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ABSTRACT
Database applications for moving objects pose new chal-
lenges in modeling, querying, and maintenance of objects
whose locations are rapidly changing over time. Previous
work on modeling and querying spatio-temporal databases
and constraint databases focus primarily on snapshots of
changing databases. In this paper we study query evaluation
techniques for moving object databases where moving ob-
jects are being updated frequently. We consider a constraint
database approach to moving objects and queries. We clas-
sify moving object queries into: “past”, “continuing”, and
“future” queries. We argue that while traditional constraint
query evaluation techniques are suitable for past queries,
new techniques are needed for continuing and future queries.
Motivated by nearest-neighbor queries, we define a query
language based on a single “generalized distance” function
f mapping from objects to continuous functions from time
to R. Queries in this language may be past, continuing, or
future. We show that if f maps to polynomials, queries can
be evaluated efficiently using the plane sweeping technique
from computational geometry. Consequently, many known
distance based queries can be evaluated efficiently.

1. INTRODUCTION
Present technology has made it possible to track down move-
ments of target objects in the air (e.g., airplanes), on the
land (e.g., vehicles, wild animals, people, etc.) and ocean
(e.g., ships, animals). Among the challenges novel applica-
tions involving such “moving objects” have brought to soft-
ware development is the problem of data management. In
a nutshell, there is a wide range of issues including mod-
eling and representation of moving objects, query language
design, indexing techniques, query optimization, etc. Prior
work on spatio-temporal databases is relevant but insuffi-
cient for moving objects. Constraint databases provide a
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promising framework but significant results are lacking to
make the techniques useful. The goal of this paper is to
investigate query evaluation techniques in a constraint data
model for moving objects.

Existing models for moving objects mostly involve complex
tools such as temporal logic [25, 31] and abstract data types
[10, 11, 15]. The weakness is that the model and languages
are very hard to analyze and optimization techniques are dif-
ficult to develop. Constraint databases [16] present a nice
conceptual model for spatial and temporal data [18] and
are a natural choice for representation and manipulation of
moving objects. Previous work focus mainly on the model-
ing issues [4, 5, 27].

In terms of efficient query evaluation, earlier work focus pri-
marily on algorithms for ad hoc queries [17, 1] and indexing
techniques [22]. Evaluation techniques for query languages
have not been extensively addressed.

In this paper, we start from an extension [27] of CQL [16]
for moving objects. Although it is expressive in reasoning
about spatio-temporal relationships of moving objects, it is
not as suitable for moving objects as it appears. This is due
to moving object queries of interest often involve “future”
which is not known until updates are performed. Updates
are particularly important for moving objects. While the
quantifier elimination based techniques [18] are useful for
“past” queries, “future” queries require either a major over-
haul, or some entirely new framework. We take the latter
approach.

Motivated by many distance related queries in moving ob-
jects (e.g., [29]), we develop a generalized distance based
query language. We illustrate that the language is expres-
sive enough for many distance-related moving object queries
and show that queries in this language can be evaluated effi-
ciently. Roughly, the new language involves a single “gener-
alized distance” function which maps objects to continuous
functions from time to R. Our evaluation strategy is to con-
sider the set of functions for objects and evaluate queries by
sweeping a time line. In particular, plane-sweeping allows
to identify intersections of these functions, thus to prepare
for the changes that may propagate to query answers. The
main technical results are: for “polynomial” generalized dis-
tances, queries can be evaluated “efficiently”. In particular,
for databases with N objects, each “past” query can be eval-
uated in O((m + N) logN) time (m is the total number of



intersections among objects (their functions). For “future”
queries, initialization can be done in O(N logN) time, while
evaluating an update depends on the interval between con-
secutive updates. In practical settings where either updates
happen regularly or the database has a clock, each update
can be processed in O(log N) time.

Our work is also related to view maintenance. Earlier work
are almost exclusively in the context of relational databases
(see [13]): e.g., maintaining first order queries with the re-
lational algebra [23] and with duplicates [12], maintaining
recursive queries with Datalog [14] or the relational calcu-
lus [9]. Using techniques from computational geometry, the
results we establish in the paper present a new approach to
a new problem—view maintenance for a class of queries in
constraint databases.

The paper is organized as follows. In Section 2, we introduce
a data model for moving objects. In Section 3, we describe
a constraint query language and discuss its weaknesses for
moving objects. In Section 4, we introduce a generalized
distance based query language, and in Section 5, we develop
an efficient query evaluation technique. Conclusions are pro-
vided in Sections 6.

2. A MODEL FOR MOVING OBJECTS
In this section, we introduce a data model for moving ob-
jects and the notion of an update. Unlike earlier models
for moving objects that use ADTs [10, 11, 15] or temporal
logics [25], our model uses the linear constraint techniques
from constraint databases [18]. The model is similar to the
one in [4, 5] and a simplified version of the model presented
in [27].

Moving objects are spatial objects. In this paper we only
consider moving points. The main difference between mov-
ing object databases and spatio-temporal databases that
have been studied in the literature is that objects in the
latter either do not change their locations or changes hap-
pen very slowly (i.e., over a long period of time). Moving
objects change their locations rapidly. Managing frequent
location changes and discovering change patterns are often
central to many applications such as traffic status monitor-
ing and collision discovery.

Constraint databases [16] are well suited for modeling and
manipulation of multi-dimensional data [18] conceptually.
The key ingredient is “constraints”, first-order formulas with
a prescribed semantics (they are to be distinguished from
integrity constraints). The constraint based models allow
spatio-temporal data to be viewed as mathematical objects,
which can be studied with known tools. For moving objects,
moving directions, velocity, trajectories, and perhaps curva-
ture and torsion are essential properties. For example, the
Fundamental Theorem of Curves states that each curve is
uniquely determined by its curvature and torsion (modulo
positions) [19]. In the general case, differential geometry
is a more suitable tool for modeling and studying moving
objects [27]. The use of (linear) constraints simplifies the
modeling. At the same time, constraint query languages
are inexpressive in reasoning about other properties such as
velocity. Clearly further investigation on modeling moving
objects is needed. The focus of this paper is on efficient

query evaluation rather than the modeling aspect.

In the following we give a brief presentation of the data
model. Note that we explicitly provide representations of the
concepts, since the representations are directly manipulated
in evaluating queries and contribute to the complexity.

Linear constraints over the real numbers are logic formu-
las involving the equality and order predicates (=, <,�, >,
�) and addition (+). A linear constraint over variables x1,
..., xn have the following general form:

∑n
i=1 ai xiθa0, where

a0, a1, ..., an are real (or rational) numbers and θ is a predi-
cate. Constraints are interpreted over the real numbers. We
also allow other equivalent forms.

For the remainder of the paper, we consider objects in the
space R

n for some n > 0 and assume time to be an addi-
tional continuous dimension also represented as R. We also
distinguish the notion of time intervals which are real in-
tervals. Without loss of generality, we further assume that
time intervals are closed or unbounded (i.e., no open inter-
vals). We represent each time interval as a conjunction of
linear constraints over t. We use a vector x = (x1, ..., xn)
to represent a point in the space (excluding time). Vector
notations can be viewed as a shorthand for conjunctions and
are not essential in the model.

The location of a moving point can be modeled by a function
from time to n-dimensional space. A function from R to R

n

is linear if it has the form x = At+B where A,B are vectors
in R

n; piecewise linear if it consists of a finite number of
linear pieces.

Definition 1. A trajectory is a continuous piecewise lin-
ear function from R to R

n. Let T be the set of all trajecto-
ries.

Under the above definition, each coordinate of a trajectory
is a linear function of the time variable t, and the trajec-
tory may change speed and direction at finitely many time
instants.

Using the linear form and a time interval, each linear piece
of a trajectory is represented as a conjunction of linear con-
straints using the time variable and coordinate variables. A
trajectory is ad isjunction of all its linear pieces. A turn of a
trajectory is a time instant τ at which the derivative of the
function is not continuous.

Example 1. Consider airplanes moving in the 3-dimen-
sional space. A trajectory of an airplane composed of 3
linear pieces is shown below.

x = (2,−1, 0)t + (−40, 23, 30) ∧ 0 � t � 21∨
x = (0,−1,−5)t + (2, 23, 135) ∧ 21 � t � 22∨
x = (0.5, 0,−1)t + (−9, 1, 47) ∧ 22 � t

The airplane moved towards southeast, turned at time 21
(and at position (2, 2, 30)) and also started to descend, and
made another turn at time 22 (and at position (2, 1, 25)) and
continued to descend.



We assume the existence of an infinite set O of object iden-
tifiers (oids).

Definition 2. A moving object database (or mod) is a
triple (O, T, τ) where O is a finite subset of O, T a mapping
from O to T , and τ a time instant such that each turn of
every object in O is earlier than or at time τ .

In the above definition of a mod, the time instant τ is the
time of the last update. For moving objects, updates are of
particular interest since querying over the current positions
of objects and reasoning about the past and future positions
are of central importance in the applications.

Updates for moving object databases have not been suffi-
ciently addressed in the literature; only ad hoc query evalu-
ation techniques were studied in [26]. Our focus in this paper
is to investigate the impact of updates on query evaluation
techniques.

We consider three types of updates: create a new object,
change the motion of an object, or “delete” an existing ob-
ject (the object ceases to exist after the update). Follow-
ing typical settings in moving object databases, we assume
that every update is associated with a time instant, and up-
dates are performed in the order of their time instants (i.e.,
chronologically).

Definition 3. Let τ be a time instant, o ∈ O an oid,
A,B are vectors. An update on a mod (O, T0, τ0) is one of
the following:

• (Create a new object) new(o, τ, A,B) if τ0 < τ and o /∈ O.
The result is the mod (O ∪ {o}, T, τ) where

T = T0 ∪ {(o, x = At + B ∧ τ � t)}

• (Terminate an existing object) terminate(o, τ) if o ∈ O
and τ0 < τ . The result is the mod (O, T, τ), where T is
identical to T0 except that

T (o) = T0(o) ∧ t � τ

• (Change moving direction) chdir(o, τ, A) if o ∈ O, τ0 < τ ,
and the trajectory T0(o) of the object o is defined at time
τ . Let B be the position of o at time τ . The result is the
mod (O, T, τ) where T is identical to T0 except that

T (o) = (T0(o) ∧ t � τ) ∨ (x = A(t− τ) + B ∧ τ � t)

The result of applying an update δ on a mod D is denoted
by δD.

Example 2. Consider the trajectory in Example 1. Sup-
pose o is the oid of the object having the trajectory. Then,
dir(o, 47, (0, 0, 0)) is a direction change. The updated trajec-
tory is the following.

x = (2,−1, 0)t + (−40, 23, 30) ∧ 0 � t � 21∨
x = (0,−1,−5)t + (2, 23, 135) ∧ 21 � t � 22∨
x = (0.5, 0,−1)t + (−9, 1, 47) ∧ 22 � t � 47∨
x = (14.5, 1, 0) ∧ 47 � t

After the update, the airplane o landed at time 47 (and
position (14.5, 1, 0)) and stayed at the point.

The focus of this paper is on queries over moving object tra-
jectories. For simplicity, we do not include other descriptive
information about moving objects. Clearly, the model can
be easily extended to include such information using known
techniques [27]. Also, most moving object applications may
likely have spatial objects (e.g., roads, city regions, etc.).
Constraints provide a very expressive modeling language to
represent and access such objects (cf [18]). For this reason,
in our formal model, we exclude such spatial objects except
for stationary points whose motions are constant vectors.

3. PAST, CONTINUING, AND FUTURE
QUERIES

In this section, we briefly describe a constraint query lan-
guage for moving objects. The language is a simplified ver-
sion of the one described in [27]. Although such constraint
languages are expressive in reasoning about spatial and tem-
poral relationships of moving objects, we argue that it is not
as suitable for mods as it appears. In particular, we intro-
duce three classes of queries: “past”, “continuing”, and “fu-
ture” queries. While the quantifier elimination based tech-
niques [18] are useful for past queries, continuing and future
queries require either a major overhaul, or some entirely
new framework. We take the latter approach (the details
are presented in Sections 4 and 5).

Constraint query languages are extensions of the relational
calculus. As observed in [16], the key component for evaluat-
ing constraint queries is the quantifier elimination property
of the first-order theory of real closed fields [28]. Tractable
algorithms of quantifier elimination for a fixed number of
variables have been developed, see e.g., [7, 2, 24].

In our language, we allow vector variables and constants
which represent points in R

n. If x is a vector variable, x.i
denotes its i-th component. Addition of two vectors and
multiplication of a vector by a real (rational) number are also
allowed. In addition to vector variables (constants, terms),
there are real variables (for time instants or spatial coordi-
nates), and object variables (ranging over oids).

Let D = (O, T, τ) be a mod. We use the symbol “O” to
represent a unary relation storing the set of objects in D,
and the symbol “T” to represent a ternary relation over
objects, time instants, and vectors for location coordinates.
As illustrated in Definition 3, T is a constraint relation.

If x1, ..., xn are real variables, (x1, ..., xn) is a vector. If y
is an object variable, t a real variable, and x a vector term,
“O(y)” and “T (y, t, x)” are atomic formulas. The former
states that the object y is in the mod, while the latter says
that the object y is in location x at time t.

The query language is almost standard except that we allow
the following:

• Functions on vectors: unit which maps a vector to a unit
vector (useful for expressing directions), len which re-
turns the length of the vector (not trajectory), and



• Function vel which on input an object variable computes
the derivative of each component of the object’s trajec-
tory over time.

Finally we allow the usual propositional connectives and
quantifiers for R, vectors, time, and objects.

Example 3. Consider a query which finds all aircrafts
entering the Santa Barbara County from time τ1 to τ2. The
interesting condition is “entering”. An object enters a region
at time t if it is not in the region at every time instant just
before t.

{ y | O(y) ∧ ∃t(τ1 � t � τ2 ∧ ∃x(T (y, t, x) ∧ ψ(x)) ∧
∃t′(t′<t ∧ ∀t′′(t′<t′′<t → ¬∃x(T (y, t′′, x) ∧ ψ(x)))))}

where the formula ψ(x) states that the point x is inside
(above) Santa Barbara County.

Note that the spatial region (Santa Barbara County) in the
query in Example 3 does not depend on time. An interesting
feature in moving object databases is that queries may be
“location dependent” in the following sense. The answer
to a query may depend on the location where the query
was issued. As an example, we can change Santa Barbara
County in the above query to the “spatial region within 50
miles of United flight 764”.

Location dependent queries can be easily modeled in the
constraint based framework with some syntactic sugar. In
particular, we allow each query to be associated with a tra-
jectory γ ∈ T , and γ can be used in the query formula. In
query evaluation, the query trajectory is treated as a fixed
constraint relation over the time and vector variables.

A query is a triple Q = (y, γ, ϕ) where y is an object variable,
γ ∈ T a trajectory without turns, and ϕ a formula with
only y free (ϕ may use γ in the same way as an object).
The answer of a query Q on a mod D = (O, T, τ), Q(D), is
defined as the set of objects y ∈ O such that ϕ is true.

Example 4. Consider the query 1-NN (1-nearest neigh-
bor) that returns the closest object(s) to an object moving
along the trajectory γ during the period from τ1 to τ2. Sup-
pose that the mod D = (O, T, τ) where τ1 < τ2 < τ . The
query 1-NN can be expressed as (y, γ, ϕ) where ϕ =

∃t(τ1 � t � τ2 ∧ ∃x∃x1T (γ, t, x) ∧ T (y, t, x1)∧
∀z(O(z) →

∀x2(T (z, t, x2) → len(x1 − x) � len(x2 − x))))

In our model, databases consist of only linear constraints.
The query language is the first-order logic with linear con-
straints except that the length and unit operators need poly-
nomial constraints. Given a query Q and a mod D, we can
“encode” oids using real numbers, map D to a linear con-
straint database, and Q to a first-order query with polyno-
mial constraints. The query evaluation can be done using
standard constraint query evaluation algorithms based on
quantifier elimination. Therefore, the following holds.

Proposition 1. Each query can be evaluated in polyno-
mial time in terms of the mod size.

Example 5. Consider the queries in Examples 3 and 4
for the situation where τ1 is in the past while τ2 is in the
future. If we evaluate the queries over the current database,
the results are not all correct:

• the results on flights/objects before “now” accurately re-
flect the actual events, and

• the results on flights/objects after “now” are only predic-
tions since these flights/objects may change their moving
directions.

Predictions are useful in moving object databases. How-
ever, mixing true answers with predictions is not a desirable
paradigm. While support for expressing and efficient evalu-
ation of prediction queries is an interesting topic itself, our
concern in the present paper is to obtain true or “valid”
answers.

Example 5 illustrates an interesting issue of proper modeling
of the time dimension. Modeling time as R is simple but does
not reflect the physical reality. Indeed, Example 5 reveals a
weakness of the constraint data model. Indexing techniques
that distinguish time and space dimensions are being studied
for moving object databases [22].

From the above discussions, one useful concept is to dis-
tinguish queries that concern past trajectories from those
about future trajectories.

Definition 4. Let D be a mod and Q a query. An object
o ∈ Q(D) is valid if for all (finite) update sequences ∆,
o ∈ Q(∆D). The valid answer of Q is defined as Qv(D) =
{ o | o ∈ Q(D) and is valid }.

Definition 5. Let D be a mod and Q a query. Q is said
to be

• past with respect to D if Q(D) = Qv(D),

• future with respect to D if Q(D)�=Qv(D) and Qv(D) = ∅

(no valid answer),

• continuing with respect to D if Q(D)�=Qv(D) and Qv(D)
�= ∅ (partially valid answer).

One way to evaluate a future query (to compute the valid an-
swer) is to wait till all updates are completed on the objects
being queried (i.e., till the query becomes past) and then
perform the evaluation (lazy evaluation). Alternatively, one
can “semi-evaluate” the query and produce valid answers as
updates are being done. Such an “eager” approach is closely
related to view maintenance, which is not well understood
in constraint databases.

Earlier work on view maintenance mostly focus on relational
databases (see references [23, 8, 12, 6, 14, 13] etc.) These
results are not directly applicable to constraint databases



due to the fundamental difference of the constraint model:
finite representation of possibly infinite relations. Lacking
appropriate update models is also a factor [18]. Indeed,
view maintenance is an interesting problem in constraint
databases.

One might imagine to integrate constraint query evaluation
techniques with view maintenance algorithms (if they are
available). In this way a mod system could detect past or fu-
ture queries and then apply suitable evaluation algorithms.
This is, however, not promising.

Theorem 2. It is undecidable if a given query is past with
respect to a given mod.

Proof. (Sketch) The proof is based on a reduction from
the Halting problem of Turing machines on empty input. We
consider only new operations and use objects in the database
sorted by their insertion times to encode the initial config-
uration. The query simply checks if the database after a
sequence of insertions encodes a sequence of configurations
leading to a halting computation.

Corollary 3. It is undecidable if a given query is con-
tinuing, or future with respect to a given mod.

4. A GENERALIZED DISTANCE BASED
QUERY LANGUAGE

As discussed earlier, queries in mods may be queries in the
traditional sense, or actually view maintenance problems.
While it is interesting to further investigate view mainte-
nance in the constraint database setting, we take a differ-
ent approach which allows us to use one technique for both
query evaluation and view maintenance for mods. In this
section, we illustrate the idea with an example, and define
the language. The core evaluation technique is presented in
the next section.

Example 6. Consider again the 1-NN query in Example
4. Note that a key part of the query expression is to compare
distances (expressed using the function len): the distances
from the query object to the object y in the answer and an
arbitrary object z. In particular, if we can define a distance
function fo(t) for each object o in the mod which computes
the distance between o and the query object at time t, com-
puting the answer to 1-NN is to find the lower “envelope”
of the set of curves (functions) fo’s in the specified time
interval.

We can extend the 1-NN query to k-NN for some fixed k > 0.
In this case, the answer to the k-NN query is the set of k
lowest curves.

A large class of queries in moving object databases concern
relationships about distances, moving directions, traveling
time. This is not surprising because they are fundamental
properties that make moving object databases distinguished
from spatial databases. The classes of moving object queries
defined in [29] also confirm that (Euclidean) distance is one
of the most important properties for queries.

Example 7. Let q be the (moving) query object q and
o be a moving object in the database. We are interested in
the fastest time it takes for o to reach q if both are to main-
tain the current speed and only o can change the moving
direction. Consider the query “fastest arrival” which identi-
fies the object that can reach q faster than all other objects
in the database. This query is simplified version of “find-
ing the police car that can reach the target train fastest”.
Using constraint query languages, this query can clearly be
expressed. Interestingly, for this query we can also define a
function for each object o which returns the shortest time
for o to reach q.

While evaluation algorithms for the straightforward exten-
sion of constraint query languages are difficult to develop as
shown in the previous section, we take a different approach
by restricting the expressiveness concerning distances. Spe-
cifically, we associate one distance function for each moving
object and only allow comparing distances at the same time
instant. However, to make the framework flexible for a vari-
ety of distance related queries, the distance functions are not
limited to Euclidean distances. The result is a generalized
distance based query language. We illustrate that the lan-
guage can express many distance-related mod queries and
allow efficient evaluation. The language is defined in the re-
mainder of the section and we discuss evaluation techniques
in the next section.

Definition 6. A generalized distance (g-distance) is a
mapping from the set T of trajectories to continuous func-
tions from R (time instants) to R. Let (O, T, τ) be a mod
and f a g-distance. We extend the mapping f to a mapping
f from O as follows: for each o ∈ O, f(o) = f(T (o)).

For simplicity we use the notions of a generalized distance
and its extension interchangeably when the context is clear.

Intuitively, a g-distance encodes some property of a trajec-
tory of interest as a continuous function from time instants
to real numbers (such as distances). The g-distance can then
be used as a primitive for the purpose of querying.

Example 8. For the k-NN query in Example 6, let γ be
the trajectory of the query object and o a moving object in
the database. Consider the function

do(t) = (len(xo − x))2

where xo, x are the current locations of the two objects, i.e.,
vectors such that the formula o(t, xo) ∧ γ(t, x) is true. Note
that do is quadratic since q and o have trajectories in T . If
the function d is defined such that for each object o in the
database d(o) = do, then d is a g-distance.

Example 9. Consider the query in Example 7. Let o be
an object moving in R

2 with speed v. Suppose that the
query object q moves along horizontal line with constant
speed v and o moves with constant speed vo.

Let τ∆ be the time for o to meet q (o may change direc-
tion). Figure 1 shows the current position of o and q and
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Figure 1: Redirection of o towards q

illustrates that if o changes direction it can reach point A
at the same time as q. Clearly oA = vot∆ and pA = vt∆.
Using straightforward algebra manipulations, one can show
that t2∆ = c2t

2 + c1t + c0 for some constants c2, c1, c0. In
particular, t2∆ is a g-distance.

For many distance related mod queries, g-distances are ex-
pressible in the constraint query language presented in Sec-
tion 3.

We now describe the query language based on a given gen-
eralized distance f. The language is essentially many-sorted
first-order logic with real numbers, time instants, and ob-
jects (oids). The language uses a single time variable t,
many object variables. (Note that there are no variables
for real numbers, i.e., arithmetic operations are all embed-
ded into g-distances.) A query expresses a property on a
snapshot of moving objects in the database.

• Time terms are polynomials over the time variable t with
real (rational) coefficients.

• Real terms include real numbers, and f(y, t) where y is an
object variable and t a time term.

Atomic formulas are formed by equality and order predicates
over terms of the same sort; formulas are then constructed
by propositional connectives and universal/existential quan-
tifiers over object variables.

A query is a quadruple (y, t, I, ϕ), where y is an object vari-
able, t a time variable, I a time interval, and ϕ a formula
with only y and t free.

Example 10. To express the 1-NN query, a key compo-
nent is to express the shortest distance. Clearly, this can be
done by the following formula:

ϕ(y, t) = ∀z(d(y, t) � d(z, t))

Where the universe of the quantifiers of object variables is
the set of objects in the mod and d is the g-distance given
in Example 8.

As shown in the above example, the formula in a query
defines some property on a snapshot. Let Q = (y, t, I, ϕ)
be a query and D = (O, T, τ0) a mod. For each time τ , we
define

Q[D]τ = {(o) | o ∈ O ∧ ϕ(o, τ)}.
The answer to Q can be defined in the following three ways.

• (Snapshots) The snapshot answer to Q is a set

Qs(D) = {(o, t) | t ∈ I ∧ o ∈ Q[D]t}.

Though Qs(D) may be infinite, it has finite representa-
tions in terms of time constraints on t if g-distances are
“polynomial” (defined in the next section).

• (Existential) The accumulative answer is defined as

Q∃(D) = {(o) | ∃t (t ∈ I ∧ o ∈ Q[D]t)}.

• (Universal) The persevering answer is defined as

Q∀(D) = {(o) | ∀t (t ∈ I → o ∈ Q[D]t)}.
We denote the language as FO(f).

Example 11. Clearly the k-NN is expressible in FO(f).
By using the same (similar) generalized distances, it is easy
to see that the following queries can also be expressed in
FO(f).

• List the k-nearest flights to Flight 623 at time τ .

• List all flights that were within 50 km from Flight 623
from τ1 to τ2.

• If Flight 744 changes its motion to be x = A′t+B′, which
is the nearest flight at some future time τ?

• In the last hour what police cars were at the same posi-
tions as the car #1404?

The fastest arrival query is also in FO(f). By using similar
generalized distances, we can show that the following queries
are also expressible in this language.

• List all flights that can reach Flight 623 within 30 min-
utes (this may require changing of their motions hypo-
thetically).

• For the police car #1404 (moving) list other police cars
that can reach it in 5 minutes.

Clearly, the key to evaluating Q∀, Q∃, Qs queries is to evalu-
ate and maintain answers to Q[]τ upon updates and location
changes. This will be the focus in the next section.

5. A PLANE-SWEEPING BASED EVALUA-
TION TECHNIQUE

In this section, we present a new query evaluation technique
for FO(f) using the plane-sweeping technique from compu-
tational geometry. As indicated earlier, evaluation of snap-
shot, existential, and universal queries relies on maintaining
query answers at each time instant. The focus here is on
the latter. Intuitively, our strategy is to consider the set
of functions (over time) in the image of the g-distance f
and evaluate queries by sweeping a time line. In particular,
plane sweeping allows to identify intersections of these func-
tions, thus to prepare for the changes that may propagate
to the query answer. The main results are the following: for
each mod D and a “polynomial” g-distance f, FO(f) can be
evaluated “efficiently”.

Recall that there are two types of terms in FO(f) for times
and real numbers, respectively. Note that each real term has
at most one object variable. A real term is instantiated if it
does not contain any object variable or its object variable



is substituted by an oid. Let Q = (y, t, I, ϕ) be a query
and D a mod for the remainder of the section. We define
rterms(Q) to be the set of all real terms in Q with all pos-
sible instantiations using oids in the mod D. (Instantiated
real terms may contain the time variable.) The base of Q in
D at time t is defined as the set of true atoms involving real
terms, base(Q,D, t) =

{α1(t)θα2(t) | α1, α2 ∈ rterms(Q) ∧D |= α1θα2}.
The base of of a query at time t consists of true atomic for-
mulas involving equality and order comparisons. There are
redundancies in the base because it contains the transitive
closure of the linear ordering. Obviously, it is not necessary
to compute the base.

We define the support of the query Q in the mod D at
time t, denoted by supp(Q,D, t) as the minimal subset of
base(Q,D, t) which is logically equivalent to base(Q,D, t).
Let supp(Q,D) =

⋃
t∈I supp(Q,D, t). Clearly Q[D]t can be

easily obtained from supp(Q,D) by some relational opera-
tions.

In the remainder of the section, we study the complexity
of computing supp(Q,D) for a query Q and a mod D in
terms of the size of D. After introducing several necessary
concepts, we state the main results of the section.

A g-distance f is said to be polynomial if for each γ ∈ T , f(γ)
consists of finitely many pieces and is piecewise polynomial.

Let τ be a time instant. We define the support change at
time τ as ∆supp(t) =

• supp(Q,D, τ − ε)� supp(Q,D, τ), if there exists an ε > 0
such that supp(Q,D, τ − ε) �= supp(Q,D, τ) and for all
τ − ε � t, t′ < τ , supp(Q,D, t) = supp(Q,D, t′). (Here �
denotes symmetric difference.)

• ∅, otherwise.

For polynomial g-distances, it can be shown that there are
only finitely many time instants at which the support change
is nonempty. The number of support changes at time t is
simply |∆supp(t)| (its cardinality). For each interval I, let
the number of support changes during I be the total number
of support changes at a time instant in I.

We are now ready to state the main results.

Theorem 4. For each past query Q in FO(f) with an in-
terval I and each N-object mod D, supp(Q,D) can be com-
puted in O((m + N) logN) time, where m is the number of
support changes during I.

Complexity analysis for future queries is different from past
queries. This is because query evaluation is done in two
phases: compute the initial support, and compute the in-
cremental changes to support after each database update.
While the total cost of computing supp(Q,D) is not very
useful, the cost of handling each database update is the most
interesting part.

Theorem 5. For each future query in FO(f) with an in-
terval [τ1, τ2] and each N-object mod D, the following hold.

1. supp(Q,D, τ1) can be computed in O(N logN) time, and

2. for each database update, supp(Q,D) can be maintained
in O(m logN) time, where m is the number of support
changes between two consecutive updates.

Corollary 6. If the number of support changes between
updates is bounded, the maintenance of the support of a
future/continuing query in FO(f) after each update is in
O(log N) time, where N is the number of objects in mod.

Theorem 5 implies that if the updates are far apart, the
cost of maintaining the support after each update increases
since there are likely more support changes. One possibility
to reduce the complexity is for a mod to keep a clock and
the number of support changes between two clock ticks is
likely small. Although it does not reduce the total amount
complexity, it distributes the cost for processing an update
among the clock ticks. Another possibility is to have fre-
quent (periodic) updates. Both methods are common in
moving object applications. Thus, we can conclude the fol-
lowing:

Under reasonable practical assumptions, each update
for a future FO(f) query can be processed in O(log N)
time where N is the number of objects in the mod.

Note that the algorithms for past queries and for future
queries are almost identical. Therefore, continuing queries
are computed in the same way as a past query in the first
half, and future query in the second half (without initializa-
tion).

The remainder of this section is devoted to proofs of The-
orems 4 and 5. We start with the k-NN query and use the
query to illustrate the main idea of the algorithms. Sup-
pose that the support of the query at the current time is
computed. The support of the k-NN query will change if

1. object creations and terminations are made, or

2. the movements of objects (including the query object it-
self) cause some objects to be closer to become new k-
nearest neighbors.

For the latter, Figure 2 shows the g-distances of two objects
(solid curves). The object o2 is closer but at time D o1 is ex-
pected to be closer. However, updates (new, terminate, chdir)

A B C D

o2

o1

Figure 2: Two objects and their g-distances

may change some expected future events. In Figure 2, o1



changes its moving direction at time A and as a result, its
g-distance curve will not meet o2’s at time D. At a later
time B, o2 also changes its course and o1 will again become
closer than o2 but at an earlier time C.

The maintenance of the k-NN query was studied in [26] in
the context where only the query object moves. Since other
objects are stationary, they are stored in an R∗-tree. Their
approach was to use range search to find k closest objects
and re-calculate the range at each update on the query ob-
ject using the moving distance since the last update. This
gives correct a query result only at the time of search follow-
ing the update, and the result may soon become incorrect
due to the movement of the query object. In particular, the
closerness exchange of o1, o2 at time C in Figure 2 will not
be detected in their algorithm.

In mods, updates are explicitly requested and are the only
external events. Recall that a mod has an associated last
update time, which is changed only when an update is per-
formed. This means that support changes caused by updates
can be handled by detecting possible changes and perform-
ing actions at the update time.

Support changes caused by object movements need to be
treated differently. Although it is easy to see that such sup-
port changes will only happen when the g-distance curves
of different objects intersect, one cannot simply perform the
changes (e.g., the change at time C in Figure 2) since it is
certain that updates will not happen before then. In spite of
this, detecting intersections is a well studied topic in com-
putational geometry and plane sweeping is one of the tech-
niques for this problem (cf [20]). This is the approach we
take.

Let D = (O, T, τ) be a mod and f a g-distance. For sim-
plicity, we denote f(o) as fo where o is an object in a mod.
Clearly, {fo | o ∈ O} is a set of continuous functions from
time instants to R, i.e., a set of curves. Our query eval-
uation algorithm sweeps a time line through this set. For
each given time instant, we order the curves according to
the ordering of their intersections with this time line. The
following definition captures this ordering.

Definition 7. Let D = (O, T, τ ′) be a mod, f a g-dis-
tance, τ a time instant, and o, o′ two oids in O. The object
o precedes o′ at time τ with respect to f, denoted as o �f

τ o′,
if fo(τ) � fo′(τ). Furthermore, o ≡f

τ o′ if o �f
τ o′ and o′ �f

τ o;
o <f

τ o′ if o �f
τ o′ but o �≡f

τ o′.

Since we assume that f is fixed in our discussions on query
evaluation, we will drop the superscript “f” and simply use
<τ ,�τ , etc. Also, �τ is naturally extended to include real
numbers.

Clearly, o ≡τ o′ means that their g-distances at the time τ
are the same. It follows that for each time instant τ , ≡τ

is an equivalance relation. Technically, instead of the total
ordering of the curves (objects) we have a total order on
equivalence classes [o]τ generated by ≡τ . In other words,
if we sweep the plane using a time line t = τ , �τ gives an
ordering of all equivalence classes of objects along the sweep

line.

The following lemma states a fundamental property of the
total ordering of the curves along a time line. Intuitively,
right before two curves intersect at time τ , they must be-
come immediate neighbors in the total ordering. This is an
important property used to detect intersections, similar to
line segment intersection [3].

Lemma 7. Let D = (O, T, τ ′) be a mod, f a polynomial
g-distance, τ a time instant, and o, o′ ∈ O. If o ≡τ o′, then
there exists a time instant τ1 < τ such that for all t ∈ [τ1, τ ],
one of the following is true:

1. o ≡t o′,

2. o <t o′ and there exist no objects o′′ between o and o′,
i.e., ¬∃o′′(o <t o′′ <t o′), or

3. o′ <t o and there exist no objects o′′ between o′ and o,
i.e., ¬∃o′′(o′ <t o′′ <t o).

The following lemma shows that the precedence relation
uniquely determines the anwser to a query.

Lemma 8. Let D be a mod, f a polynomial g-distance,
τ1, τ2 time instants, and Q ∈ FO(f) a query. If �τ1 and �τ2

(extended to all instantiated real terms in Q) are identical,
then

supp(Q,D, τ1) = supp(Q,D, τ2).

We now present the details of the algorithms. For simplicity,
we first consider the special case where “t” is the only time
term in queries. We will drop this restriction later.

Let D = (O, T, τ) be a mod and Q a query whose interval
starts at time τ . First we compute the precedence relation
�τ , sort all objects in O using �τ , and store them in a
sorted list, which we call the object list L. For simplicity,
we assume that there are no pairs of objects o, o′ such that
o ≡τ o′. (Generalization is straightforward.) We obtain the
support to Q at time τ , i.e., supp(Q,D, τ). The remaining
steps of the evaluation resemble in a way the plane sweeping
algorithm for line segment intersection [3].

Note that the precedence relation changes if and only if one
of the following happens:

1. an update is performed (object creation or termination),
or

2. for a pair of objects o, o′, the curves fo and fo′ intersect.

As discussed ealier, updates are external events and the time
of an update is known when the request is made. The sec-
ond type of changes are implicit. It is necessary to find
the intersection time before it happens. Fortunately, by
Lemma 7, before each pair of curves intersect, the curves
(objects) must be immediate neighbors in the precedence
relation.

Based on Lemma 7, we first determine if each pair of im-
mediate neighbors o, o′ (in terms of the precedence relation



�τ ) will intersect, i.e., the curves fo and fo′ will intersect at
some time later than τ . If they will, the intersection time is
computed (or approximated1). We maintain all intersection
times sorted in an ascending order in the event queue E.

The query support computed for time τ , supp(Q,D, τ), is
not actually changed until the next update δ arrives at some
time τ1 > τ . At this point, the following two steps are
performed:

First, τ1 is inserted into the event queue E.

Then, for each event ahead of τ1 in the queue E, the fol-
lowing are performed (in the order of their times). Each
event represents the intersection time τ ′ of the curves of
two objects o, o′. Without loss of generality, we assume that
o precedes o′ currently, o <τ o′.

1. Update the precedence relation from �τ to �τ ′ where
o ≡τ ′ o′ (they are equivalent); propagate the change to
obtain supp(Q,D, τ ′).

2. Update the precedence relation �τ ′ to �τ ′+ε so that
o′ <τ ′+ε o for some sufficiently small2 ε > 0 (o and o′

complete the switching of their order); again, propagate
the change to obtain supp(Q,D, τ ′ + ε). (Note that τ ′ + ε
is after the intersection.)

3. Since the neighborhoods of o, o′ are changed. We need to
determine if o and o′ intersect with their new immediate
neighbors in L. If they do, the intersection times are
inserted into the event queue E.

After the above steps are done, we increment the time in
the mod from D = (O, T, τ) to D′ = (O, T, τ ′ + ε). Since
the precedence relation �τ ′+ε has already been computed,
we proceed to the next event in the queue E.

In case there are multiple events in the queue with the same
time, the precedence relation is modified before the propa-
gation is done in the first two steps shown above.

After all intersection events ahead of the update δ (at time
τ1) are processed, the algorithm will perform the update and
make necessary changes to the support. Let D′′ = (O, T, τ ′′)
be the mod at this point where τ ′′ < τ1. Clearly, δD = δD′′.
We perform the update and proceed according to the update
type:

• δ = new(onew, τ1, A,B).

We compute fonew (τ1) and insert onew into the object list
L. We then propagate the changes to supp(Q, δD′′, τ1) =
supp(Q, δD, τ1). We will examine the immediate neigh-
bors of onew in L and insert each intersection time into
the event queue E.

• δ = terminate(oold, τ1).

We delete oold from the object list and propagate the
changes to obtain supp(Q, δD′′, τ1). We also delete all
events in the queue for object oold. The two immediate

1In this case, the query answers are approximated around
the intersection point.
2τ ′ + ε should be earlier than the next event in the event
queue.

neighbors of oold in L now become immediate neighbors,
we have to determine if they intersect and, if so, insert
the intersection time into the event queue E.

• δ = chdir(o, τ1, A).

In this case, the object oold simply changes its direction
and speed. Let e and e′ be the trajectory of oold be-
fore and after the update (respectively). Clearly e and
e′ coincide up to time τ1. Thus the new value of the g-
distance on oold is identical to the old value up to time
τ1. The precedence relation does not change at time τ1,
and there are no changes to the support. However, we
have to delete all events in the queue E related to oold,
and re-examine possible intersections with its immediate
neighbors.

Note that in the above algorithm, processing each event
and/or update may require a constant number of executions
for computing the intersection of two g-distance curves fo
and fo′ This can be done by known algorithms (e.g., [21]).
In the following analysis, we exclude the complexity for in-
tersection computation.

o1

o2

o3

o4

178 10 24 313 20

Figure 3: Curves of four objects

Example 12. Figure 3 shows the g-distances for four ob-
jects o1, ..., o4. Consider the 2-NN query during the time
interval [0, 40]. Suppose the current time is 3.

• We evaluate the g-distance curves for time 0 and discover
that the ordering is o4 < o3 < o2 < o1. The answer
up to time 3 is o3 and o4. In addition, by checking the
immediate neighbor pairs (oi, oi+1), we found three future
intersection points at times 8 (o3, o4), 10 (o1, o2), and 31
(o2, o3), which are inserted into the event queue. Note
that the second intersection point at time 17 of o3, o4 is
ignored for the moment.

• Suppose that the next update comes at time 20, the up-
date event is inserted into the event list after 8 and 10,
but before 31. We will process all events before 20 and
then perform the update.

• For the intersection at time 8, o3 and o4 will switch po-
sitions in the ordering. At this point we will reexamine
future intersection points and enter 17 in the event queue
that will be ahead of the update event.

• For intersection point 10, o1 and o2 will switch positions,
and no intersections are found between new neighbors.



• For intersection at time 17, o3 and o4 will switch positions
again and this time the intersection at 24 is found since
o1 and o3 are neighbors.

• We now proceed to perform update, which is the next
event. Suppose the update is to change the direction of
o1 and as a result the g-distance curve for o1 becomes the
dashed line in the figure. In this case, the support for the
query is unchanged since the ordering is not. However,
we need to delete from the event queue the intersection
event at 24 and insert a new intersection point that is
earlier.

Lemma 9. For an N-object mod, each event in the event
queue can be processed in O(log N) time.

Proof. (Sketch) We first claim that each event and up-
date can be processed in O(log m + log N) time where m is
the length of event queue. This follows from the choice of
the data structures for the object list and event queue. For
the object list, the operations include insertions and dele-
tions of objects. A balanced binary search tree (such as
AVL or red-black tree) [30] is sufficient to obtain O(log N)
bounds on each object list change. For the event queue, a
natural choice is a priority queue (heap). However, this does
not work due to a subtle issue that in processing terminate
or chdir it is necessary to delete all events related to one
object.

The problem can be overcome by keeping in the event queue
only the closest intersection times for each pair of current
immediate neighbors. This is done in two parts. First, for
each pair of immediate neighbors, only the earliest (future)
intersection time is inserted into the queue. Second, when
two objects are no longer immediate neighbors, their inter-
section time is deleted from the queue. Deletion from the
heap requires pointers from objects in the object list. To
avoid updating such pointers when a heap deletion or inser-
tion is done, we can use a height biased leftist tree in place
of a heap [30] or bi-directional pointers. As a result of this
optimization, the queue length is at most N , i.e., m � N .
Hence the lemma holds.

A query in FO(f) may use k (some fixed number) polyno-
mials as time terms. In this case, we construct one function
for each pair of a trajectory and a time term. Since the total
number of functions is only increased by a factor of k. The
above results remain valid. For past queries, a turn in the
mod is treated as an update operation. Theorems 4 and 5
can be proved using Lemma 9 and the above analysis.

We make two remarks before the end of the section. First,
the assumption that generlized distances are continuous can
be relaxed to just require them to consist of a finite set of
continuous pieces. The only change to the algorithm is to
propagate changes to the support upon each chdir update.
All results listed in this section remain true.

For the second remark, recall that constraint queries defined
in Section 3 can have motions. This is implicitly described
in the g-distances in FO(f). One interesting extension is to

allow queries to have exactly the same trajectory as some
object in the database. The interesting question that arises
is how to deal with direction updates on the query object.
Note that this would mean the g-distances are all changed
for all objects, except that the current precedence relation
(and this the support) remain correct. The following shows
that such an update can still be dealt with in our framework.
The argument is similar to that of Theorem 5, except that
the precedence relation need not be recomputed (this avoids
sorting).

Theorem 10. For each future query in FO(f) natually
extended with an associated trajectory and each N-object
mod D, every chdir update on the query trajectory can be
done in O(N) time.

6. CONCLUSIONS
In this paper we studied efficient evaluation techniques for
moving object queries. Moving object queries can be lo-
cation dependent (i.e., with associated trajectories), and
also query about future temporal and spatial relationships
among objects. We show that traditional constraint query
languages are not appropriate for future queries. We pro-
pose a new query language based on generalized distances
and show that the plane sweeping technique from computa-
tional geometry can be naturally adapted to evaluation of
queries in this language, including future queries as well as
past queries. However, the current language is limited in
the sense that only one g-distance curve is allowed for each
object. It is interesting to further investigate the expressive-
ness of the language in querying moving objects.
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