
Moving Objects: Logical Relationships and
Queries

Jianwen Su?, Haiyan Xu??, and Oscar H. Ibarra?

Department of Computer Science
University of California

Santa Barbara, CA 93106
USA

{su,xu,ibarra}@cs.ucsb.edu

Abstract. In moving object databases, object locations in some multi-
dimensional space depend on time. Previous work focuses mainly on
moving object modeling (e.g., using ADTs, temporal logics) and ad hoc
query optimization. In this paper we investigate logical properties of
moving objects in connection with queries over such objects using tools
from differential geometry. In an abstract model, object locations can
be described as vectors of continuous functions of time. Using this con-
ceptual model, we examine the logical relationships between moving ob-
jects, and between moving objects and (stationary) spatial objects in
the database. We characterize these relationships in terms of position,
velocity, and acceleration. We show that these fundamental relationships
can be used to describe natural queries involving time instants and in-
tervals. Based on this foundation, we develop a concrete data model for
moving objects which is an extension of linear constraint databases. We
also present a preliminary version of a logical query language for moving
object databases.

1 Introduction

Existing technology has made it possible to track down movements of target ob-
jects in the air (e.g., airplanes), on the land (e.g., vehicles, wild animals, people,
etc.) and ocean (e.g., ships, animals). Among the challenges novel applications
involving such “moving objects” have brought to software development is the
problem of data management. In a nutshell, there is a wide range of issues in-
cluding modeling and representation of moving objects, query language design,
indexing techniques, query optimization, and even extensions to the well known
and widely adopted “data independence” principle. Prior work on spatial and/or
temporal databases is relevant but insufficient for moving objects. The goal of
this paper is to revisit the foundation of data models and query languages for
? Supported in part by NSF grants IRI-9700370 and IIS-9817432

?? On a sabbatical leave from Department of Computer Science, Fukoka Institute of
Technology, Japan

C.S. Jensen et al. (Eds.): SSTD 2001, LNCS 2121, pp. 3–19, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

4 J. Su, H. Xu, and O.H. Ibarra

moving objects by taking a new perspective from a branch of mathematics—
differential geometry.

Management of moving objects has been investigated in the recent years.
Sistla and Wolfson et al [SWCD97,WXCJ98] developed a data model combining
future temporal logic (FTL) with topological operators. Although FTL allows
reasoning about temporal properties on individual moving objects, the coupling
of the spatial and temporal relationships is inevitably loose hindering the reason-
ing process as well as eventually the query optimization. Coming from spatial
data modeling, a group of researchers proposed extensions based on abstract
data types (ADTs) [EGSV99,FGNS00,GBE+00]. These are practical solutions
to the modeling and querying problems. Unfortunately, ADTs are too “rigid”
to express sometimes intimate temporal and spatial configurations of moving
objects. Indeed, once the operators are fixed, new and sophisticated relation-
ships involving moving objects may be inexpressible since the “host” language
(likely SQL) lacks the ability to “look into” the inside of an ADT. On the other
hand, the focus of the modeling and querying was mostly on the spatial and
temporal relationships that can be described in algebraic geometry. Güting et
al [GBE+00] realized this deficiency and added four operations for computing
velocity, derivative, turn, and speed as ADT operations. But the underlying rea-
soning for including these is unclear. They seem to deviate from the well known
principles of differential geometry [MP77,Gra98]. Forlizzi et al [FGNS00] also
considered moving lines and regions which is not the focus of this paper.

Constraint databases [KKR95] present an elegant conceptual model for spa-
tial and temporal data. The primary idea is to use mathematical formulations to
represent spatial and temporal data and use first order logic to express queries
[KLP00]. However, the framework is based on elementary algebra and thus the
relationships expressible are the ones in algebraic geometry. For example, rea-
soning about moving speed and direction is out of reach.

There are other related work on moving objects, but these mostly focus on
indexing and algorithm issues [KGT99,AAE00] and location management and
dealing with imprecision [WCDJ97,WCD+98,WJS+99].

In this paper, we consider modeling moving points in some vector space
and use techniques from differential geometry [Gra98]. A focus is to conduct an
exposition with well known mathematical tools. Through the analysis of logical
relationships concerning moving points, we conclude that simple primitives of
velocity and acceleration along with vector operations are sufficient to express
not only movement-related relationships but also the well studied topological and
temporal relationships. Based on this finding, we propose an extension to the
linear constraint database model which allows these simple primitive operations.
We also develop an extended calculus query language based on some standard
linear constraint query languages (see [KLP00]). We show that this language has
polynomial time complexity.

This paper is organized as follows. Section 2 gives some preliminary concepts,
and Section 3 introduces the abstract model for moving points. Section 4 focuses
on the relationships of the moving objects. Section 5 presents a design of a

Moving Objects: Logical Relationships and Queries 5

concrete data model based on linear constraints and associated query language
extended from the constraint calculus. Section 6 concludes the paper.

2 Preliminaries

In this section we briefly review some of the fundamental concepts related to
curves in multi-dimensional space and some operations on vectors. These con-
cepts will be used in the technical discussions throughout the paper. We also
discuss necessary concepts of spatial databases that we will use in conjunction
with moving objects.

We assume the existence of primitive data types such as real numbers and
time instants. The domains of these types are standard. In our discussions, the
domain of time has a dense total order isomorphic to the real numbers, i.e., time
is continuous. For spatial data in the n-dimensional space, we assume the exis-
tence of spatial types such as regionn, linen, pointn for each n (≥ 1). The domains
of these types are semi-algebraic regions, lines, and points (respectively). Semi-
algebraic sets can be easily represented by quantifier-free first-order formulas
using the constraint database approach [KKR95,KLP00].

We will model moving objects in such a way that their positions are contin-
uous functions of time in an appropriate space. We use standard concepts in-
cluding “differentiable” and “derivative” from differential calculus (cf [Gra98]).
Although these concepts are abstract and mathematical, the techniques from
constraint databases provide a simple conceptual paradigm and useful techniques
of manipulating constraint representations of abstract functions. In this respect,
we will consider function data types such as time → real, which can be used to
represent speed of moving objects.

Let n be a positive integer and τ1, ..., τn be n data types. An n-ary vector of
type τ1 × · · · × τn is a tuple (v1, ..., vn), where vi is a value in the domain τi for
each 1 ≤ i ≤ n.

Our focus is on the moving objects that are points in the n-dimensional (real)
space for some integer n ≥ 1. For this purpose, we also view the n-ary vector
type real×· · ·× real as a data type pointn for points in the n-dimensional space.

Let u = (u1, ..., un) and v = (v1, ..., vn) be two n-ary vectors over the real
numbers. We allow the following standard operations: u+v = (u1 + v1, ..., un +
vn), and c · u = (c · u1, ..., c · un) where c is a real number. (Note that u − v
can be defined as u + (−1) · v.) The dot product of two vectors u = (u1, ..., un)
and v = (v1, ..., vn) is defined as u · v = Σn

i=1uivi. The (Euclidean) length of a
vector u, denoted as ‖u‖, is defined as

√
u · u. A unit vector has the length 1.

It is clear that for each given vector u, one can scale it down to obtain the unit
vector by 1

‖u‖ × u. Unit vectors are useful to represent moving “directions”.
Unless otherwise specified, we assume that n is the dimension in which spatial

objects and moving objects exist.

6 J. Su, H. Xu, and O.H. Ibarra

3 Moving Objects

In this section, we present an abstract model of moving objects using vector
space and related standard methods from differential geometry [MP77,Gra98]
and highlight some of the useful fundamental concepts and constructs related
to query languages for moving objects. In the next section, these concepts and
constructs are used to explore and formulate logical relationships of moving
objects, which will help in developing query languages.

Let n be a positive integer. In our abstract model, a “moving point” in the
n-dimensional space is a function from time to pointn that is continuous and
infinitely differentiable. In applications, moving objects may change directions
and/or become stationary from time to time. To accommodate such changes, we
allow a moving point to consist of a finite number of segments of movements,
where in each segment the function remains infinitely differentiable.

Let t and t′ be two time instants and t < t′ and f a function over time. We
denote f |(t,t′) the restriction of f over the domain (t, t′).

Definition. A moving point is a function of type p : time → pointn that can be
represented as a vector of functions p(t) = (p1(t), p2(t), . . . , pn(t)) satisfying the
following conditions:

1. for each 1 ≤ i ≤ n, pi is continuous over time, and
2. There exist a positive integer m and m time instants t1 < t2 < · · · < tm

such that for each 1 ≤ i ≤ n,
a) pi|(−∞,t1) and pi|(tm,∞) are infinitely differentiable, and
b) for each 1 ≤ j ≤ m− 1, pi|(tj ,tj+1) is also infinitely differentiable.

In the remainder of the paper, we use p(t),q(t), . . . to represent moving
objects, or just p,q, . . . when it is clear from the context. We also use notations
such as pi, qj to mean the i-th and j-th components of p and q, respectively.

Let p = (p1, ..., pn) be a moving point. Clearly (p1, ..., pn) defines the position
of p as a function of time. The velocity of p is defined as the derivative of p:
vel(p) = p′ = (p′

1, ..., p
′
n). The acceleration of p is the second order derivative of

p, acc(p) = (vel(p))′.
In the following we give some example of using these primitives to express

some commonly seen properties. These are in fact some basic concepts from
differential geometry for curves. Let p,q be moving points.

1. Moving direction of a moving point at some time instant is the tangent vector
of the curve at this time instant. The moving direction can be computed as
the directional derivatives, i.e., vel(p). Sometimes, we scale it to a unit vector
by vel(p)

‖vel(p)‖ .
2. Speed of a moving point is the distance it travels through in a unit time. This

is also related to velocity and can be expressed as the length of the velocity:
‖vel(p)‖.

3. Distance between two moving points is the shortest Euclidean distance be-
tween the two points. This is easily expressible as the length of the difference

Moving Objects: Logical Relationships and Queries 7

of two vectors: ‖p − q‖. If x is a stationary point, the distance of p and x
is defined in the same way: ‖p − x‖. Sometimes it is useful to reason about
distance between a point and a region (or line). If r is a region, the distance
between p and r is defined as: minx∈r{‖p − x‖}.

4. Two points are moving in the same direction. If p,q are two moving points,
they move in the same direction iff the unit vectors of their moving directions
are exactly the same. Similar, we can use the moving directions to express
similar directions of two moving points.

The focus of this paper is on the query languages for moving object databases.
The modeling and representation problems for moving objects are studied in this
context. There also are interesting issues of how to model moving objects from
the application point of view. For example, linear equations may be appropriate
to approximate truck movements while quadratic equations are more accurate
for flight paths. These issues should be addressed for specific domains and are
not in the scope of this paper.

4 Logical Relationships of Moving Objects

In this section, we study logical relationships of moving objects of interest to
queries over such objects. Previously investigated relationships for moving ob-
jects can be roughly grouped into two categories: relationships based on time
instants and on time intervals [SWCD97,WXCJ98,EGSV99,GBE+00,FGNS00].
Clearly, spatial relationships such as topological relations [EF91] and temporal
relationships are relevant to moving objects. However, these relationships can
be described in algebraic geometry. Movements of the moving objects bring new
perspectives of the relationships. Indeed, relationships such as moving speed
and direction are only natural but also they need differential geometry methods
[MP77,Gra98] that are beyond algebraic geometry. We argue that primitives
including velocity and acceleration from differential geometry [Gra98] are not
only necessary for expressing relationship concerning movements, but also suffi-
cient to express spatial and temporal relationships. This provides a foundation
to develop a data model and a query language for moving objects, which will be
discussed in the next section.

To facilitate the discussions, we consider a database with the following classes:

Flights (airline: string, number: string, position: moving point3)
Airports (code: string, state: string, location: region2)
Runways (airport: string, number: string, landing-direction: real × real)
Counties (name: string, state: string, area: region2)

Here the relation Flights contains the flight information: the airline name and
flight number, and the current position of the aircraft. The position data is a
moving point in the 3-dimensional space. The Airports and Counties relations
contain only stationary spatial data for airport locations and county regions
which are regions in the 2-dimensional space. The relation Runways include
runway orientations specified as unit vectors in the 2-dimensional space.

8 J. Su, H. Xu, and O.H. Ibarra

We consider the following queries.

q1: Locate all United flights over Ventura at 4pm, January 29, 2000.
q2: List all pairs of flights within 300 miles of the San Francisco Airport right

now that are moving in opposite directions and both are increasing speed.
q3: Report all flights approaching LAX within 45 degrees of the orientation of

runway 3 that are below 20,000 feet. (This may be needed for rescheduling
flight landings due to a runway change.)

q4: Find all United flights that entered Santa Barbara (SB) county during time
t1 to t2.

q5: Show all flights that have been flying above LA county for the last 15 minutes.

Although the queries and the databases seem slightly artificial, it is not difficult
to imagine that such temporal-spatial relationships could easily occur in queries
in various applications. Our focus is to develop appropriate model and query lan-
guages through the study of the logical relationships needed in querying moving
object databases.

If we take a close look at the above queries, q1 is a spatial selection (range
intersection) along the longitude and latitude for a given a time instant (snap-
shot). This indicates that the topological, spatial, and temporal relationships in
the traditional temporal-spatial databases remain relevant to querying moving
object databases. However, the movements of the objects introduce new types
of relationships. For example, it should allow computation of moving speed from
which distance and time information can be derived. Also, moving direction is
important and useful. They are exhibited in queries q2 and q3. Query q4 includes
a property “enter” which is different from the intersection predicate in the tra-
ditional spatial relationships. In fact, the predicate does not make much sense
for static objects but is very useful for moving objects. For query q5, one way to
express the property is to first extract the trajectories of all flights in the speci-
fied time duration and followed by a spatial containment query. An alternative
is to state directly that these flights indeed stayed in the area during the last 15
minutes. The latter is easier to understand and perhaps more desirable.

The functionality of a DBMS goes far beyond query processing. Similarly,
a conceptual data model should not only include data representation tools but
more importantly support data manipulation languages which are easy to use
and whose queries can be optimized. To reach this goal, we have to understand
logical relationships for moving objects and the goal to develop simple and fa-
miliar yet expressive primitives that can facilitate query optimization.

The 9-intersection model for topological relations [EF91] simplifies the topo-
logical properties. It would be desirable to develop similar simple models for
moving object relationships. For example, we can classify binary moving object
relationships in the following three dimensions: between moving objects or mov-
ing and stationary objects, involving time instant or time interval, and related
to position, velocity, or acceleration (Fig. 1 below).

Fig. 1 shows some relationships in some of the categories. For example, the
predicate “in” refers to a moving object is inside a region at a time instant. This
can be used for query q1. “Enter” states that the object intersects the boundary

Moving Objects: Logical Relationships and Queries 9

moving vs. position velocity acceleration
moving dist-

lessthan,
collision

catching-
up

opp-dir,
closer

collision-
course

meet ap-
proaching

stationary in, on-line,
dist-
lessthan

stays-in enter,
aim-at,
closer

toward land ap-
proaching

time instant interval instant interval instant interval

Fig. 1. Three dimensional view of moving object relationships

of a region in the direction from outside to inside; the latter part is related to the
velocity. Query q4 will need this. “Opposite direction” (“aim-at”) means that two
objects are moving toward each other (respectively the object is moving toward
a region) at an instant, which can be used for q2. “Collision” means that two
objects are in the same position at an instant. “Collision course” refers to objects
on a collision course for a period of time. “Meet” (or “land”) is a refined version
that requires the objects’ speed to be the same (or 0, resp.) and acceleration to
be either positive for the slower object or negative for the faster object, or both.
“Approaching” specifies the changes in speed and direction toward collision for
a time period.

Clearly, there are many more relationships that one can formulate among
moving objects. It is thus interesting to identify “fundamental” or “primitive”
ones.

Mathematics provides tools for conceptualization and modeling in computer
science and especially in databases. Indeed, much of the development and study
of the relational languages has been based on first order logic (see [AHV95]). In
spatial databases, elementary geometry techniques were the basis for characteriz-
ing topological relationships (e.g., [EF91,Ege91]). The introduction of constraint
databases brought algebraic geometry into the database context [KLP00], where
more complex topological properties can be analyzed using real variables and
elementary algebra. Representative work includes [PSV96,KPdB97,KdB99]. It
is little surprising that this long tradition would continue.

Differential geometry combines (differential) calculus with geometry (see
[MP77,Gra98]). The use of calculus allows the capture of much finer geometric
properties. Take curves as an example, velocity of a curve (i.e., moving point)
is simply its (directional) derivative and the derivative of the velocity gives the
acceleration. Other important properties such as curvature and torsion can then
be expressed. In fact, the Fundamental Theorem of Curves states that each curve
is uniquely determined by its curvature and torsion (modulo position) [MP77].

Once a time instant is fixed, moving objects are simply points in the space.
Therefore, all spatial relationships are relevant and needed. In addition, the time
dimension explicitly exists for moving objects and temporal relationships should
also be included. Although the combination of temporal and spatial relationships
can help to express “entering a region”, they are nevertheless insufficient for

10 J. Su, H. Xu, and O.H. Ibarra

reasoning about the moving directions and speed as well as their changes. It is
the weakness inherited from the underlying mathematical model of elementary
geometry. The weakness was also observed in [GBE+00]. Although the model
of [GBE+00] for moving object uses ADTs with operation including derivatives,
their approach of simply adding missing and needed operations makes their
language cumbersome and very difficult to use. The consequences are that the
language is difficult to analyze and query optimization is hard or even impossible.
We believe that the difficulty comes really from their ADT approach, and not
from the moving objects themselves. A necessary step towards an elegant simple
query language is to analyze the fundamental relationships of moving objects.

For the focus of our exposition on logical relationships of moving objects,
we consider velocity and acceleration of moving points represented in the vector
space, along with the usual operations on vectors. Thus in our model, we provide:

1. Vectors (vector space) for representing moving points and vector additions
and multiplications by real numbers.

2. If p is a vector of a moving point, then the velocity vel(p), acceleration
acc(p), length ‖p‖, and moving direction dir(p) = vel(p)

‖vel(p)‖ .

Although the operations listed above are very simple, we show that many
interesting logical relationships including those we listed in Fig. 1 are expressible
in terms of these. Intuitively, distance can be obtained from vector length. With
distance one can easily express topological relationships in the sense of [EF91].
Moving direction information is derivable from velocity. Moving direction can
help to express some temporal relationships between moving objects. Our model
also allows the primitives to be combined using arithmetic constraints (in the
spirit of differential calculus) and logical connectives.

Although according to the Fundamental Theorem of Curves, curvature and
torsion are key properties in characterizing curves, we do not include them as
primitives. This is primarily due to our focus on queries in the present paper.
We believe that curvature and torsion are important and can be useful in things
such as comparing and querying trajectories. This will be left for future work
since our focus of this paper is mainly on the motions.

In the remainder of this section, we give a few example relationships and show
how they can be expressed. Although these are mostly standard in differential
calculus [Gra98], we include them here for exhibiting the intimate relationships
between moving object modeling/querying and differential geometry techniques.

We first look at some distance relationships. Given two moving points p and
q, their distance at time t can be expressed as ‖p(t) − q(t)‖, which we denote
as dist(p,q, t). The following are some relationships concerning distance:

– distance lessthan(p,q, t, d) ≡ (dist(p,q, t) ≤ d).
– in(p, r, t) ≡ (p(t) inside r), where r is a region and “inside” is a spatial

predicate.
– collision(p,q, t) ≡ (p(t) = q(t)).
– catching up(p,q, t1, t2) ≡ (∀tt′(t1<t<t′<t2) → dist(p,q, t)>dist(p,q, t′)).

Similarly “stays in” can be expressed.

Moving Objects: Logical Relationships and Queries 11

For moving direction related relationships, velocity is needed.

– opposite direction(p,q, t) ≡ (dir(p)(t) + dir(q)(t) = 0) and also
same direction(p,q, t) ≡ (dir(p)(t) = dir(q)(t)).

– on collision course(p,q, t1, t2) ≡
(∀t(t1 < t < t2 → opposite direction(p,q, t))∧∃t(t2 < t∧collision(p,q, t))).

– aim at(p, r, t) ≡ (∃x(x inside r ∧ (unit(x − p(t)) = dir(p)(t)))), where
unit(x) converts x to a unit vector.

– enter(p, r, t) ≡ (on line(p,boundary(r), t) ∧ ∃t′ (t′ < t ∧ ∀t′′ (t′ < t′′ < t →
¬(p(t) inside r)))) where “boundary” returns the boundary lines of a region
r. The formula states that just before p moves across the boundary of r, p
is always outside of r. Note that this expression uses interval property and
not velocity. It can also be expressed with the moving direction from the
velocity of p.

Finally, in some cases acceleration is needed. For example, land(p,x, t) ≡
dist(p,x, t) = 0∧‖vel(p)‖ = 0∧acc(p) < 0, where the last condition states that
the velocity slows down along all coordinates.

5 A Linear Model for Moving Objects

In this section, we introduce a new data model and a query language for moving
objects. Unlike the earlier models based on ADTs [EGSV99,FGNS00,GBE+00]
and temporal logic [SWCD97], the new model combines the linear constraint
techniques from constraint databases [KLP00] with the operations and relation-
ships we studied in the previous section. We show that queries in the language
can be evaluated efficiently in polynomial time.

Constraint databases [KKR95] are particularly suitable for conceptual mod-
eling and manipulation of multi-dimensional data [KLP00]. Central to constraint
databases are mathematical formulas with a prescribed semantics (a.k.a. con-
straints).1 Constraint database techniques provide a fundamentally sound ap-
proach to spatial and temporal database applications. The elegance of constraint
models lies in that they allow spatio-temporal data to be viewed conceptually as
mathematical objects in algebraic geometry. The important data independence
principle can be very naturally supported.

Constraints can be integrated into relational or object-oriented structures
to suit applications. For example, the data model using conjunctions of linear
constraints as values that can then be used as values in a classical relations
was adopted in the DEDALE system [GRS98], the constraint query and update
languages of [BBC98], and the COSMOS project [KRSS98]. With this model,
one can represent information such as follows. Consider the relation Counties
which contains the names, states, and regions of counties. Here region data are
spatial, representing the administrative
1 This is not to be confused with integrity constraints.

12 J. Su, H. Xu, and O.H. Ibarra

Counties
name state area

Santa Barbara California regionsb

Ventura California regionv

Los Angeles California regionla

...

areas. We can represent the information by a relation Counties shown above.
The attribute area has values that are 2-dimensional regions in the (real) plane.
In a linear constraint database such regions are represented by mathemati-
cal objects using boolean combinations of linear equations and inequalities.
For example, regionv is represented as a formula ϕ(x1, x2) = 68≤x1≤70 ∧
x2≤2 ∧ 70≤x1+8x2, where a point (x1, x2) is in regionv iff ϕ(x1, x2) is true.

Linear constraints over the real numbers may involve equality and order
predicates (=, <,≤, >,≥) and addition (+). The following are examples of linear
constraints: Σp

i=1ai xi = a0, Σ
p
i=1ai xi ≤ a0, where xi’s are variables and ai’s are

real (or rational for the linear case2) numbers.
We now define our linear constraint model for moving objects. Intuitively,

we use linear constraints to represent the functions from time to points in space.
Since time and space are over real numbers, this means that the linear constraints
are over a time variable t and n dimension variables, x1, ..., xn.

Definition. A moving point p has a linear constraint representation if there
exist a positive integer m and real numbers a1, ..., am satisfying the following
conditions.

1. a1 < a2 < · · · < am, and
2. let a0 be a symbol representing −∞ and am+1 representing +∞ (for technical

convenience), and for each 1 ≤ i ≤ n, the function pi(t) is represented by
the following constraints:

pi(t) =
m∨

j=0

(xi = bijt+ cij ∧ aj ≤ t ≤ aj+1) (1)

where bij ’s and cij ’s are real numbers and for each 1 ≤ j ≤ m and each
1 ≤ i ≤ n,

bij−1aj + cij−1 = bijaj + cij (2)

In the above definition of a linear constraint representation of a moving point
p, each coordinate pi of p is a linear function of the time variable t (equation 1),
and p may change speed and direction at time instants a1, ..., am. The condition
(2) in the definition is to ensure that the coordinate functions are continuous
at these time instants. Clearly linear functions are infinitely differentiable. In
fact, their derivatives are constants and second or higher order derivatives are
all zeros.
2 The first order theory of rational numbers with multiplication is undecidable.

Moving Objects: Logical Relationships and Queries 13

Example 5.1 Consider a tuple in the relation Flights where the moving point
values of positions are in the 3-dimensional space. A part of the position value
of the tuple is shown as follows:

x1=2t−40 ∧ 0≤t≤21
∨
x1=2 ∧ 21≤t≤22

∨
x1= 1

2 t−9 ∧ 22≤t≤47
x2= − t+23 ∧ 0≤t≤21

∨
x2= − t+23 ∧ 21≤t≤22

∨
x2=1 ∧ 22≤t≤47

x3=30 ∧ 0≤t≤21
∨
x3= − 5t+135 ∧ 21≤t≤22

∨
x3= − t+47 ∧ 22≤t≤47

The airplane described above moved towards southeast first, turned at time 21
(and position (2, 2, 30)) and also started to descend, and made another turn at
time 22 (and position (2, 1, 25)) and continued to descend until landed at time
47 (and position (14.5, 1, 0)).

Example 5.2 Continue with Example 5.1. The velocities of the airplane were
(2,−1, 0) from time 0 to 21, (0,−1,−5) during the interval (21, 22), (1

2 , 0,−1)
during the final landing phase. The speeds were

√
5,

√
26,

√
5

2 , respectively.

In the linear representation case, clearly the velocity is always constant and
the acceleration remains 0. Therefore the acceleration primitive is unnecessary.
In our model, we will have vectors and the usual operations, vel , dir , and ‖ · ‖.

Using the above linear constraint moving points as a primitive type, we can
build a data model for moving points in a systematic way. We use the relational
model to demonstrate the approach, although it is as easy to use an object
oriented model.

An ADT encapsulates the internal structure of a data type and thus provides
a clear interface by a set of operations on the data type. This is appropriate
for some applications in databases such as to deal with binary large objects.
Although the ADT approach may be appropriate in some applications, we believe
that it is not an ideal approach for spatial and temporal databases. This is due to
the need to distinguish different spatial data types, and the intimate relationships
which exist between them. On one hand, modeling all temporal-spatial types
using a single ADT over-simplifies the data structure and loses the flexibility of
doing spatial and temporal reasoning. On the other hand, if we treat different
temporal-spatial types as different ADTs we are forcing another “rigid” design
and spatial and temporal reasoning is equally hard.

In any case, ADTs are limited by the operations they provide. If the queries
and update operations are completely predictable, ADTs can be developed. For
example, it would be impossible to express some logical relationships between the
elevations of two objects had elevation not been an ADT operation. Therefore,
in cases ad hoc queries are to be supported, one has to provide a logic language
that is capable of combining ADT operations beyond sequential compositions.
An interesting question here is then what is the minimum set of basic ADT
operations needed since some operations can be expressed by combining the
basic operations.

We believe the temporal-spatial data types should encapsulate implementa-
tion details as ADTs do but they should expose a “conceptual structure” which

14 J. Su, H. Xu, and O.H. Ibarra

can be used for expressing temporal spatial relationships. The latter differs from
the spirit of ADTs.3 We propose the notion of a “logical data type” (LDT).
Intuitively, an LDT in our model provides a relation schema for representing the
data inside the values and the data can be accessed directly outside of the LDT
and be reasoned about. We give the following technical notion.

Definition. Let τ = time → real be a function of type from time to real num-
bers and n a positive integer. The n-ary logical vector type (LV type), denoted
as Pn, is the type τn = τ × · · · × τ . The domain of Pn is the set of all moving
points having linear constraint representations.

Although Pn resembles syntactically a product type of n function types from
time instants to real numbers, the semantics (domain) is different. We use Pn

to represent moving points in n-dimensional space in this paper, where each
function gives the mapping from time to a coordinate value.

A relation schema is a finite set of pairs (A, T), where A is an attribute name
and T a type or LV type such that the attribute names are distinct. A tuple over
a relation schema R is a total mapping from attribute names in R to elements in
the domains of the respective types or LV types. A relation instance of a relation
schema R is a finite set of tuples over R. A database schema is a finite set D of
relation schemas and a database instance of D is a total mapping I from D such
that for each R in D, I(R) is a relation instance of R.

We now consider query languages for our model of moving objects. We start
with a discussion on constraint query languages for constraint databases.

The relational calculus was extended to a constraint query language [KKR95].
In the traditional constraint database context, a first-order formula ϕ(x) with
free variables x defines a query Q in the following sense: if I is a constraint
database, the answer to Q on I is defined as

Q(I) = {a | the database I satisfies ϕ(a)}.

A key point here is that the answer Q(I) may be an infinite relation but should
be definable as a constraint relation.

It is not obvious that the first-order logic defines a query language for con-
straint databases. The key “ingredient” is the quantifier elimination property
of the first-order theory of real closed fields. A logical theory admits quantifier
elimination if every formula is equivalent to a quantifier-free formula. The fact
that the theory of real closed fields admits quantifier elimination was first dis-
covered by Tarski [Tar51]. There are tractable algorithms to perform quantifier
elimination for a fixed number of distinct variables [BKR86,Col75,Ren92]. This
property was used in [KKR95] to design the constraint database framework and
is necessary [GS97].

In our model, a relation has a finite set of tuples. Tuples provide some de-
scriptive and discrete information, while the spatial regions are represented as
3 In theory, one could argue that ADTs could provide conceptual structures but such

ADTs can’t really support optimization of sequences of operation on the ADTs.

Moving Objects: Logical Relationships and Queries 15

the same way as in constraint relations (e.g., [KRSS98]), and moving points are
represented as values in LV types.

We can extend the relational calculus (or a constraint query language) for
moving objects in our model. Specifically, we allow real variables (represent-
ing time and spatial coordinates) to access the data inside values of LV types,
linear arithmetic constraints on these real variables, and first order construc-
tions (∨,∧,¬,∀,∃) on the constraints. The language design needs to be carefully
crafted to incorporate LV types and associated operations and, more impor-
tantly, to ensure query results to always be relations (i.e., finite sets of tuples
with values in the domains of types and LV types). Although this is not techni-
cally difficult, it is not a trivial task.

The terms in our calculus include variables (with associated types or LV
types), values in the domain of types or LV types, addition of two terms of type
real (or time), multiplication of a real (or time) term by a real number, and also
the following.

– If p,q are terms of type Pn and c a term of type real, then p + q, c · p are
also terms of type Pn.

– If x is a vector, unit(x) is to convert it into a unit vector with the same
direction.

– If p is a term of type Pn, vel(p), dir(p) are terms of type Pn and len(p) is
a term of type real.

Since a value of type an n-ary vector of real types can also be viewed as a value
of type Pn (with all constant functions). We naturally extend the operations on
LV types to include vectors of reals.

Let p be a value in the domain of Pn, a be a time instant, and b1, ..., bn be
n real numbers. The expression “p(a; b1, ..., bn)” is true if the moving point p is
at the position (b1, ..., bn) at the time instant a.

The formulas in our query language include the following.

– x = y if x, y are terms of the same type, or x ≤ y if x, y are real or time
terms,

– p(t;x1, ..., xn) if p is a term of type Pn, t a time term, and x1, ..., xn are real
terms.

– R(x1, ..., xk) if R is a relation schema in the database and xi’s are terms of
the respective types.

– ¬ϕ,ϕ∧ψ,ϕ∨ψ,∃xϕ,∀xϕ are formulas if ϕ,ψ are formulas and x is a variable.

A query is an expression of form “{(x1, ..., xk) | ϕ}” where ϕ is a formula with
all free variables in x1, ..., xk.

We illustrate our query language through the example queries listed in Sec-
tion 4. We use the first two letters to abbreviate relation names.

1. The query q1 can be expressed as follows.
{

(n, x1, x2, x3)
∣∣∣∣∃p∃r

(
Fl(UA, n,p) ∧ p(t0;x1, x2, x3) ∧
Co(Ventura,CA, r) ∧ r(x1, x2)

)}

16 J. Su, H. Xu, and O.H. Ibarra

Here t0 is the value for the time instant “4pm on January 19, 2000”. Also, r
is a 2-dimensional region and the expression “r(x1, x2)” is true if the point
(x1, x2) is in r. Note that this is a conjunctive query and directly corresponds
to the English version.

2. Query q2, since all moving points in linear representation have no accelera-
tion, can be expressed as follows:

{(n1, n2) | ∃pqx1x2rpFl(x1, n1,p) ∧ Fl(x2, n2,q) ∧ Ai(SFO,CA, r) ∧
dir(p)(tnow) + dir(q)(tnow) = 0 ∧ r(p) ∧
∃y1y2y3p(tnow; y1, y2, y3) ∧ len(p−(y1, y2)) ≤ 300 ∧

∃z1z2z3q(tnow; z1, z2, z3) ∧ len(p−(z1, z2)) ≤ 300}
Here tnow stands for the current time. The first line of the expression finds
the locations of two flights and the airport region. The second line ensures
the moving directions to be opposite to each other. The third and fourth
lines are testing the distances of the flights to the airport.

3. For query q3, the condition on the approaching angle is expressed by ex-
amining the direction vector of the flight projecting to the plane and the
orientation vector of the runway. After the former is converted into a unit
vector, the angle condition can be expressed as an equivalent condition on
the distance. The query expression is shown below.

{(x, n) | ∃ply1y2y3 Fl(x, n,p) ∧ Ru(LAX, 3, l) ∧ dir(p)(tnow; y1, y2, y3) ∧
len(unit(y1, y2) − l) ≤

√
2 − √

2 ∧ y3 < 20000}
4. In query q4, the interesting condition is “enter”. Note that it is expressed

naturally as in differential calculus. The flight enters the county at time t if
the flight is not above the county at every time instant just before t:

{(n) | ∃ptrFl(UA, n,p) ∧ Co(SB,CA, r) ∧ t1 ≤ t ≤ t2 ∧ ψ(r,p(t))∧
∃t′ (t′ < t ∧ ∀t′′ (t′ < t′′ < t → ¬ψ(r,p(t′′))))}

where ψ(r,p(t)) is a formula which test if at time t the moving point p is in
the (2-dimensional) region r. The formula ψ is similar to the corresponding
part of the formula in query q1.

5. The query q5 expresses the condition that the flight stays in a region by
explicitly stating that for every time instant it is in the region.

{(x, n) | ∃prFl(x, n,p) ∧ Co(LA,CA, r) ∧
∀t (tnow−15 < t < tnow → ∃x1x2x3(p(t;x1, x2, x3) ∧ r(x1, x2)))}

Note that this query states a property which should be held for a period of
time. It can also be expressed with temporal logic [Eme90] but the temporal
operators are almost disjoint from expressions for spatial relationships and
the expressions are less intuitive.

We briefly discuss evaluation of queries in our query language. Basically,
queries in our language can be translated into the constraint query language of

Moving Objects: Logical Relationships and Queries 17

[KKR95] augmented with relational attributes. Since the language of [KKR95]
contains multiplications, it is easy to see that it gives an effective evaluation
algorithm. Thus we have:

Theorem 5.3 Each calculus query can be evaluated in polynomial time (in
terms of the database size).

There are several issues concerning the language and its semantics:

1. Consider query q1 above. It pulls coordinate values out from inside a moving
point and returns as results. Such a use may cause some query results to be
infinite, i.e., “unsafe”. This is not a problem if we extend the definition of
relations to be finitely representable relations [GS97]. Another possibility is
to return the entire moving point value as a value of LV type.

2. Length function computes the length of a vector. Clearly length is not lin-
ear. Uncontrolled use of the length operator would cause results to contain
non-linear equations. One way to overcome this, is to treat length as an ag-
gregate function and to limit the syntax to only allow “staged” evaluation
of aggregate functions. This will guarantee the output to be representable in
linear constraints, similar to [GS96].

6 Conclusions

In this paper, we present a model for moving objects using techniques from
differential geometry. By studying the relationships related to moving objects
and queries over them, we show that primitives of velocity and acceleration from
differential geometry are expressive enough for topological, spatial, and temporal
relationships, as well as for relationships for movements. We also developed a
concrete data model based on linear constraint databases and a query language
for moving objects.

Although our work is very preliminary, the differential geometry tools cer-
tainly yield a fresh look at the modeling and language issues for moving objects.
There are many issues remaining. One issue is to fine tune the syntax of con-
straint query formulas to guarantee the closure property. It is also interesting
to study the relationships between trajectories and in this case, it appears that
curvature and torsion are useful. Introducing aggregate functions is yet another
issue. An important aspect is to deal with integrals that is left out from our
current model. At a more fundamental level, efficient algorithms and query opti-
mization are the key issues to the eventual success of any models and languages.

Acknowledgements. The authors thank Yuan-Fang Wang for pointing out
the relevance to differential geometry and Xianzhe Dai for giving the pointers to
the differential geometry literature. The authors also benefited from discussions
with Hongjun Zhu and Fang Yu.

18 J. Su, H. Xu, and O.H. Ibarra

References

[AAE00] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proc.
ACM Symp. on Principles of Database Systems, 2000.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[BBC98] A. Belussi, E. Bertino, and B. Catania. An extended algebra for constraint
databases. IEEE Trans. on Knowledge and Data Engineering, 10(5):686–
705, 1998.

[BKR86] M. Ben-Or, D. Kozen, and J. Reif. The complexity of elementary algebra
and geometry. Journal of Computer and System Sciences, 32(2):251–264,
April 1986.

[Col75] G. E. Collins. Quantifier elimination for real closed fields by cylindric
decompositions. In Proc. 2nd GI Conf. Automata Theory and Formal
Languages, volume 35 of Lecture Notes in Computer Science, pages 134–
83. Springer-Verlag, 1975.

[EF91] M. J. Egenhofer and R. Franzosa. Point-set topological spatial relations.
Int. Journal of Geo. Info. Systems, 5(2):161–174, 1991.

[Ege91] M. J. Egenhofer. Reasonning about binary topological relations. In Proc.
Symp. on Large Spatial Databases, 1991.

[EGSV99] M. Erwig, R. H. Guting, M. Schneider, and M. Vazirgiannis. Spatio-
temporal data types: an approach to modeling and querying moving ob-
jects in databases. GeoInformatica, 3(3):269–296, 1999.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 7, pages
995–1072. North Holland, 1990.

[FGNS00] L. Forlizzi, R. H. Guting, E. Nardelli, and M. Schneider. A data model and
data structures for moving objects databases. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, 2000.

[GBE+00] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos,
M. Schneider, and M. Varirgiannis. A foundation for representing and
querying moving objects. ACM Transactions on Database Systems, 25(1),
2000. to appear.

[Gra98] A. Gray. Modern Differential Geometry of Curves and Surfaces with Math-
ematica (Second Edition). CRC Press, 1998.

[GRS98] S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for com-
plex spatial queries. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, June 1998.

[GS96] S. Grumbach and J. Su. Towards practical constraint databases. In Proc.
ACM Symp. on Principles of Database Systems, 1996.

[GS97] S. Grumbach and J. Su. Finitely representable databases. Journal of
Computer and System Sciences, 55(2):273–298, October 1997.

[KdB99] B. Kuijpers and J. Van den Bussche. On capturing first-order topological
properties of planar spatial databases. In Proc. Int. Conf. on Database
Theory, 1999.

[KGT99] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects.
In Proc. ACM Symp. on Principles of Database Systems, pages 261–272,
1999.

[KKR95] P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages.
Journal of Computer and System Sciences, 51(1):26–52, 1995.

Moving Objects: Logical Relationships and Queries 19

[KLP00] G. Kuper, L. Libkin, and J. Paredarns, editors. Constraint Databases.
Springer Verlag, 2000.

[KPdB97] B. Kuijpers, J. Paredaens, and J. Van den Bussche. On topological ele-
mentary equivalence of spatial databases. In Proc. Int. Conf. on Database
Theory, 1997.

[KRSS98] G. Kuper, S. Ramaswamy, K. Shim, and J. Su. A constraint-based spa-
tial extension to SQL. In Proc. ACM Symp. Geographical Information
Systems, 1998.

[MP77] R. S. Millman and G. D. Parker. Elements of Differential Geometry.
Prentice-Hall, Edgewood Cliffs, NJ, 1977.

[PSV96] C. H. Papadimitriou, D. Suciu, and V. Vianu. Topological queries in spa-
tial databases. In Proc. ACM Symp. on Principles of Database Systems,
1996.

[Ren92] J. Renegar. On the computational complexity and geometry of the first-
order theory of the reals. Journal of Symbolic Computation, 13:255–352,
1992.

[SWCD97] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and
querying moving objects. In Proc. Int. Conf. on Data Engineering, 1997.

[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, Berkeley, California, 1951.

[WCD+98] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez. Cost and
imprecision in modeling the position of moving objects. In Proc. Int. Conf.
on Data Engineering, Orlando, FL, 1998.

[WCDJ97] O. Wolfson, S. Chamberlain, S. Dao, and L. Jiang. Location management
in moving objects databases. In Proc. the Second International Workshop
on Satellite-Based Information Services (WOSBIS’97), Budapest, Hun-
gary, October 1997.

[WJS+99] O. Wolfson, L. Jiang, P. Sistla, S. Chamberlain, N. Rishe, and M. Deng.
Databases for tracking mobile units in real time. In Proc. Int. Conf. on
Database Theory, pages 169–186, Jerusalem, Israel, 1999.

[WXCJ98] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects
databases: issues and solutions. In Proc. Int. Conf. on Statistical and
Scientific Database Management, 1998.

	Introduction
	Preliminaries
	Moving Objects
	Logical Relationships of Moving Objects
	A Linear Model for Moving Objects
	Conclusions

