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Abstract

We study various generalizations of reversal-bounded multicounter machines and show that
they have decidable emptiness, in#niteness, disjointness, containment, and equivalence problems.
The extensions include allowing the machines to perform linear-relation tests among the counters
and parameterized constants (e.g., “Is 3x− 5y− 2D1 + 9D2¡ 12?”, where x; y are counters, and
D1; D2 are parameterized constants). We believe that these machines are the most powerful ma-
chines known to date for which these decision problems are decidable. Decidability results for
such machines are useful in the analysis of reachability problems and the veri#cation=debugging
of safety properties in in#nite-state transition systems. For example, we show that (binary, for-
ward, and backward) reachability and safety are solvable for these machines. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The simplest language recognizers are the #nite automata. It is well known
that all varieties of #nite automata (one-way, two-way, nondeterministic, etc.) are
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eMectively equivalent, and the class has decidable emptiness, in#niteness, disjointness,
containment, and equivalence problems. These problems, referred to as F-problems, are
de#ned as follows, for arbitrary #nite automata M1; M2:

• Emptiness: Is L(M1) (the language accepted by M1) empty?
• In2niteness: Is L(M1) in#nite?
• Disjointness: Is L(M1)∩L(M2) empty?
• Containment: Is L(M1)⊆L(M2)?
• Equivalence: Is L(M1)=L(M2)?

When a two-way #nite automaton is augmented with a storage device, such as a
counter, a pushdown stack or a Turing machine tape, the F-problems become undecid-
able (no algorithms exist). In fact, it follows from a result in [19] that the emptiness
problem is undecidable for two-way counter machines even over an unary input alpha-
bet. On binary inputs, if one restricts the input head of the counter machines to make
only a #nite number of turns (i.e., changes in direction) on the input tape, the emptiness
problem is also undecidable, even for the case when the input head makes only one
turn [14]. However, for one-way counter machines, it is known that the equivalence
(hence also the emptiness) problem is decidable, but the containment and disjointness
problems are undecidable [22].
In this paper, we study two-way #nite automata augmented with several counters.

A restricted version of these machines was studied in [14]. Since a counter can be
incremented=decremented by 1 (and tested if it is 0), we count each alternation from
nonincreasing mode to nondecreasing mode or vice-versa as a reversal. For k; m; r ∈N
(the natural numbers), we de#ne an m-crossing r-reversal k-counter machine M as
a two-way #nite automaton with input delimiters (end-markers), augmented with k
counters such that on any input:
(1) No boundary between input symbols (including the delimiters) is crossed by the

input head more than m times (note that the number of turns, i.e., changes in
directions, the input head makes on the input may be unbounded).

(2) Each counter makes no more than r reversals.
We consider various generalizations of #nite-crossing reversal-bounded multicounter
machines and investigate their decision problems. The extensions include allowing the
machines to perform linear-relation tests among the counters and parameterized con-
stants (e.g., a test condition can be “3x−5y−2D1+9D2¡12”, where x; y are counters
and D1; D2 are parameterized constants). We show that many classes have decidable
F-problems. We believe that these machines are the most powerful machines known
to date for which the decision problems are decidable.
Besides its own theoretical interests, the work presented in this paper is also moti-

vated by the recent eMort in verifying in#nite-state systems. Inspired by the successes
of eOcient model-checking techniques for #nite-state systems such as hardware devices
and reactive systems [18], researchers are studying various models of in#nite-state sys-
tems that are amenable to automatic veri#cation. For this purpose, the systems studied
include timed automata [2], pushdown automata [4], various versions of counter ma-
chines [6, 10], and various queue machines [1, 5, 21]. In particular, recently we have
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shown that discrete clocks in a timed automaton can be transformed into reversal-
bounded counters [8]. A pattern technique is further provided to reduce dense clocks
to discrete clocks [7]. These results build a bridge between counter machine theory
and real-time veri#cation. We believe the results in this paper can be further ex-
tended and used in veri#cation=debugging pushdown=queue systems augmented with
counters.
The paper is organized as follows. Section 2 recalls the formal de#nition of a

reversal-bounded multicounter machine. Section 3 presents the fundamental decid-
able problems for these machines. Section 4 looks at several generalizations of the
basic model and investigates their decidable properties. Section 5 uses the results
of the previous sections to show that (binary, forward, and backward) reachability
and safety are solvable for these machines. Section 6 concludes with an example of
how the results can be used to check a safety property in an in#nite-state transition
system.

2. Reversal-bounded multicounter machines

An input to a two-way k-counter machine M is a string of the form #w#, where #
is the input delimiter and w is in A∗, A is the input alphabet and does not contain the
symbol #. We can treat the input as being written on a tape that is divided into tape
cells. The machine has an input head that can read symbols from the tape. A move or
step of M consists of the following.
Starting in state p:
(1) Read the symbol under the input head.
(2) Check the status (zero or nonzero) of the k counters.

Based on the state p, input symbol, and counter status:
(3) Move the input head left, right, or remain on the same symbol.
(4) Increment each counter by +1;−1, or 0. (Counters can only store nonnegative

integers; decrementing a zero counter is unde#ned.)
(5) Enter state q.

If the machine is nondeterministic, there may be several choices for actions (3)–(5).
The machine starts a computation in the initial state with the input head on the left

delimiter and all the counters set to zero. We assume without loss of generality that the
machine does not fall oM the left end of the input tape during the computation. There
are two special halting states: accept and reject. M accepts (rejects) an input #w# if
M on this input halts in state accept (respectively reject). Note that the machine may
not always halt (i.e., it can go into an in#nite loop). The set of all inputs accepted by
M is denoted by L(M).
M is reversal-bounded if there is a nonnegative integer r such that for any compu-

tation on any input, every counter of M makes no more than r reversals (alternations
between nonincreasing and nondecreasing modes or vice-versa). So, for example, a
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counter with the following computation pattern:

00000111111222222344444 has 0 reversals:

On the other hand,

00000111111222222344444333222123344 has 2 reversals:

M is 2nite-crossing if there is a positive integer m such that on every computation on
any input, M ’s input head crosses the boundary between every pair of two adjacent
tape cells at most m times. Note that there is no bound on the number of turns the
input head makes on the tape. Also, there is also no bound on how long the head can
remain (sit) on a symbol.
Actually, we do not need to require that M be #nite-crossing and the counters

reversal-bounded for inputs that are not accepted. However, we can make this as-
sumption without loss of generality since if M is m-crossing and r reversal-bounded,
the #nite-state control can always keep track of the number of reversals each counter
makes, and M rejects an input that causes a counter to make more than r reversals.
Moreover, we can add another counter to M and initialize it (using the input) to the
value m× n, where n is the length of the input. This counter is then decremented each
time M crosses a boundary during the computation. M rejects the input if this counter
becomes zero. The resulting machine will then be #nite-crossing and reversal-bounded
on any input (accepted or not). M is one-way if the input head crosses the boundary
between any two adjacent cells exactly once (i.e., M is 1-crossing). Finite-crossing
reversal-bounded multicounter machines are quite powerful as the following example
shows.

Example 2.1. A deterministic 5-crossing 1-reversal 1-counter machine M can accept
the language over the alphabet {a; b; c; d} consisting of all strings such that the sum of
the lengths of all runs of c’s occurring between pairs of symbols a and b (in this order)
is equal to the number of d’s. For example, M accepts the string “dacbacaccbdd” but
not the string “ddacbacaccbdd”.

M operates in the following manner. It computes the sum in its counter by looking
at the input and whenever it sees an a, it #rst checks that there is a matching b to
the right and that all symbols in-between are c’s. It then moves left (to a), adding
the length of the run of c’s to the counter. The process is repeated until the whole
string has been examined. (So far, M crosses any boundary between two input symbols
at most 3 times.) M then moves the input head from the right delimiter to the left
delimiter and checks that the number of d’s is equal to the sum in the counter. Finally,
the input head is moved to the right delimiter and the machine accepts if and only
if the string is in the language. Thus, M is 5-crossing, although its input head makes
an unbounded number of (left-to-right and right-to-left) turns, i.e., it is not #nite-
turn.
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3. Fundamental decidable problems

Let N be the set of nonnegative integers and k be a positive integer. A subset S of
Nk is a linear set if there exist vectors v0; v1; : : : ; vn in Nk such that

S = {v | v = v0 + t1v1 + · · ·+ tnvn; ∀16 i 6 n; ti ∈ N}:
The vectors v0 (the constant vector) and v1; : : : ; vn (the periods) are called generators.
S is semilinear if it is a #nite union of linear sets. Semilinear sets are precisely the
sets de#nable by Presburger formulas [11].
An empty set is a trivial (semi)linear set, where the set of generators is empty. Any

#nite subset of Nk is semilinear—it is a #nite union of linear sets whose generators
are constant vectors.
Let A be an alphabet consisting of k symbols a1; : : : ; ak . For each string (word) w

in A∗, we de#ne the Parikh map of w, denoted by f(w), as follows:

f(w) = (i1; : : : ; ik); where ij is the number of occurrences of aj in w:

If L is a subset of A∗, the Parikh map of L is de#ned f(L)= {f(w) |w∈L}.
The following theorem is from [20].

Theorem 3.1. Let M be either a one-way nondeterministic 2nite automaton (1NFA)
or a one-way nondeterministic pushdown automaton (1NPDA). Then f(L(M)) is a
semilinear set e:ectively computable from M .

The next result, which generalizes Theorem 3.1, was proved in [14].

Theorem 3.2. Let M be a nondeterministic one-way reversal-bounded k-counter ma-
chine. Then f(L(M)) is a semilinear set e:ectively computable from M .

We now show (using the standard crossing-sequence technique) that nondeterministic
#nite-crossing machines can be converted to one-way machines and, therefore, have
semilinear property:

Theorem 3.3. Let M be a nondeterministic 2nite-crossing reversal-bounded multi-
counter machine. We can e:ectively construct a nondeterministic one-way reversal-
bounded multicounter machine M ′ such that L(M)=L(M ′).

Proof. We assume without loss of generality that each counter of M makes exactly
one reversal, M accepts with all the counters zero and the input head falling oM the
right end of the tape, and in any computation every counter becomes positive.
Let a1 : : : an be an input (here a1 and an are #). Consider an accepting computation

of M on this input. Now consider symbol ap at position p. In the computation, ap
may be visited many times. Let t1 be the #rst time M visits ap. In general, M can
sit (i.e., stay) on ap for a while until some time t2 when it moves left or right of



170 O.H. Ibarra et al. / Theoretical Computer Science 289 (2002) 165–189

ap. In fact, we can assume without loss of generality (by adding states, if necessary)
that every time a cell is visited, M sits on the cell at least one step before moving;
thus t2¿t1. M may later revisit ap at time t3, sit on it, and then move left or right
of ap at time t4. Thus, in the accepting computation, we can associate with ap a time
sequence (t1; : : : ; tm), where for each i¿1; t2i−1 is the ith time M visits ap, and t2i
is the ith time it leaves ap. M sits on ap during the time period from t2i−1 to t2i.
Note that even though M is #nite-crossing, the time period when M sits on ap can be
unbounded. Clearly, m is no more than some #xed number since M is #nite-crossing.
Corresponding to the time sequence (t1; : : : ; tm) associated with symbol ap, we de#ne
a crossing vector R=(I1; : : : ; Im), where for odd i; Ii=(d1; q1; r1; q2; r2; d2; r3), where
(1) d1 is the direction from which the head entered symbol ap at time ti,
(2) q1 is the state when it entered ap,
(3) r1 is the instruction that was used in the move above,
(4) q2 is the state at time ti+1,
(5) r2 is the instruction that was used at time ti+1 − 1,
(6) d2 is the direction from which it left symbol ap at time ti+1, and
(7) r3 is the instruction used when it left ap.

We construct a nondeterministic one-way machine M ′ that simulates the accepting
computation of M by nondeterministically guessing the sequence of crossing vectors
R1; : : : ; Rn as it processes the input from left to right, making sure that Ri and Ri+1
are compatible for 16i6n. Corresponding to each counter C of M , machine M ′ uses
two counters C1 and C2. C1 is used to record the increases in C, while C2 records the
decreases in C. When M ′ completes the simulation of M , C1 and C2 must contain the
same value, and this can easily be checked by M ′.

Since the emptiness problem for semilinear sets is decidable (it is empty if there are
no generators), we have:

Theorem 3.4. The emptiness problem is decidable for nondeterministic 2nite-crossing
reversal-bounded multicounter machines.

Theorem 3.2 can be generalized to allow one of the counters to be unrestricted as
shown in [14]:

Theorem 3.5. Let M be a nondeterministic one-way machine with one unrestricted
counter and several reversal-bounded counters. Then f(L(M)) is a semilinear set
e:ectively computable from M . Thus; the emptiness problem for these machines is
decidable.

We now turn to other decision problems.

Theorem 3.6. The in2niteness problem is decidable for the class of nondeterministic
2nite-crossing reversal-bounded multicounter machines as well as for the class of
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nondeterministic one-way machines with one unrestricted counter and several reversal-
bounded counters. The disjointness problem is also decidable for machines in the 2rst
class.

Proof. The #rst part follows from Theorems 3.4 and 3.5 and the fact that it is decidable
to determine whether a semilinear set is in#nite. It is also clear that since the model
has a #nite-crossing input with no unrestricted counter, the disjointness problem is also
decidable (this is because given two such machines, one can construct another machine
of the same type that simulates them in parallel).

Containment and equivalence are undecidable for nondeterministic machines. In fact,
it is undecidable to determine, given a nondeterministic one-way machine with one
1-reversal counter, whether it accepts all strings [3]. It is easy to show that the class
of languages accepted by deterministic #nite-crossing reversal-bounded multicounter
machines is eMectively closed under union, intersection, and complementation. Hence
from Theorem 3.4:

Theorem 3.7. The containment and equivalence problems are decidable for determin-
istic 2nite-crossing reversal-bounded multicounter machines.

4. Generalizations

Now we study various generalizations of reversal-bounded multicounter machines.
For the proofs in this section, it is convenient to represent a multicounter machine
as a program. The speci#cation “re#nes” (splits) a move into several atomic steps
and, in the meantime, employs parallel counter assignments. The standard model of
a deterministic multicounter machine can be speci#ed by a program M of the form
shown in Fig. 1(a). Here P is a sequence of labeled instructions, where each instruction
is of the form shown in Fig. 1(b), where
(1) s; p; q denote labels or states (we will use the latter terminology in the paper),
(2) read (INPUT) means read the symbol currently under the input head and store it

in INPUT,
(3) a is #, $, or a symbol in the input alphabet of the machine,
(4) The instruction left means move the input head one cell to the left, and right

means move the input head one cell to the right, and
(5) X is a vector of k counters, where k is the number of counters in the machine and v

is a vector over {−1; 0; 1} called an increment vector. The instruction X :=X + v
performs parallel increments for all counters, where each counter can be incre-
mented or decremented by 1 or stay unchanged.

The machine starts its computation with the #rst instruction in P with the input head on
the left delimiter and all the counters set to zero. As before, an input #w# is accepted
(rejected) if M on this input halts in accept (reject).
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begin
input(#w#)
P

end

(a) Program structure

s : read (INPUT)
s : if INPUT= a

then goto p
else goto q

s : left
s : right
s : X :=X + v
s : if x=0

then goto p
else goto q

s : accept
s : reject
s : goto p

(b) Instruction set

Fig. 1. General program structure and instruction set.

We can make the machine nondeterministic by allowing a nondeterministic instruc-
tion of the form:

s : goto p or goto q

Clearly this is the only nondeterministic instruction we need. Other forms of nondeter-
minism (e.g., allowing nondeterministic assignments like “x := x+ 1 or y :=y− 1” or
allowing instructions like “left or right” do not add any more power to the machine.
Hence, we may assume (without loss of generality) that a program for a nondeter-
ministic multicounter machine has only one type of nondeterministic instruction, and
it is of the form “s : goto p or goto q”. All other instructions in the program are
deterministic.
The notion of #nite-crossing is the same as before and the notion of reversal-

boundedness is extended in the following sense. During a computation, only parallel
assignment instructions can change counter values. For every counter, its values before
each parallel assignment instruction in the computation is executed can be recorded as
a sequence, e.g.,

00000111111222222344444:

Each alternation between nonincreasing and nondecreasing in such a sequence for a
counter is called a reversal for this counter.
More interestingly, there is a stronger version of the reversal-boundedness notion,

which is introduced below. Consider the sequence above. Although it corresponds to
0-reversal, in this sequence there are segments of the computation when the counter
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value does not change (that is, the assignment instructions executed on each of these
segments do not increase the value of this counter). Intuitively, the stronger notion of
reversal-boundedness is to distinguish the modes of counter increasing, decreasing, and
no-change. We say that a counter machine M is strongly reversal-bounded if there is
a nonnegative integer r such that for any computation on any input, every counter of
M makes no more than r alternations between increasing, no-change, and decreasing
modes, on the sequence of assignments in the computation. In the above example, the
pattern corresponds to 6 strong reversals, marked as follows (assuming the initial mode
is stay):

00000 S1 S11111 S2 S22222 S34 S4444:

Obviously a strongly reversal-bounded multicounter machine is also reversal-bounded.
However, a reversal-bounded machine need not be strongly reversal-bounded. For ex-
ample, the patterns of the form “122334455 : : :” correspond to 0-reversal, but are not
strongly reversal-bounded.

4.1. Constant comparisons

The #rst generalization of a multicounter machine is to allow the counters to store
negative numbers, and allow the program to use conditionals (if statements) of the
form

s : if x#c then goto p else goto q

where c is an integer constant (there are a #nite number of such constants in the
program), and # is one of ¡;¿;=.
One can easily show that any multicounter machine M that uses the generalized

instructions above can be converted to an equivalent standard model M ′ such that
L(M)=L(M ′). Moreover, M ′ is (strongly) reversal-bounded if and only if M is
(strongly) reversal-bounded. The construction of M ′ is straightforward. M ′ “remem-
bers” the signs of the counters in the states, so the counters do not have to store
negative values. To handle predicates like x¡c; M ′ uses #xed-size “buMers” in the
states to translate the origin, etc. Thus, we have

Theorem 4.1. The emptiness; in2niteness; disjointness problems are decidable for non-
deterministic 2nite-crossing reversal-bounded multicounter machines with constant
comparisons. Furthermore; containment and equivalence problems are decidable for
deterministic versions of such machines.

In view of Theorem 4.1, we will now assume (unless otherwise speci#ed) that a
“standard” machine model can use the generalized instructions above.

4.2. Linear conditions

We can further allow conditionals (tests) like

s : if 5x − 3y + 2z ¡ 7 then goto p else goto q
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To be precise, let V be a #nite set of variables over integers. An atomic linear relation
on V is de#ned as∑

v∈V
avv ¡ b;

where av and b are integers. A linear relation on V is constructed from a #nite
number of atomic linear relations using negation (¬) and conjunction (∧). Note that
standard operations such as greater than (¿), equality (= ), logical implication (→),
and disjunction (∨) can also be expressed using the above constructions.
Suppose we allow a multicounter machine M to use conditionals of the form:

s : if L then goto p else goto q

where L is a linear relation on the counters. Note that any nondeterministic multicounter
machine M that uses linear relation conditionals can be converted to an equivalent ma-
chine M ′ that uses only atomic linear-relation conditionals. Moreover, M ′ is (strongly)
reversal-bounded iM M is (strongly) reversal-bounded. We consider two cases: reversal
bounded and strongly reversal bounded.

4.2.1. Reversal-bounded case
The halting (and, hence, the emptiness) problem is undecidable for reversal-bounded

multicounter machines that allow conditionals of the form: “s : if x=y then goto p
else goto q”. (Note that this can be simulated by conditionals of the form “s : if
x − y¡0 then goto p else goto q”.) In fact, the undecidability holds for 0-reversal
machines. This follows from Minsky’s result [19] that the halting problem is undecid-
able for machines with two unrestricted counters. Suppose M is a two-counter machine.
We construct a machine M ′ with four counters. For each counter x of M , M ′ uses two
counters x+ and x−. An instruction x := x+1 in M becomes an instruction x+ := x++1
in M ′; an instruction x := x− 1 in M becomes an instruction x− := x− +1 in M ′. The
conditional “if x=0 then : : :” in M becomes “if x+ = x− then : : :” in M ′. Clearly, M ′

simulates M , and M ′ halts if and only if M halts. Moreover, each counter in M ′ is
0-reversal.
In fact, the undecidability for halting holds even when there are only three 0-reversal

counters:

Theorem 4.2. Consider only deterministic machines with 3 counters; C1; C2; and
T; with no input tape. The counters which are initially 0 can only use instruc-
tions of the form x := x + 1 (where x is a counter); and linear test T =C1? or
T =C2? (Note that C1 =C2? is not allowed.) The halting problem for such machines is
undecidable.

Proof. A close look at the proof of the undecidability of the halting problem for two-
counter machines (with no input tape) in [19] reveals that the counters behave in a
regular pattern. The two counter machine operates in phases in the following way. Let
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C1 and C2 be its counters. Then M ’s operation can be divided into phases P1; P2; P3; : : : ;
where each Pi starts with one of the counters equal to zero and the other counter equal
to some positive integer di. During the phase, the #rst counter is increasing, while
the second counter is decreasing. The phase ends with the #rst counter having value
di+1 and the second counter having value 0. Then in the next phase the modes of
the counters are interchanged. Thus, a sequence of con#gurations corresponding to the
phases above will be of the form

(q1; 0; d1); (q2; d2; 0); (q3; 0; d3); (q4; d4; 0); : : : ;

where the qi are states and d1 = 1; d2; d3; : : : are positive integers. Note that the second
component of the con#guration refers to the value of C1, while the third component
refers to the value of C2.
We construct a 3-counter machine M ′ with counters C′

1; C
′
2 and T which simulates

M . The sequence of con#gurations of M ′ corresponding to the above phases would
have the form (the second, third, and fourth components correspond to the values of
C′
1; C

′
2; and T , respectively)

(q1; 0; d1; 0);

(q2; d1 + d2; d1; d1);

(q3; d1 + d2; d1 + d2 + d3; d1 + d2);

(q4; d1 + d2 + d3 + d4; d1 + d2 + d3; d1 + d2 + d3);

(q5; d1 + d2 + d3 + d4; d1 + d2 + d3 + d4 + d5; d1 + d2 + d3 + d4);

(q6; d1 + d2 + d3 + d4 + d5 + d6; d1 + d2 + d3 + d4 + d5;

d1 + d2 + d3 + d4 + d5);

· · · :

To go from, for example, (q1; 0; d1; 0) to (q2; d1 +d2; d1; d1); C′
1 and T are incremented

until T =C′
2. During the phase, C

′
1 also simulates C1, adding d2 to the counter. Thus

C′
1 will have value d1 + d2 at the end of the phase.

The 3 counters in the result above are necessary in view of the following theorem.

Theorem 4.3. The emptiness problem is decidable for one-way nondeterministic ma-
chines with two reversal-bounded counters; where in addition to standard instructions;
the machines can use tests of the form: x#c and x − y#c; where x; y represent the
two counters; c represents a constant; and # is ¿;¡; or =.

Proof. Given a reversal-bounded two-counter machine M , we construct a machine M ′

with two reversal-bounded counters and one unrestricted counter that uses only standard
instructions, with the help of Theorem 3.5.
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4.2.2. Strongly reversal-bounded case
Note that while the machine M ′ in the construction in Theorem 4.2 is reversal-

bounded, it is not strongly reversal-bounded. However, we can prove the following:

Theorem 4.4. The emptiness problem is decidable for nondeterministic 2nite-crossing
strongly reversal-bounded multicounter machines using linear-relation conditionals on
the counters.

Before we give the proof we need some de#nitions and notations.
Suppose M is a nondeterministic #nite-crossing strongly reversal-bounded multi-

counter machine. Since counter values can only be changed by parallel assignment
instructions, there is no counter change between any two assignment instructions. Dur-
ing a computation, right before any parallel assignment instruction is executed, each
counter of M can be in any of the following three modes: increasing, no-change,
decreasing. These modes correspond to x := x + 1; x := x + 0; x := x + (−1) in the
parallel assignment instruction, respectively. A counter makes a mode-change if it goes
from mode X to mode Y , with Y diMerent from X . Thus, e.g., a counter can go from
no-change to increasing, or from increasing to decreasing, etc. Notice that one parallel
assignment instruction may cause mode-change for more than one counter. Assume
there are k counters. At any time during the computation, the modes of the counters
can be represented by a mode-vector Q= 〈m1; : : : ; mk〉, where mi is the mode of the
ith counter, for 16i6k. There are only a #nite number (3k) of such vectors. The
behavior of the counters during an accepting computation (which, by de#nition, is a
halting computation) can be represented by a sequence: N0Q1N1Q2N2 : : : QtNt where:
(1) The Qi’s are mode-vectors.
(2) Each Ni represents the (possibly empty) period when no counter changes mode.
(3) For each 16i6k − 1; Qi+1 diMers from Qi in at least one component.
Thus, we can divide the computation into phases, where in each phase, no counter

changes mode. Now since the machine is strongly reversal-bounded, t is upper-bounded
by some #xed number.
Call the sequence 〈Q1; : : : ; Qt〉 a Q-vector. (Note that since each Qi is a k-tuple, the

Q-vector has k× t components.) Since t is upper-bounded by some #xed number, there
are only a #nite number of such Q-vectors.
We now prove Theorem 4.4. Let M be a nondeterministic #nite-crossing strongly

reversal-bounded multicounter machine that uses atomic linear-relation predicates. We
describe the construction of an equivalent nondeterministic #nite-crossing strongly
reversal-bounded multicounter machine M ′ (which may have more counters than M)
that uses only the standard instructions.
The construction of M ′ is an induction on the number of atomic linear relations

occurring in the program of M . Consider a speci#c instruction, say labeled s (i.e. state
s) of the form

s : if L then goto p else goto q
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in the program of M , where L is an atomic linear relation. We will construct an
equivalent strongly reversal-bounded machine M ′ without this instruction (i.e., M ′ has
one less atomic linear relation). Note that M ′ cannot simply implement this conditional
using the standard instructions since the conditional will require a #nite number of
reversals on the counters of M ′. If this conditional is executed by M an unbounded
number of times during the computation, the counters of M ′ will not be reversal-
bounded.
The basic idea in the construction of M ′ is as follows:

(1) M ′ stores in its states the atomic linear relation L.
(2) M ′ #rst guesses and stores in its states a Q-vector 〈Q1; : : : ; Qt〉.
(3) M ′ simulates M by phases, where each phase starts with mode-vector Qi and

ends with mode-vector Qi+1. We assume that M keeps track of the values of
the counters of M during the computation and, in particular, has available in its
counters the values of the counters of M at the start and end of each phase. We
also assume that M ′ keeps track of the state changes of M . In the simulation, M ′

does not use instruction

s : if L then goto p else goto q

We give the details of simulating a phase starting at Qi and ending at Qi+1:
(1) M ′ #rst checks, using the values of the counters involved in the conditional

s : if L then goto p else goto q

whether L is true or whether it is false at the beginning of the phase.
(2) Consider the case when L is true (the case when L is false is symmetric).
There are two subcases:
• Subcase 1: Throughout the phase, L remains true. Since L is an atomic linear relation,
it is convex. It follows that L is true throughout the phase if and only if it is true
at the start and at the end of the phase.

• Subcase 2: During the computation, L became false. Again since L is convex, when
it turns false it will remain false until the end of the phase. Moreover, the time when
L becomes false is unique (i.e., it only occurs once in the entire phase).
So, to simulate a phase, M ′ guesses one of the two subcases above. Suppose M ′

guesses Subcase 1. Then it simulates M ′ faithfully using the instruction “goto p” in
place of “s : if L then goto p else goto q” until the end of the phase. At the end of
the phase it veri#es that L is still true.
Suppose M ′ guesses Subcase 2. Then it simulates M ′ faithfully. But, in addition,

M ′ guesses the last time, u, the conditional instruction will be executed by M with
value true (meaning the conditional instruction becomes false at the (u + 1)st time it
is executed by M).
Up to time u; M ′ uses the instruction “goto p”.
After time u; M ′ uses the instruction “goto q”.
M ′ also veri#es that at time u; L is indeed true, and it is false at time u+1.
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It follows from the description above that we can remove the instruction

s : if L then goto p else goto q

and M ′ is still strongly-reversal bounded. We can iterate the process to remove all
atomic linear-relation conditionals.

4.3. Allowing parameterized constants

We can further generalize our model by allowing parameterized constants in the
linear relations. So for example, we can allow instructions like

s : if 3x − 5y − 2D1 + 9D2 ¡ 12 then goto p else goto q

where D1 and D2 represent parameterized constants whose domain is the set of all
integers (+;−; 0). We can specify the values of these parameters at the start of the
computation by including them on the input tape. Thus, the input to the machine with
k parameterized constants will have the form: “#d1%· · ·%dk%w#”, where d1; : : : ; dk are
integers (+;−; 0) that the parameterized constants D1; : : : ; Dk assume for this run, and
% is a separator. We assume that the di’s are represented in unary along with their
signs.

Theorem 4.5. The emptiness problem is decidable for nondeterministic 2nite-crossing
strongly reversal-bounded multicounter machines using linear-relation conditionals on
the counters and parameterized constants.

Proof. From the construction in the proof of Theorem 4.4, we see that when the
parameterized constants are included in the linear relation, M ′ will only need to access
these constants #nitely many times. Thus, when there are parameterized constants, M ′

#rst reads the input and stores d1; : : : ; dk in some counters, and the construction of
M ′ proceeds as before.

4.4. Allowing one unrestricted counter

We can allow one of the counters to be unrestricted (i.e., not strongly reversal-
bounded and not reversal-bounded) provided the input is one-way. As long as the
unrestricted counter does not participate in any linear conditions, Theorem 4.5 can be
extended to the following:

Theorem 4.6. The emptiness problem is decidable for nondeterministic one-way ma-
chines with one unrestricted counter and several strongly reversal-bounded counters
using linear-relation conditionals on the reversal-bounded counters and parameterized
constants.
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4.5. Restricted linear relations

Because of Theorem 4.2, none of Theorems 4.4–4.6 holds when the machines are
reversal-bounded but not strongly reversal-bounded. However, suppose we require that
in every linear relation L, every atomic linear relation in L involves only the parameter-
ized constants and at most one counter so, e.g., 4D1 +9D2¡7 and 5x− 4D1 +9D2¡7
are #ne, but 5x + 2y − 4D1 + 9D2¡7 is not (where x and y are counters, and D1
and D2 are parameterized constants). Call such a relation L a restricted linear relation.
Then one can check that the results of Theorems 4.4–4.6 hold for reversal-bounded
machines (which are not necessarily strongly reversal-bounded):

Theorem 4.7. The emptiness problem is decidable for:
(1) Nondeterministic 2nite-crossing reversal-bounded multicounter machines with re-

stricted linear-relation conditionals on the counters and parameterized constants.
(2) Nondeterministic one-way machines with one unrestricted counter and several

reversal-bounded counters with restricted linear relation conditionals on the
reversal-bounded counters and parameterized constants.

4.6. Generalizing the assignment statement

Up to now we have only considered conditionals. Suppose we allow a component
of a parallel assignment instruction to be of the form: x :=y or x := 0, where x; y are
counters. When such assignments are allowed, the notion of (strongly) reversal bound-
edness remains the same except that counter values may be incremented or decremented
by some number greater than 1. For example, the following sequence is possible:

001234305677700;

where the third and fourth occurrences of 0 are results of the counter being reset to
0 and the occurrence of 5 is the result of an assignment acquiring the value of an-
other counter. The sequence has 6 strong reversals that are marked: 00S1234S30S567S77S0S0
(assuming the initial mode is stay). Then we can establish the following result.

Theorem 4.8. The emptiness problem is decidable for nondeterministic one-way
machines with one unrestricted counter and several strongly reversal-bounded
counters and with linear-relation conditionals on the reversal-bounded counters and
parameterized constants; provided that the only assignments (components of parallel
assignments) used are of the form: x := x + 1; x := x − 1; x := 0; or x :=y; and the
unrestricted counter cannot appear in any assignment of the form x := 0 or x :=y.

Proof. BrieTy, the proof is done by direct simulations of the new assignments of the
form x := 0 and x :=y. With a careful accounting of the reversals, it is shown that
the simulations are also strongly reversal bounded. By Theorem 4.6, the decidability
result follows.
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Assignments of the form x := 0 on counter x will be simulated by the following
process. If x is already 0, no operations are needed; otherwise x is reset to 0 by a
sequence of assignments x := x−1, while all other counters wait. The process will add
at most 1 strong reversal to X and at most 2 reversals to each of the other counters.
Clearly, if there are no further assignments of the form x := 0 or x :=y to be executed,
the total number of strong reversals for the entire computation is increased by at most
2. Suppose that this is not the case and consider the immediate next x := 0 or x :=y
assignment. We consider the case of x := 0, the other case is similar. Two possibilities
could arise: either x remains 0 between the two assignments or x becomes non-0 at
some point. In the former case, clearly the second x := 0 assignment adds no additional
strong reversals, while in the latter case, there must be at least one strong reversal
between the two assignments and we can “charge” the two additional strong reversals
to the strong reversal in the original computation. It either case, it is easy to see that the
total number of strong reversals is increased by a factor of at most 2 and still bounded.
We now consider assignments of the form x :=y. Again this is done by simulating

the assignment. Consider an assignment x :=y. If x=y, no additional operations are
needed. Otherwise, either x¡y or x¿y. We will then increment x (x := x+1) or, re-
spectively, decrement x (x := x−1) until x=y, while other counters remain unchanged.
Note that the tests can be done using linear conditionals. For counters other than x,
the simulation adds at most two strong reversals and at most one strong reversal for
x. Using a similar reasoning as the above, it suOces to show that if in the original
computation x has no more reversals from this point on, in the simulated computation
x will have a bounded number of reversals. Without loss of generality, we assume
that x is in the increasing mode. We argue that x can only execute at most C number
of assignments of the form x :=y such that y¿x + 1 where C is the total number of
counters. (However, there is no bound on the number of executions of assignments
of the form x :=y when y happens to be x+ 1. In this case, the assignment is equiv-
alent to x := x + 1.) Indeed once x gets the largest value among all counters, any
additional assignment of the form x :=y will introduce a strong reversal.

The above result can be further generalized to include assignments of the form x := c
where c is some constant. The proof technique is the same. The requirement that the
machine can only use assignments of the form: x := x+1; x := x−1; x := c in addition
to instructions of the form x :=y is necessary, since we have:

Theorem 4.9. The emptiness problem is undecidable for nondeterministic one-way ma-
chines with strongly reversal-bounded counters which use only conditionals of the form
“s : if x=y then goto p else goto q” and only assignment statements of the form:
x := x + a; even if there are only two distinct constants a used in the program.

Proof. The proof uses a reduction from two-counter machines M that is similar to the
one described in the proof of Theorem 4.2; i.e., each counter x is simulated with two
counters: x+ tracking all additions and x− tracking all subtractions.
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In particular, let a; b be two distinct constants used in the assignment statements.
Without loss of generality, let a¡b. Now, for each transition, if a counter x does not
change in M , we add a to both x+ and x−. If x gets an increment (or decrement),
we add b to x+ (or, respectively, x−). Note that since b¿a, the diMerence b − a¿0
is used to record the addition “+1” or the subtraction “−1”. Undecidability follows
immediately.

We have looked at various generalizations of reversal-bounded multicounter machines
in this section. Although Theorems 4.3–4.8 show only the decidability of the empti-
ness problem for these generalizations, all the proofs involve converting the machine
being considered to an equivalent nondeterministic #nite-crossing reversal-bounded
multicounter machine or to an equivalent nondeterministic one-way machine with one
unrestricted counter and several reversal-bounded counters. It follows from Theorem 3.6
that the in#niteness problem is also decidable for these generalized models. It also
follows from Theorem 3.6 that for the models that have a #nite-crossing input, the
disjointness problem is decidable. Finally, it is easy to show that the deterministic
versions of the models with #nite-crossing input are closed under complementation, so
their containment and equivalence problems are also decidable.

5. Reachability and safety

The results of the previous section can be used to analyze veri#cation problems (such
as reachability and safety) in in#nite-state transition systems that can be modeled by
multicounter machines. Decidability of reachability is of importance in the areas of
model checking, veri#cation, and testing [9, 6, 23]. In these areas, a machine is used as
a system speci#cation rather than a language recognizer, the interest being more in the
behaviors that the machine generates. Thus, in this section, unless otherwise speci#ed,
the machines have no input tape.
For notational convenience, we restrict our attention to machines whose counters can

only store nonnegative integers. The results easily extend to the case when the counters
can be negative.
Let M be a nondeterministic reversal-bounded k-counter machine with state set

{1; 2; : : : ; s} for some s. Each counter can be incremented by integer constants (+;−; 0)
and can be tested if ¡;¿; = to integer constants. Let (j; v1; : : : ; vk) denote the con#g-
uration of M when it is in state j, and counter i has value vi for i=1; 2; : : : ; k. Thus,
the set of all possible con#gurations is a subset of Nk+1. We use the symbols +; ,; : : :
to denote con#gurations.
Given M , let R(M)= {(+; ,) | + can reach , in 0 or more moves}: R(M), which

is a subset of N2k+2, is called the binary reachability set of M . For a set S of
con#gurations, de#ne post∗M (S) to be the set of all successors of con#gurations in
S; i.e., post∗M (S)= {+ | + can be reached from some con#guration in S in 0 or more
moves}. Similarly, de#ne pre∗M (S)= {+ | + can reach some con#guration in S in 0 or
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more moves}. post∗M (S) and pre∗M (S) are called the forward and backward reachability
of M with respect to S, respectively.
Note that con#guration ( j; v1; : : : ; vk) in Nk+1 can be represented as a string j%v1%

· · ·%vk , where j; v1; : : : ; vk are represented in unary (separated by %). Thus, R(M),
post∗M (S), and pre∗M (S) can be viewed as languages (e.g., regular, context-free, etc.)
When we say that a subset S of Nk is accepted by a multicounter machine M , we

mean that M , when started in its initial state with its #rst k counters (M can have
more than k counters) set to an input k-tuple, accepts (i.e., enters an accepting state)
if and only if the k-tuple is in S. Note that this is equivalent to equipping the machine
with an input tape that contains the unary encoding of the k-tuple.
The proof of the following theorem uses results in [14, 12].

Theorem 5.1. Let S be a subset of Nk . Then the following statements are (e:ectively)
equivalent:
(1) S can be accepted by a nondeterministic machine with one unrestricted counter

and several reversal-bounded counters.
(2) S can be accepted by a nondeterministic reversal-bounded multicounter machine.
(3) S can be accepted by a deterministic reversal-bounded multicounter machine.

Proof. S de#nable by a Presburger formula is equivalent to S being a semilinear
set and, clearly, it is straightforward to construct a nondeterministic reversal-bounded
multicounter machine accepting a semilinear set. It follows from Theorems 3.2 and
3.5 that (1)–(3) are equivalent. To complete the proof, we need to show that (1)
implies (4).
Suppose S is a semilinear set. We describe the construction of a deterministic

reversal-bounded multicounter machine accepting S. Since S a #nite union of linear
sets, it is suOcient to show the construction when S is a linear set. Let

S =

{
v0 +

n∑
j=1

tjvj | tj ¿ 0
}
;

where vj ∈Nk . Given Sx=(x1; : : : ; xk)T in Nk , to determine whether it is in S, we
need to #nd t1; : : : ; tn ∈ N such that Sx= v0 +

∑n
j=1 tjvj. This process involves solving a

diophantine system (in the nonnegative integer variables t1; : : : ; tn). The eOcient solution
of such a system depends on the following result [12]:
Let V Sy= Sb be a system of linear equations, where V is a k × n integral ma-

trix, Sy=(y1; : : : ; yn)T is a column vector of variables, and Sb=(b1; : : : ; bk)T is an integral
column vector. Let r be the rank of V . Denote by / the maximum of the absolute
values of all r × r subdeterminants of V . If the system has a nonnegative integral
solution, then it has a nonnegative integral solution (ŷ1; : : : ; ŷn)

T such that for some set
of indices L⊆{l1; : : : ; lr}⊆{1; : : : ; n}; ŷi¡/ for each i �∈L. Moreover, the submatrix
formed by columns l1; : : : ; lr of V is nonsingular (i.e., it has rank r).
Thus with the semilinear graph is associated a #nite set of nonsingular systems each

of which arises by “predetermining” some of the tj’s. For each Sx=(x1; : : : ; xk)T ∈ Nk ,
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one need only try each such system to see if the remaining tj’s are solvable in the
nonnegative integers.
The solution of each of the nonsingular systems can be eMected by applying Cramer’s

rule to a square nonsingular subsystem. Thus each “nonpredetermined” tj can be written
as

tj =
∑

apyp −∑
bqzq + c

1
;

where yp; zq are components of Sx; ap; bq and 1 are positive integers, and c is an integer.
Here ap; bq and 1 depend only on the vectors de#ning the underlying linear set, whereas
c depends on the predetermined tj’s as well. Clearly, computing the tj’s (from equations
of the form given above) and checking that they are all nonnegative integers can be
accomplished by a multicounter machine by reading the input xi’s stored initially in
the counters, and using a #nite number of auxiliary reversal-bounded counters. The
machine can then check that these tj’s satisfy any rows that were deleted to obtain the
square nonsingular subsystem. Again, this checking requires only a #nite number of
reversal-bounded counters.

Theorem 5.2. Let M be a nondeterministic reversal-bounded k-counter machine and
S a subset of Nk+1. Then
(1) R(M) is de2nable by a Presburger formula.
(2) S is de2nable by a Presburger formula if and only if post∗M (S) (or pre∗MS)) is

de2nable by a Presburger formula.
(3) If S is Presburger; then post∗M (S) (or pre

∗
M (S)) can be accepted by a deterministic

reversal-bounded multicounter machine. Similarly for R(M).
(4) (1)–(3) still hold even if one of the counters is unrestricted.

Proof. For Part 1, we construct a machine M ′ that accepts R(M). M ′, when given
(+,) in its counters, simulates the computation of M starting in con#guration +. At
some point, M ′ guesses that it has reached con#guration ,, which it can easily verify.
The result follows from Theorem 5.1 (equivalence of 1 and 3).
For Part 2 we only prove the case of pre∗M (S). If S is de#nable by a Presburger

formula, then there is a machine MS accepting S, by Theorem 5.1 (equivalence of
1 and 3). We construct a machine Mpre from M and MS . Mpre, when given + in its
counters, simulates M starting in this con#guration. At some point, Mpre guesses that
it has reached a con#guration , in S, which it can verify by using MS . Hence pre∗M (S)
is Presburger.
Conversely, suppose pre∗M (S) is Presburger and accepted by a machine Mpre. We

construct a machine MS accepting S. MS , when given , in its counters, “guesses” and
stores a con#guration + in its counters. MS than checks that + is accepted by Mpre and
that , is reachable from +.
Part 3 follows from parts 1–2 and Theorem 5.1 (equivalence of 1 and 4).
Part 4 follows from parts 1–3 and Theorem 5.1 (equivalence of 1 and 2).
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Next, we consider strongly reversal-bounded multicounter machines with linear-
relation conditionals on the counters and parameterized constants. For these machines,
the con#guration is now a tuple ( j; v1; : : : ; vk ; d1; : : : ; dm), where d1; : : : ; dm represent the
values of the parameterized constants. Then the next theorem follows from the results
of the previous section:

Theorem 5.3. The statements in Theorem 5:2 hold for:
(1) M a nondeterministic strongly reversal-bounded k-counter machine using linear

relation conditions on the counters and parameterized constants.
(2) M a nondeterministic reversal-bounded k-counter machine with restricted linear

relation conditions on the counters and parameterized constants.
The results are valid even if one of the counters is unrestricted as long as this counter
is not involved in the linear relation conditionals.

Theorem 5.3(2) is not true when the machine has k¿1 reversal-bounded counters
and one unrestricted counter, as shown in the next result:

Theorem 5.4. Consider deterministic machines with a single unrestricted counter U; k
reversal-bounded counters; and a 2nite number of parameterized constants. In addition
to the standard instructions; the unrestricted counter can be tested for “U =D?”;
where D represents a parameterized constant. Then
(1) The emptiness problem (i.e.; deciding given a machine M whether there exists an

assignment of values to the parameterized constants that will cause M to accept)
is undecidable; even when restricted to k =2.

(2) The emptiness problem is decidable when k =1.
(3) The emptiness problem is decidable for any k; provided there is only one param-

eterized constant.

Proof. The proof of part 1 uses the undecidability of Hilbert’s Tenth Problem (HTP)
[17], which is to decide for a given polynomial P(x1; : : : ; xn) with integer coeOcients
whether it has a nonnegative integral root.
First consider a term st(x1; : : : ; xn)= sx

i1
1 · xinn of the polynomial P(x1; : : : ; xn), where

s=+ or −; i1; : : : ; in ¿ 0. We show how to construct a deterministic machine Mt with
one unrestricted counter U , two reversal-bounded counters C1; C2, and parameterized
constants A1; : : : ; An; B such that Mt with the constants assigned nonnegative integer
values +1; : : : ; +n; , accepts if and only if ,= +

i1
1 : : : +

in
n .

In what follows, when we say that Mt “adds” a parameterized constant to C1, we
mean that Mt resets U to zero and then adds 1’s to both U and C1 until U is equal
to the parameterized constant. Mt “sets” C1 to a parameterized constant means Mt #rst
resets C1 to zero (if it is not already zero) and then adds the parameterized constant
to C1.
The exponents i1; : : : ; in are stored in the states of Mt . Assume that each ij ¿ 1.

(Otherwise, ignore the exponent.) Initially, U;C1; C2 are zero.
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Mt sets the C1 to +1. Then Mt computes +21 in C2 by iterating the following process
until C1 becomes zero: (1) Add +1 to C2. (2) Decrement C1 by one.
By iterating the procedure above and alternately switching the roles of C1 and C2,

Mt can compute +
i1
1 : : : +

in
n in one of the counters, say C2. Mt then sets C1 to , and

checks that C1 is equal to C2. Note that the counters C1 and C2 are reversal-bounded.
Now let P(x1; : : : ; xn)= s1t1+ · · ·+srtr , where each term sjtj = sjx

ij1
1 : : : x

ijn
n . We con-

struct a deterministic machine MP with one unrestricted counter, two reversal-bounded
counters, and parameterized constants A1; : : : ; An; B1; : : : ; Br such that MP with the con-
stants assigned nonnegative integer values +1; : : : ; +n; ,1; : : : ; ,r accepts if and only if
,j = +

ij1
1 : : : +ijnn and s1,1 + · · ·+ sr,r =0. The integers i11; : : : ; i1n; : : : ; ir1; : : : ; irn and signs

s1; : : : ; sr are stored in the states of MP . MP uses the technique described above to
check that ,j = +

ij1
1 : : : +ijnn and then veri#es that s1,1 + · · ·+ sr,r =0.

For part 2, let M be a deterministic machine with one unrestricted counter U and one
reversal-bounded counter C and parameterized constants A1; : : : ; An. Assume without
loss of generality that the values +1; : : : ; +n the parameterized constants can assume in
any computation is such that 1 6 +1¡ · · ·¡+n. (Note that the domain of values can
be partitioned into a #nite number of orderings.)
We convert M to a diMerent type of machine M ′. M ′ has an unrestricted two-way

input tape (with delimiters) and one reversal-bounded counter C but no parameterized
constants, such that M ′ accepts empty if and only if M accepts empty. The result
follows since the emptiness problem is decidable for deterministic two-way machines
with one reversal-bounded counter [15]. M ′ has input alphabet {1;%} (the delimiter
is #). M ′ rejects all inputs not of the form #1i1%1i2%· · · 1in%1k#.
Corresponding to values +1; : : : ; +n assigned to the parameterized constants, M ′ is

given input w= #1i1%1i2%· · · 1in%1k#, where
i1 = +1 − 1;
i2 = +2 − +1 − 1;

· · ·
in = +n − +n−1 − · · · − +1 − 1

and k is a nonnegative integer. Note that there are exactly n occurrences of the symbol
% in w. M ′ simulates M faithfully, with the input head simulating the unrestricted
counter U . Zero of the counter corresponds to the left delimiter, +1 corresponds to
moving right one cell and −1 corresponds to moving left one cell. The input head on
the ith % corresponds to U being equal to parameterized constant +i. The suOx 1k on
the input (for some k) is a “padding” used to simulate U when it’s value is greater
than +n. It follows that M ′ accepts w (for some k) if and only if M accepts when the
parameterized constants are assigned values +1; : : : ; +n. We now show that the padding
1k can be removed.
If we can show that k 6 c+n for some positive integer c (note that the length of

the input to M ′ is +n), then M ′ can use the input to “simulate” the action of U when
the counter has value greater than +n. (M ′ need only make at most c right-to-left and
left-to-right sweeps of the input.)
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Let s be the number of states of M . Consider the situation when counter U of M
has just exceeded the value +n (i.e., it has value +n+1). Let the value of the reversal-
bounded counter C at that time be v. Suppose that U is in increasing mode. Clearly, if
C is nondecreasing, U cannot increase its count beyond +n by more than s; otherwise,
M will be in an in#nite loop. The only way that U can increase its count beyond +n
by more than s without going into an in#nite loop is for C to be decreasing, eventually
becoming zero, i.e., while C is decreasing, U is increasing. Thus the maximum value
of U would be no more than +n+sv. We now derive an upper bound on the maximum
value of v during the entire computation of M . Initially v is zero. Suppose we want to
maximize the value of v when it’s in an increasing mode without the machine going
into an in#nite loop. Clearly, without counter U exceeding value +n + s, M can make
no more than s(+n + s) moves. Thus, v can have at most value s(+n + s) without C
reversing. C can then reverse, i.e., decrease its value to zero while increasing U . When
C becomes zero, U would have value at most s(+n + s) + s(s(+n + s)). Since M is
reversal-bounded, the biggest number v that can be stored in C without going into an
in#nite loop can be obtained by M ′ alternately decreasing U and incrementing C until
C becomes zero, and vice-versa. It follows that the maximum value of v is c+n for
some integer c.
For part 3, let M be a deterministic machine with one unrestricted counter U , one

reversal-bounded counter C, and one parameterized constant A. As in part 2, we con-
struct a machine M ′ that, when given a two-way input tape #1+#, accepts if and
only if M with parameterized constant A set to + accepts. The result follows, since
the emptiness problem is decidable for deterministic two-way reversal-bounded multi-
counter machines over unary input [13].

Remark. Obviously, part 2 of the above theorem holds even if we allow tests of the
form: U#D, where D is a parameterized constant, and # is =;¡ or ¿.

The problem of safety is of importance in the area of veri#cation. The following
theorem follows from Theorems 5.1–5.3.

Theorem 5.5. It is decidable to determine for a given nondeterministic reversal-
bounded multicounter machine M and two given sets of con2gurations S and T
de2nable by Presburger formulas; whether every con2guration in S can only reach
con2gurations in T . Thus; safety is decidable.

6. Conclusions

We have introduced several generalizations of reversal-bounded multicounter ma-
chines and investigated their decision problems. We then used the decidable properties
to analyze veri#cation problems such as (binary, forward, backward) reachability and
safety. We give an example analysis of an in#nite-state transition system.
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Fig. 2. An in#nite-state transition system.

In practice, many in#nite-state transition systems can be modeled by multicounter
machines, like the transition graph shown in Fig. 2. Here, M has counters x; y; z
and parameterized constants d; f. Assuming we are interested in the following safety
property:
For all d and f, for all con#gurations + and , such that + can reach ,, if d¿f

then counter x in , is greater than the sum of counters y and z in +.
The negation of the property can be written as ∃d; f; +; ,((+; ,)∈R(M)∧¬(d¿f→

,x¿+y + +z)). In order to debug the property, M can be eMectively made reversal-
bounded as M ′ by giving a bound for reversals. Since R(M ′)⊆R(M) is a lower
approximation of R(M), satis#ability of (+; ,)∈R(M ′)∧¬(d¿f→ ,x¿+y + +z)
falsi#es the property. From Theorem 5.2, we know R(M ′) is Presburger. Thus, the
above satis#ability checking is decidable. This is a new approach for analyzing safety
properties for systems where the general reachability problem is known to be unde-
cidable. Other approaches are to use semi-decision algorithms that are not guaran-
teed to terminate [23] or to look at restricted classes of systems where reachability is
decidable [6].
It may seem that strong reversal-boundedness restricts the behavior of a counter

too much, since changing from a strictly increasing (or decreasing) mode to a no-
change mode counts as a reversal. However, if the counters behave like clocks that
either increase with rate 1 or reset to 0, as in timed automata [2], strong reversal-
boundedness is equivalent to reversal-boundedness. Using this observation and the
results in this paper, we are able to show a number of results concerning the
binary reachability of discrete timed pushdown automata [8], past machines, and clocked
systems with bounded resets and parameterized durations. For example, it follows
from Theorem 5.3 that the binary reachability of discrete timed automata that use
linear-relation tests (on clocks and parameterized constants) whose clocks are reset
bounded (i.e., each clock resets at most a #xed number of times) is Presburger, since
these clocks can be viewed as strongly reversal-bounded counters. In fact, this
result holds, even if one clock is not reset bounded. When the clocks are not
reset bounded, it can be shown that binary reachability is not computable. In fact,
“node reachability” is not decidable [2]. Finally, we note that although our results
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are for the discrete timed models, the techniques can be applied to the continu-
ous timed versions. For example, a recent paper [7] showed that safety analysis for
timed pushdown automata with dense clocks can be reduced to that for timed push-
down automata with discrete clocks. Therefore, in characterizing the binary reachabil-
ity of real-time systems with dense clocks, we need only look at the discrete time
model.
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