aresnapshotsomputed
by the executionalgorithmands,, is the terminalsnapshot
wheretargetattributesarestable. In [HLST99H|, we define
sufficientconditionsfor executionsequenceto yield termi-
nalsnapshotthatareconsistentwith thedeclaratve seman-
tics definedin §2. We have usedthesesufficient conditions
to prove the correctnessf the optimizationalgorithmspre-
sentedn thefollowing section.

4. Optimization Strategies

We first state the optimization goals. Then we
presenburoptimizationstratejiesfor theprequalifyingand
schedulingphasesof the executionalgorithms. In this
andthefollowing sectionwe focusexclusively on decision
flowswhereall tasksaredatabaseueries However, theop-
timizationspresentedheregeneralizeo othertypesof tasks,
includingsynthesigasksandweb-queries.

Optimization Goals. Motivatedby e-commerceandsimi-
lar applicationspur optimizationgoalis to beableto guar
anteeaquality of servicein termsof responséime whatever
the workload conditionsare. Thuswe needto provide op-
timization techniqueghat both minimize (1) the response
time and (2) the work performedfor the executionof the
decisionflow instances.The first goal is motivatedby the
desireto sene web customersasquickly aspossible. The
secondgoalis motivatedby the factthate-commercesites
can have bursty load, and can easily becomeoverloaded.
It is importantto understandrade-ofs betweentime and
work, andto be ableto gracefullymove alongthosetrade-
offs dependingon currentload. For example,givenafixed
amountof work thatcanbe performedwhatis the bestre-
sponsegime possibleandhow canwe obtainit? In §5 we
provide answergo this questionin two contexts: wherethe
databaseesourceis essentiallyunlimited, and whereit is
limited anddedicatedo supportingthe decisionflow.

Optimizations in the Prequalifying Phase .We expandthe
prequalifyingphaseof the executionalgorithmin §4 with
the following two steps: (i) Identify maximal numberof
eligible attributes;(ii) Eliminate“unneeded’attributesfrom
theeligible attribute setto geta setof candidateattributes
To obtainamaximalsetof candidatettributeswith min-
imal numberof unneededittributes,we usethe technique
of eagerevaluationof enablingconditions.In particular we
perform partial computationof enablingconditionsbased
on the attribute valuesthat are available. As a simple ex-
ample,in Figure 1 the enablingcondition of the nodeto
checkcoatinventorymight be evaluatedto falseusingjust
the db_load attribute. Suchreasoningcanbe usedto de-
terminethatan attribute is disabled,and hencetakesvalue
1 beforethe attributeis READY andbeforeall attributesin
theenablingconditionarestable. Analogouseasoningvith
disjunctionscandeterminghatanattributeis enabled.This
canhelpto quickly move anattributeto stateENABLED or
READY+ENABLED, or from COMPUTED to VALUE.



Anotherusefulactiity in decisionflow executionis the
identificationof attributeswhosevaluesare unneededor
successfukcompletionof a decisionflow instance. This
may arise from forward propagation of information, i.e.,
inferring thatan attributeis DISABLED by propagatingor-
wardthe factthat attributesinvolvedin its enablingcondi-
tion arealsoDISABLED attributes. Inferenceof unneeded
attributesalsoarisesrom badkward propagation whichin-
volves inferring that althoughan attribute is or may be-
comeenabled,ts valueis not neededor successfutom-
pletionof thedecisionflow instance As oneexample,sup-
posethat expendablencomeis determinedo be 0. Then
give_promo(s)?will be DISABLED andtake value L. The
condition “give_promo(s)? = true” is false,and so the
five attributes having that as enablingcondition will also
be DISABLED. As a result, promo_hit_list is not needed
asinput for ary enabledattributes. Forward andbackward
propagatiorcanbe combined.

In [HLSt994 an algorithm, called here Propaga-
tion_Algorithm, is describedhat performseagerevaluation
of enablingconditionsand detectsunneededttributes at
runtime. Thealgorithmexecutedn anincrementafashion,
incorporatingnew informationasit becomesvailablefrom
theexecutionof thedecisionflow. Importantly the costof
executingthe algorithmis linearin the size of the decision
flow, regardlesf whatorderthetasksareexecutedn.

Optimizations in the Scheduling Phase. Given a candi-
date attribute set, we typically needto selecta subsetof
attributesandexecutetheir correspondinglatabaseueries,
becausehe underlyingdatabaseener cansupporta finite
multi-programminglevel. We focuson two heuristicsfor
schedulingcandidategueries.

Topologically-earliestfirst: Choosethe nodesthat are
topologically-earliesin the dependeng graph. This may
help identify eligible and unneededattributesinitially us-
ing forward propagationso that mary otherattributescan
becomeeligible assoonaspossible.

Cheapesfirst: Choosethe nodesthathave the shortestes-
timatedexecutionduration. This canhave two adwvantages:
(1) The resultsof thesequerieswill comeback faster so
that the correspondingattribute valuescan be propagated
throughthe graphsooner (2) In casethe executedqueries
turn out to unneededater, the wastedtime and resources
arelesscomparedo moreexpensve queries.

5. Performance Evaluation

In this sectionwe evaluatethe effectivenessof our op-
timization stratgyiesin a variety of settings. The section
begins with a descriptionof our experimentervironment.
A key componenhereis a mechanisnfor generatingleci-
sion flow schemasaving a variety of different“patterns”
or characteristicsWe thenpresentexperimentresultsthat
assumethe tamgeteddatabasesiave unboundedesources.
Fromthis, we develop guidelinesthat help a potentialuser

to choosethe bestoptimizationstratayy for a given appli-
cation. Last, we considerthe morerealisticcasewherere-
sourcesareboundedj.e., wheredatabaseystemload has
an impacton the performance. We develop a simple an-
alytical modelthat canbe usedfor tuning performanceof
decisionflows, andexperimentallyverify its accurag.

Experiment Envir onment. We implementedan execution
module with all the optimization algorithmsand heuris-
tics discussedn §4 built in. The externaldatabasesener
is simulatedusing CSIM 18, in orderto supporta fine
level of control over variousdatabaseaelatedparameters,
e.g., databasdoad, query costetc. We usethe following
threeparameterso measuraesponsdime and efficiency:
() TimelnUnits: Responsdime for processingdecision
flow instancemeasuredh unitsof processing Thisis used
in theabstractontext of unboundedesourcesln actuality
thetime it takesfor eachunit of processing/ariesdepend-
ing on systemload. (ii) TimelnSeconds At the endof this
secionwe studythe context of boundedesourcesandthus
usethis absolutemeasureof time. (iii) Work : The total
numberof unitsof processindgeingperformedor eachde-
cisionflow instance.As a simpleexample,if oneinstance
takestotaltenunitsof processing@ndthreeof theunitswere
processeth parallel,thenTimelnUnitsis 8 andWork is 10.
In general\brk is inverselyproportionalto the efficiency.

In the experimentsve evaluatethe executionalgorithms
with thefollowing four options.

Propagation of information: In §4 we describechow for-

ward and backward propagatiorcanidentify unneededt-

tributes. We usethe letter ‘P’ (for Propagation}o denote
the option wherewe performsuchpropagatiorand do not

placeunneededasksin the candidatepool. Otherwise we

usetheletter’N’ (for Naive).

Speculativevs. Conservative: We use the letter ‘'S’ (for
Speculatie) to denotethe optionwherethe prequalifierse-
lects tasksthat are READY+ENABLED or READY for the
candidatgool. We usetheletter'C’ (for Consenative) for
the optionwherethe prequalifierselectsonly tasksthatare
READY+ENABLED.

Sdeduling heuristics option: The schedulingheuristics
“topologically-earliestfirst”, and “cheapestfirst” are de-
notedby 'E’, and’C’, respectiely.

Parallel processingoption: This determineghe percentage
of the candidateattributesthat will be selectedfor execu-
tion. We denotethis option as %Permittedwhosevalueis
betweerD and100, with the constrainthatat leastoneat-
tributemustbe selectedor execution.Hence 0 meanghat
for ary giveninstancepnly oneattribute canbe computed
atatime (no parallelism).

We identify a particularexecutionstrategy, i.e., combi-
nationof the above options,usinga sequencef characters
correspondingo thesefour options.For example PSE80%
denoteghestratgy thatusesP’, 'S’, and’E’ optionswith
the parallelprocessingption setto 80%. We use* to rep-



Parameter [ Range [ Description

nb_nodes 64 # of internalnodes
nb_rows [1,16] # of schemaows
%enabled [10,100] % of enablechodes
%enabler 50 % of potentialenablers
%enablinghop 50 maxenablingedgehop
(as% of total # of columns)
Min_pred 1 min # of predicates
perenablingconditions
Max_pred 4 max# of predicates
perenablingconditions
%addeddataedges | [-25,+25] | % of dataedgesaddedto skeleton
%datahop 50 maxdataedgehop
(as% of total # of columns)
modulecost [1,5] unitsof costfor executinga module
num.CPUs 4 # of CPUsin thedatabase
num.disks 10 # of disksin thedatabase
unit CPU.cost 1 # of unitsof CPU
# perexecutionunit cost
unit.I0_cost 1 # of 10 pageerunit execution
%IO_hit 50 probability of IO pagehit in buffer
10_delay 5 10 delayin msecs.

Table 1. Simulation parameter s

resenfasetof stratgjies.For examplePC* * denotesll the
stratgjiesthatusethe’P’ and’C' options.

We conducted broadarrayof experimentdasedntwo
basicdimensionsthetype of decisionflow andthecharac-
teristicsof the supportingdatabaseTable1l summarizeshe
variousdimensionghatwe explored.

Decisionflow schemawith nb_nodes=16,nb_rows=4,
%enabled=50and%enabling_hop=50

Figure 4. Example schema pattern

To createa decision flow schema,we first build a
dataflow skeletonbasedon the parametersib_nodesand
nb_rows The nodesand dashededgesof Figure4 shavs
a skeletonfor nb_nodes = 16 andnb_rows = 4, i.e.,
16 internalnodesand 4 rows. The skeletoncontainsone
sourceattribute, onetargetattribute, andnb_nodesinternal
attributes. The numberof columnsin the skeletonis given
by %. In the skeleton datadependenyedgesareor-
ganizedasfollows: Thesourceattributeis aninputattribute
of thefirst nodesof all therows. Eachinternalnodeis an
input attribute of its successom the samerow. The last
nodesof all the rows areinputsof the target attribute. By
varyingnb_rows for a fixed numberof nodeswe vary the
diameter 2b=nedes of the schema. Intuitively, the smaller
the diameteiis, the higherthe parallelismcanbe,assuming
everythingelsebeingequal.

We now describehow skeletonsareusedto form schema

patternsEnablingconditionsarerestrictedto conjunctions
or disjunctions. The numberof predicatesin (enabling
edgednto) eachenablingconditionis spreaduniformly be-
tweenMin_pred and M ax_pred. Thereare %enabler at-
tributeswhosevaluesareusedin atleastoneenablingcon-
dition of anotherattribute. The maximumhop (as a per
centageof the total numberof columnsin the schema)pe-
tweenthe two nodesof an enablingedgeis given by the
parametef%hop. At the end of the execution%enabled
percenof the enablingconditionswill betrue. Thedashed
andsolid edgesof Figure4 takentogethershav a decision
flow patterngeneratedvith nb_node = 16, nb_rows = 4,
%enabler = 50, min_pred = 1, maz_pred = 4 and
%hop = 50. In an analogousmannerwe can add (or
delete)dataflow edgesfrom the skeleton schemas. We
experimentedvith a rangeof addedand deleteddataflow
edgesbut focushereon the casewhereno dataedgesare
addedor deletedrom theskeleton.For theexperimentsthe
evaluationof eachattribute involves exactly one database
qguery The costof the queryis setrandomlyin the rangeof
module_cost.

To simulatea databaseve usea physicalmodel simi-
lar to [ACL87] wheredisksand CPUsare simulatedusing
servicequeues.The costof a queryis specifiedin termsof
numberof unitsof processingThecostof aunit of process-
ing onthe databasés representelly theaveragenumberof
pagesthe query accessesnd the averageCPU time con-
sumedby the query Thelastsix rowsin Table1 describe
theparametersisedin our databassimulation.

Experiment Resultswith Infinite Resources.We now ad-
dressthe questionof how the optimizationstratejies per
form for decisionflows with differentpatterns We assume
the supportingdatabasdasinfinite resourcesindfocuson
minimizing work performedor minimizing responsdime
measuredn unitsof processing.

Basedon our experimentswe have foundthatnb_rows
and %enabled are two key characteristicof a decision
flow schemahataffectthe performancef theoptimization
stratgjies. nb_rows controlsthe diameterof the schema,
andhasmajor impacton potentialparallelism. %enabled
is akey characteristiof decisionflow applications It indi-
catesthe averagenumberof attributeswhosevaluesareac-
tually neededo computethe targetattributes. This clearly
impactstheamountof work thatcanbe saved.

Minimizing theamountof work To studyminimizingwork
we focuson * C* 0%becausehe Conserative option (' C)
avoids executing attributes that will becomeDISABLED,
and no parallelism (% Permitted = 0%) never increases
work. We answerthefollowing questionsy(i) Whatarethe
benefitof usingPropagationAlgorithm? (i) Forwhichde-
cision flow patternsis PropagatiopAlgorithm is the most
efficient? (iii) What schedulingoption is performingthe
leastwork? (iv) Is thethebestschedulingpptiondependent
on decisionflow pattern?

Figures5(a) and 5(b) shov the amountof work per
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Figure 5. Comparison of strategies for minimizing work

formed by the executionstratgies whenwe vary respec-
tively nb_rows and %enabled. In Figure 5(a) nb_rows
is setto 4. (Sincethereis no parallelism thesefiguresalso
shaw theresponséimefor thedifferentstrateies.) Thisfig-
ureshownstwo clustersof curvesbasednwhethertheProp-
agationAlgorithm (option’ P") is usedor not. Whenit is not
usedthe amountof work performedby programsNC* 0%
is approximatvely linearwith the percentagef DISABLED
attributes(100—%enabled). Indeed theC optionavoidsex-
ecutingattributesthatwill becomeDISABLED. With Prop-
agationAlgorithm, additionalunneededattributesare dis-
coveredand the amountof work is reducedfurther. Fig-
ure 5(a) alsoindicatesthat decisionflows with a large per
centageof disablednodesbenefitthe mostfrom Propaga-
tion_Algorithm. Thebestbenefitsareabout60% andareob-
tainedwhen%enabled = 10%. For Figure5(b), %enabled
is setto 75.

Now we examinethe effectsof theschedulingheuristics.
Theperformancef the“cheapest’and“earliest” heuristics
arevery close,within 10% of eachother Whenthe P op-
tionis notused,‘cheapest’schedulingaiwaysgivesthebest
performance.n contrast,‘earliest” givesthe bestbenefits
when combinedwith the P option. Indeed,the “earliest”
schedulingallows more aggressie forward propagatiorto
detecteligible and DISABLED attributes. Consequently
more forward propagationproducesmore start points for
backwardpropagatiorio detectunneedeattributes.Thisis
aninterestingesult,sincein mostapplicationareas'cheap-
est”istheheuristicof choice.We explorethisfurtherbelow.

Minimizing the responsdime We now turnto minimizing
responsdime. To this end we assumel00% parallelism,
andexplorethefollowing questions{i) Whatbenefitan re-
sponsdime canbe obtainedby combiningthe Speculatie
or Consenrative stratgieswith high parallelism?(ii) How
do thosebenefitsdependon decisionflow patterns? (iii)
Whatis the trade-of betweenWork and TimeInUnits,
or more preciselyhow muchadditionalwork is necessary
to reduceTimeInUnits? To addresghesequestionsve

considemprogramof theform P* * 100%andcompareheir
performancewith PCEQ% (which, accordingto Figure 5,
givesthe bestresponsdime whenthereis no parallelism).
Figure 6(a) shavs that using maximal parallelismcanre-
ducesignificantly the responsdime. For example, using
PC* 100% when nb_rows = 4 and %enabled = T75%
leadsto a 60% reductionof responsetime. This result
is not very surprisingsinceparallelismtakes advantageof
the eagerdetectionof eligible attributes madeby Propa-
gationAlgorithm. Whenusingthe “Consenative” strat-
egy thereis little increasein work. In contrast,Figure
6(a) shaws that with the “Speculatve” stratgy a rather
smallgainover“Consenative” stratgy (maximumof about
10%) can be achiered, but with a significantincreasein
work (see 6(b)). For example,when %enabled = 50%,
30% additionalwork is performed. This is dueto the fact
that“Speculative” strat@y executegnary attributesthatbe-
comeDISABLED afterwards. The “Speculatve” strateyy
becomesnore profitablewhen %enabled is high, because
theincreasean work is lower.

Effect of “Earliest” and “Cheapest” Scheduling heuris-
tics. We now considertheimpactof varying the degreeof
parallelismon the performancef the optimizations.To do
suchcomparisonwe considerprogramsof the form PCE* ,
PSE* , PCC* PSC* andvarythe degreeof parallelism.
Figures 7(a) and (b) showv respectiely the values of
TimeInUnits andwork for variousdegreesof parallelism
whenthe programsareexecutedon adecisionflow schema
with nb_rows = 4 and %enabled = 75%. Figure 7(a)
shaws that“Earliest” schedulingalwaysgivesa shorterre-
sponsdime thanthe“Cheapest’schedulingThebestgains
areobtainedwhenthe degreeof parallelismis betwee0
and 80. When “Consenative” (C) strat@y is used, the
gain of usingEarliestschedulingcomparedo Cheapests
about15% whenthe parallelismis equalto 40. It is 30%
when “Speculatve” (S) stratgy is used. Moreover Fig-
ure 7(b) shaws that Earliestand Cheapesheuristicscon-
sumeapproximatvely the sameamountof work. Thereare
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two reasonswhy “Earliest” heuristicsis more profitable.
First by choosingattributes closerto the sourcethe ear

liest strategy enhanceshe effects of forward propagation,
andconsequentlyhe effectsof backwardpropagatior(new

startpointsfor backward propagatiorare discovered). As

aconsequenceligible andunneededttributesarediscov-

eredearlier The secondreasonis the factthatan attribute

that is closeto the sourcewill be discorered DISABLED

(or ENABLED) soonerthanan attribute closeto the target.
By choosingattributesthat are closeto the sourcewhen
the “Speculatve” stratgy is used,the Earliestscheduling
limits the risk of choosingan attribute that will become
DISABLED afterwards. This explainsthe additionalgain of

using “Earliest” comparedo “Cheapest’(30% insteadof

15%) when“Speculatve” (S) stratgy is used.

Lessonslearned and guideline maps. Our experiments
suggesthefollowing guidelines.

Lessonl: Using option P’ (PropagationAlgorithm) re-

ducesboth responsdime andamountof performedwork.

The benefitsobtainedusingoption'P’ aremostsignificant
whenthe proportionof potentialDISABLED nodesper in-

stancds large (morethan20%).

Lesson2: Whenoption'P’ is used,Consenrative stratgy
(option ' C) is usually more profitable than the Specula-
tive strat@y (option’S’). TheSpeculatie stratgy becomes
more profitable when the proportionof DISABLED nodes
perinstancds low (lessthan25%).

Lesson3: Whenoption’P’ is used the“Earliest” schedul-
ing heuristicis the mostprofitable. The factthat“Earliest”
out-performs‘Cheapest’is significantfor two reasonsia)
“Earliest” is simplerandeasierto implementthan“Cheap-
est”, and(b) for mostapplicationsstudiedin theliterature,
the“Cheapest’heursiticswins over “Earliest”.

Our experimentplatform canbe usedto predictthe per
formanceof a particulardecisionflow schemaduring the
designphaseof the decisionflow. Figure8 showvsthekind
of guidelinemapsour tool canproduce. The curvesshav
the minimal TimelnUnitsthat can be obtainedfor a given
boundon Work . It alsosuggestsa executionstrateyy for
thatbound.For example,in Figure8(b) for awork limit of
40 units, the minimal responsdime can be obtainedwith
PS* 100%whenthe schemgpatternhas2 or 4 rows. The
expectedesponséimesare8 and12 units,respectrely. Fi-
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nally, no implementatiorcanguarantee work limit of 25
units with schemasf 8 rows. Figure 8(b) showvs similar
guidelinesvhentheproportionof enablechodess varying.

An Analytical Model for Finite DatabaseResources. In
the previous paragraptwork performedandresponsdime
aremeasuredn units of processingNow we considerde-
cision flows (typically E-commerceapplications)that use
dedicateddatabaseswherethe load imposedby the deci-
sionflow processingnthedatabasess thedominantfactor
impactingthe responsegime for processingjueries.In this
sectionwe provide an analyticalmodelthat canbe usedto
determing(i) givenatargetedthroughputwhatis the max-
imal amountof work the decisionflow canafford, and (ii)
giventhis limit whatis the stratey that givesthe bestre-
sponsdime (in seconds).

We first presentour analyticalmodel, thentuning pre-
scriptionsandfinally experimentalverification.

Analytical model We develop an equationthat character
izesthe relationshipof the responsdime for performinga
unit of processings.thenumberof decisionflow instances
being processedand the amountof work being done for
eachone. In the development,we simplify by assuming
thatthe decisionflow accessea singledatabaseywe expect
thattheresultswill generalizeén a naturalfashion.

We begin by introducingsomekey variables. In addi-
tion to Work andTimelnUnitsdefinedabove we usethefol-
lowing variables: (i) Th: (Throughput)the numberof de-
cision flow instanceghat are being processedger second.
(i) Lmpl: The averagemulti-programmingevel (or num-
ber of queriesbeingexecutedn parallel)for eachdecision
flow instance (iii) Impl: Numberof decisionflow instances
processingn parallel. (iv) Gmpt The multi-programming
level of thedatabaséor numberof unitsof processindpeing
executedn parallelonthedatabase).(v) TimelnSeconds
Responséime (on average)for processing decisionflow
instancemeasuredh seconds(vi) UnitTime Theresponse
time of the databaseo performa unit of processing.(vii)

Db: The function mappingthe multi-programminglevel
of the databasdo the responsdime of the databaseper
unit of processingThis is empirically determinedor each
databasethe graphof Db for our experimentaldatabasés
shavnin Figure9(a).

The following (straightforvard) equationsdescribethe
relationshipdetweerthesevariablesvhenthe executionis
in a stablestate. Here Equations(2), (3) and (4) canbe
combinedto obtain(5), and(1) and(5) yield (6).

UnitTime = Db(Gmpl) 1)
Impl = Th x TimelInSeconds 2
TimeInSeconds = TimelnUnits x UnitTime )
TimeInUnits = Work |/ Lmpl (4)
Gmpl = Impl x Lmpl (5)

= (Th x TimelInSeconds ) X Lmpl

= (Th x Work x UnitTime)

UnitTime = Db(Th x Work x UnitTime) (6)

Prescriptionsfor Tuning Equation(6) canbe appliedin
two ways. First, thisequatiorindicatesfor agiventhrough-
put Th, anupperboundontheamountof work, measuredh
unitsof processingthatcanbe performedor eachdecision
flow instance.In particular this upperboundis the maxi-
mumvaluefor Work suchthatEquation(6) hasasolution.
For example, using the function Db of Figure 9(a) and a
throughputof 20 instanceger secondthis upperboundis
19 units. TheupperboundonWork canbeusedin conjunc-
tion with theguidelinesmapsgivenin Figure8 to determine
whethera giventhroughputcanbe supportedatall. For ex-
ample,usingthe guidelinesin Figure 8(b) we canseethat
only schemasvith nb_rows equalto 2 and4 cansupporta
throughputof 20 instancegpersecondvithoutdelays.
Supposenow that the databasecan supporta given
throughput. The secondapplicationof Equation(6) is to
choosehe executionstrateyy thatwill minimizeoverall re-
sponsdime. We illustratethis applicationnow, assuming
the schemapatternin Figure 8(b) with nb_rows equalto
4. Assumethata giventhroughputlevel is given,andcan
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be supportedby the database.Then graphssuchasthose
shawvn in Figure 9(b) canbe usedto choosethe bestexe-
cution program. The graph(a) in Figure 9(b) shows, for
a fixed throughput,the relationshipbetweendifferentval-
uesfor Work andthevalueof UnitTime, basedn Equation
(6). Thegraph(b) in Figure9(b) shavs the guidelinesmap
from Figure 8(b) that givesfor a value of Work the min-
imal responsdime that can be obtainedand the program
that shouldbe usedto obtainit. Finally, the graph(c) in
Figure9(b) combinesthe othertwo graphsusing multipli-
cation,to shov themappingfrom Work to TimelnSeconds
i.e., the predictedresponsdime perinstance.For this par
ticular throughput,we concludethat the optimal response
timeis obtainedby the programsPC* 100%andits valueis
220millisecondg(We areusingalog scalefor they axis.)

We verified this analysisexperimentally The graph(d)
in Figure9(b) shovsthe (averageyesponseime measured
wheninstancef the correspondingchemaare executed
againstthe experimentaldatabasevith anarrival rateof 10
instancegper second.We canseethat PC* 100%givesthe
bestresponséime. Moreoverthepredictionontheresponse
time wasquite accuratglessthan10%error).

6. Conclusions

This paperprovidesaninitial explorationof optimizing
data-intensie decisionflows, which canbe usedin a vari-
ety of e-commercandotherbusinessipplications Specific
propertieof decisionflows permitavariety of optimization
stratgies. This papershaws the value of detectionof eli-
gible andunneededttributesusingforward andbackward
propagationand studiestrade-ofs betweenresponsdime
andwork performedn variouscontexts. Theresultsof the
papercanbe usedto tunean executionengineto minimize
responséime andwork performedasthe overall workload
of thesystemchangeshroughtime.

15 20 25 30 35 40 45 50

Work

(b) Findingmosteffective executionprogram

accurac y of analytic model

A variety of questionsareraisedby this study e.g.,how
to optimize when several decisionflows will be executed
basedon overlappingdata, whetherqueriesfrom one or
several decisionflows shouldbe clusteredto reduceover-
all databaseaccesgime, and how bestto incorporatethis
technologyinto existing workflow systems.
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