
FPV : Fast Protein Visualization Using Java 3D TM

Tolga Can Yujun Wang Yuan-Fang Wang Jianwen Su

Department of Computer Science,
University of California, Santa Barbara, CA 93106-5110, U.S.A

{tcan,yjwang,yfwang,su}@cs.ucsb.edu

ABSTRACT
We have developed a protein visualization system based on
Java 3DTM. Java 3D provides compatibility among differ-
ent systems and enables applications to be run remotely
through web browsers. However, using Java 3DTM for vi-
sualization has some performance issues with it. The pri-
mary concerns about molecular visualization tools based on
Java 3DTM are in their being slow in terms of interaction
speed and in their inability to load large molecules. This
behavior is especially apparent when the number of atoms
to be displayed is huge, or when several proteins are to be
displayed simultaneously for comparison. In this paper we
present techniques for organizing a Java 3D scene graph to
tackle these problems. We demonstrate the effectiveness of
these techniques by comparing the visualization component
of our system with two other Java 3DTM based molecular
visualization tools. In particular, for Van der Waals display
mode, with the efficient organization of the scene graph, we
could achieve up to eight times improvement in rendering
speed and could load molecules three times as large as the
previous systems could.

Keywords
Protein visualization, Performance analysis, Java 3DTM,
Scene graph optimization

1. INTRODUCTION
Protein visualization has become an important research

topic, especially in light of the accomplishment of the Hu-
man Genome Project [3]. The ability to visualize the 3D
structure of proteins is critical in many areas such as drug
design and protein modeling. This is because the 3D
structure of a protein determines its interaction with other
molecules, hence its function, and the relation of the pro-
tein to other known proteins. For example, hemoglobin’s
cup shape, which accommodates the oxygen-binding heme
group, suggests its ability to carry oxygen in the blood-
stream. There are many well established ways of visual-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2003, Melbourne, Florida, USA

© 2003 ACM 1-58113-624-2/03/03 ...$5.00.

izing the 3D protein structures. Each way of visualization
highlights a different aspect of the protein molecule, as men-
tioned by Clay Shirky [13].

Growing number of new structure data in Protein Data
Bank open new ways for collaboration, thus emphasizes the
need for visualization tools that are portable. Moreover,
studying the interaction between protein molecules may also
require visualizing huge numbers of atoms, thus researchers
also need tools that are capable of loading and displaying
this huge amount of data.

In this paper, we describe in detail our protein visualiza-
tion system, which is built using the Java 3D API 1. There
is growing trend in adopting the JavaTM technology in the
fields of bioinformatics and computational biology [11]. The
main advantages of Java are its compatibility across different
systems/platforms and having the ability to be run remotely
through web browsers. Using Java 3D as a graphics engine
has also the additional advantage of rapid application de-
velopment, because Java 3D API incorporates a high-level
scene graph model that allows developers to focus on the
objects and the scene composition. Java 3D also promises
high performance, because it is capable of taking advantage
of the graphics hardware in a system. The speed observed
should depend on the quality of the graphics hardware on
the machine. However, a common complaint about visual-
ization systems based on Java 3D is their being slow in terms
of interaction speed even with a good graphics hardware ac-
celerator. Also memory errors may be seen even with a small
number of objects. The reason for these anomalies may be
the developer himself (constructing a bad scene graph) or
certain limitations of the Java 3D API, which is discussed
below.

The Java 3D API implementations are layered on top of
the existing lower-level immediate-mode [4] 3D rendering
APIs, such as OpenGL and Direct3D. Java 3D is fundamen-
tally a scene-graph-based API. Most of the constructs in the
API are biased toward retained mode and compiled-retained
mode rendering [10]. Java 3D itself also offers immediate-
mode rendering if a developer wants more control and flexi-
bility. The programmer can ignore the scene graph structure
and send the graphical constructs directly to the renderer.
However, in immediate mode, Java 3D has no high-level
information concerning graphical objects or their composi-
tion. Because it has minimal global knowledge, Java 3D can
only perform localized optimizations on behalf of the pro-
grammer. Thus, using immediate-mode directly may cause
drastic performance drops. Using a scene-graph-based de-

1http://java.sun.com/products/java-media/3D/

velopment scheme a developer should expect better perfor-
mance, but some molecular scenes (e.g. containing too many
atoms) may require too much memory or computation time.
Thus, performance drops occur because of an heavyweight
scene graph. In this paper we propose techniques to create
efficient scene graph structures, which allow loading large
molecules (more than 4000 amino acids) and render them
in an acceptable interactive speed. We demonstrate that by
carefully organizing the scene graphs, our system achieves
an interactive rendering speed eight times faster and is able
to load molecules three times larger than the other systems,
namely JMV2 and JMVS23.

The remainder of this paper is organized as follows: The
overview of the system components is described in Section 3.
We explain how different 3D visual representations are cre-
ated from PDB data in Section 4. We present the techniques
for speeding up interaction and implementation details in
Section 5. Performance comparison tests and their results
are in Section 6. Finally we summarize our work and dis-
cuss future research direction in Section 7. FPV is freely
available with source code at the following URL:

http://www.cs.ucsb.edu/˜tcan/fpv/.

2. RELATED WORK
Many tools have been developed to visualize a protein

whose structure has been determined. In this section we
will talk about a subset of these tools, which are closely
related to our molecular visualization system. One of the
earliest of those tools is Roger Sayle’s RasMol [12]. Ras-
Mol is now being developed under the name of Protein Ex-
plorer. SwissPdbViewer [5], which is tightly linked to the
automated protein modeling server Swiss-Model, provides
a user-friendly interface to analyze several proteins at the
same time. MOLMOL [8] is another molecular graphics
program for the display, analysis, and manipulation of the
3D structures of biological macromolecules, with special em-
phasis on nuclear magnetic resonance (NMR) solution struc-
tures of proteins and nucleic acids. Most of these programs
are implemented using C language and OpenGL API and
they have relatively large user communities.

There are relatively few protein visualization tools which
were developed using Java and the Java 3D API. MOLVIE 4,
a molecular visualization environment, is one of them. Web-
Mol [14] is a protein structure viewing and analysis program,
which has more functionality, but limited 3D model types.
These two programs do not use the Java 3D API; instead
they use their own graphics constructs based on Java.

JIMD Interactive Molecular Dynamics with Java5, is be-
ing developed using Java 3D, but their focus is on molecular
dynamics and simulation. Tripos Java3D Molecule Viewer
6, is a new tool currently under development. JMV and
JMVS2 (two systems we used for performance comparison)
are molecular visualization tools and offer a variety of 3D
representations and display options. JMV is developed by
the Theoretical Biophysics Group in the Beckman Institute
for Advanced Science and Technology at the University of
Illinois at Urbana-Champaign with NIH support. These

2http://www.ks.uiuc.edu/Development/jmv/
3http://www.adcworks.com/projects/jmvs
4http://guanine.cs.ucsb.edu/Molvie/
5http://www.gwdg.de/˜ovormoo/jimd/
6ftp://ftp.tripos.com/pub/java3d

two tools have very similar functionality compared to our
molecular visualization system. One advantage of JMV over
JMVS2 is that it is being build as a toolkit, so that other
developers can use it as part of their systems.

Molecular Biology Toolkit7 is another general toolkit that
includes visualization components based on Java3D. How-
ever, it is still an ongoing work and right now no visualiza-
tion application using this toolkit is available for evaluation
and testing purposes.

3. SYSTEM OVERVIEW
Figure 1 shows the main components of our visualization

system. The Main Event Handler Module handles in-
put, output processing and object passing between different
modules. The user provides the PDB id of the protein to
be visualized. Protein structure information is then loaded
by the PDB Loader Module by reading either the local
structure file or the automatically downloaded structure file
from PDB web site8.

Figure 1: FPV System Overview.

The PDB Loader Module creates a Molecule object,
which is composed of several Java classes, and then passes
this object to the main event handler module. This Molecule
object is then passed to the Graphics Module, which is
responsible for generating the 3D model of the corresponding
protein molecule. The 3D model is represented by a Java3D
scene graph, which is returned back the the main module.
The scene is rendered by the Java3D engine.

The most critical component of the visualization system is
the Graphics module. We explain the techniques we’ve used
to optimize this module for best rendering performance in
the implementation section.

4. VISUALIZATION
In this section, we briefly discuss how we create molecular

scenes from the protein data. We also present two accompa-
nying textual views, which are helpful in browsing the amino
acid sequence and viewing the hierarchical organization of
the protein data. The techniques for expediting rendering
based on Java 3D will be discussed in Section 5.

4.1 Data
PDB files are obtained from the Protein Data Bank (PDB)

[1], which is an archive of experimentally determined 3D
structures of biological macromolecules. PDB files contain

7http://mbt.sdsc.edu/
8http://www.rcsb.org/pdb/

3D coordinates of each atom of the protein molecule. We use
these 3D coordinates and atom types to calculate the bond-
ing information and to estimate the secondary structure.
This information is needed for some of the 3D molecular
representations described below.

4.2 3D Representations
Each representation of a protein molecule highlights a dif-

ferent aspect of the structure. They have advantages and
disadvantages compared to each other. For example, the
space-fill model can be helpful in understanding the volume
a protein molecule occupies, but it lacks information about
how amino acids are connected to each other, i.e. how the
chain is formed. We describe below different 3D models pro-
vided by our visualization system, and explain their use and
the way they are built.

Bonds Model:
Bonds model is created as a wire-frame model representing
the bonding information in the protein molecule. Figure 2
shows a bonds representation of the molecule Oxygen Bind-
ing (PDB ID: 2MHR).

Figure 2: Bonds (left) and Backbone (right) Models

Backbone Model:
The backbone model is created by using the alpha carbon,
carbon, and nitrogen atoms in the molecule. The position of
the atoms are used to transform the spheres that represent
them. The backbone bonds within each amino acid and the
peptide bonds (between amino acids) are also shown in the
model. This model is useful for understanding the protein
molecule as a chain, and realizing amino acids’ positions in
this chain.

Figure 2 shows the backbone model of the molecule Oxy-
gen Binding (PDB ID: 2MHR). When we interact with the
3D model of the backbone of a molecule, we can easily recog-
nize how the amino acid sequence is formed in four parallel
helices.

Balls and Sticks Model:
The balls-sticks model shows all of the existing bonds in the
molecule as sticks and all the atoms as equal sized spheres.

Space-fill (van der Waals) Model:
The space-fill model is useful in visualizing the volume a
protein molecule occupies. It gives an overall view of the
molecule and thus provides a good view of the tertiary struc-
ture. In this model each atom is modeled using its van der
Waals radius, so that the viewer gets an idea of the rela-
tive sizes of the atoms making up the protein molecule. The
atoms are represented by concrete spheres centered at the
corresponding atomic coordinates read from the PDB file.

Ribbon Model:
The ribbon model is used to display the secondary struc-
tures in the protein molecule. The secondary structure is

Figure 3: Balls and Sticks (left) and Spacefill (right)
Models.

predicted from the atomic coordinates in the PDB file, by
using the algorithm developed by Kabsch and Sander [7].
The ribbon model is created using hermite curves. Our
implementation is based on the program called MolScript
[9]. Figure 4 shows the ribbon model of the same molecule
2MHR. Here, different colors for different secondary struc-
tures are used.

Figure 4: Ribbon Model.

4.3 Textual Information Windows
Having a textual representation of the protein molecule

has many benefits. First of all it shows the linearity of the
protein structure. The name of amino acids forming the
chain is provided in a sequence view. Furthermore, the un-
derlying hierarchy of the molecule can be captured when a
tree view is used. We describe below the two accompanying
information windows provided by our visualization compo-
nent.

Molecule Information Window:
The molecule information window contains information
about molecule’s name, number of amino acids it contains,
the amino acid chain, the secondary structure information,
and information about currently selected sub-structure. The
amino acid chain is displayed using one-letter representa-
tions of the amino acids. The molecule name info is read
from the PDB file. Although it is possible to gather sec-
ondary structure information also from the PDB file, be-
cause of the fact that most of the PDB files available do not
contain that information, the secondary structure informa-
tion is calculated by using the prediction algorithm devel-
oped by Kabsch and Sander [7]. The information about the
secondary structure is also displayed using one letter codes
aligned with the amino acid codes (H:helix, B:residue in iso-
lated beta bridge, E:extended beta strand, G:310 helix, I:pi
helix, T:hydrogen bonded turn, S:bend).

When the user makes selections on the molecule during

the interaction with a 3D model, the corresponding part of
the amino acid chain in the information window is high-
lighted. If the selection is in the level of atoms, the selected
atom information is also displayed in the information win-
dow.

Figure 5: Molecule Information Window.

Figure 5 shows the molecule information window during
interaction with the Antitumor Protein (PDB ID: 1D8V)
protein. The currently selected amino acid is Threonine,
whose one letter code is T, and it is the 10th amino acid in
the first (and only) chain of the protein molecule. We see in
the secondary structure information that this amino acid is
part of a coil, and currently selected atom is carbon alpha.

Tree View Window:
Although a protein is a linear structure of amino acids,
there’s a hierarchy in the primary structure of protein
molecules. A protein molecule is composed of one or more
chains of amino acids. A chain may contain several amino
acids, probably in the order of hundreds. Each amino acid
has an eight atom body and a side chain, i.e. residue, which
may be made up of 1 to 18 atoms. We provide a tree view
window that visualizes this hierarchical structure of a pro-
tein molecule.

Figure 6: Tree View Window.

Figure 6 shows the tree view window while browsing
through the hierarchy. In this snapshot the molecule has
a very simple hierarchy, since it contains only one chain.
But it is still useful to understand how the protein molecule
is built. We provided a two-way interaction between the
tree view and the 3D view. The user can interact with the
tree by selecting its nodes. The corresponding sub-structure
is highlighted in the 3D model. When the interaction is
with the 3D model, and if a selection is made on it, the
corresponding tree node is highlighted accordingly.

5. IMPLEMENTATION OF VISUALIZATION
In this section we describe the techniques we have used

to speed up real time interaction and to be able to load
very large molecules. The key issue here is the way the
scene graph structure is created from a protein structure
file (PDB). A scene graph consists of Java 3D objects, called
nodes, arranged in a tree structure. The factors that affect

efficiency are the number and types of nodes in the scene
graph structure.

All the node objects in a scene graph are derived from
the Node class. Java 3D refines the Node object class into
two subclasses: Group and Leaf node objects. Group node
objects group together one or more child nodes. A group
node can point to zero or more children but can have only
one parent. Leaf node objects contain the actual definitions
of shapes (geometry), lights, sounds, and so forth. A leaf
node has no children and only one parent.

Our method comprises two components:
(i) Converting TransformGroup nodes to Group nodes by
applying the transformation in the Geometry node level,
(ii) Combining shapes that have the same appearance into
a single Shape3D node.
The first component helps increasing the real time interac-
tion speed while the second component decreases the mem-
ory needed by the scene graph structure, thus allowing load-
ing larger molecules.

We explain these two techniques by giving an example
of creating a space-fill (van der Waals) model of a protein
molecule. The space-fill model consists of spheres of differ-
ent sizes transformed to the their correct atomic locations
according to the 3D atomic coordinates read from the PDB
file. The intuitive way to create a space-fill model is to use
the Sphere objects provided by the Java 3D API to create
spheres of desired size and add them to the TransformGroup
objects to translate them to their correct position. Figure 7
shows a scene graph structure created by using this method.
However, as the number of atoms in a molecule increases the
number of TransformGroup nodes increases since each atom
has a unique position in the molecule. This makes interac-
tion with the scene very inefficient because at each frame all
the TransformGroup nodes need be processed to get the new
position of each atom. This process involves a 4x4 matrix
multiplication for each TransformGroup object.

Figure 7: A fragment of an intuitive scene graph for
VDW model.

To improve on the situation, one observation we made is
that the protein molecule is static during interaction, i.e.
individual atoms do not move freely. So, according to the
interaction’s nature one TransformGroup node is enough

for representing protein molecule’s rigid structure’s position.
However, by using Java 3D’s Sphere nodes it is not possible
to implement this solution, because the Sphere class does not
allow creation of a sphere at an arbitrary position. Thus the
only way to create a sphere at a specific position is to put a
TransformGroup node above it.

But, there’s a way to get around this restriction of Java3D.
We have implemented our own Sphere class, which allows a
sphere to be built at a specific location. By doing this,
what we actually did was to propagate the transformation
in the TransformGroup node to the geometry level, by cre-
ating geometry at a given static location. This puts a lit-
tle overhead to the scene building process, i.e. by apply-
ing transformations during scene graph creation, but as we
show in the next section this overhead is acceptable. The
more important thing is that we have reduced the number
of TransformGroup nodes in our scene graph to one (the
one for the whole molecule) by getting rid of all the Trans-
formGroup nodes representing individual atoms. As will be
shown later, this modification improves the interactive ren-
dering speed significantly. Figure 8 shows the scene graph
after this improvement.

Figure 8: The scene graph after applying first tech-
nique.

As seen in Figure 8 each sphere is represented by a
Shape3D object which encloses its geometry and appearance.
The scene graph contains as many Shape3D objects as the
number of atoms in the protein molecule. As the molecule
size increases these increasing number of Shape3D nodes
may cause memory problems. One way to overcome this
is to put spheres with the same appearance under a sin-
gle Shape3D node by combining their geometry information
into a single geometry array. The number of Shape3D ob-
jects we need is equal to the number of different sphere ap-
pearances. For example, if we want to color each atom in a
different color, we only need 6 Shape3D nodes, since the pro-
tein molecules consist of 6 different atoms (Carbon, Oxygen,
Nitrogen, Hydrogen, Sulphur, and Phosphate). This way we
can get rid of many Shape3D objects and free up memory
space. This technique enables us load very large molecules,
which contain as many as 4000 amino acids. Figure 9 shows
the scene graph after application of this second technique.

Figure 9: The scenegraph after applying the second
technique.

What we have provided with these techniques is actually
a hybrid method combining both retained mode and im-
mediate mode graphics. The immediate mode is simulated
by breaking the scene graph hierarchy and collapsing some
nodes into a single node to save up memory space and to
increase real-time interaction speed. In the next section we
demonstrate the effectiveness of our methods by providing
some test results.

6. PERFORMANCE TESTS AND RESULTS
We have compared our system (FPV) to two other molec-

ular visualization tools according to their scene building and
real time interaction speed performances. These tools cho-
sen for the tests (JMV 0.85 and JMVS2) are among the few
available molecular visualization tools based on Java 3D. We
have chosen JMV and JMVS2 because they are closer to our
system in terms of purpose and functionality.

The tests were performed using JAVA2 JRE 1.4.1 and
JAVA 3D 1.2.1 04 (DirectX version) on a Microsoft Win-
dows XP machine with Intel Pentium 4 Processor at 2.0GHz
and 512MB of RAM. We have dedicated 256MB of this
as the maximum size of memory allocation pool for Java
Virtual Machine. The graphics accelerator card used for
the tests was 64MB DDR NVIDIA GeForce4 MX Graph-
ics Card. The data set comprised 22 protein structures in
PDB format ranging in size from 29 amino acids (1BH0)
to 8337 amino acids (1AON). Table 1 shows the protein
molecules and their sizes respectively (both in terms of num-
ber of amino acids and number of atoms).

Figure 10: VDW (Spacefill) Model for protein
molecule 2MHR

We have chosen three different types of visual representa-
tions to perform the tests: Van der Waals (VDW or spacefill)
model, bonds (wireframe) model, and ribbon model. The
ribbon model type did not exist in JMVS2 so that part of
test was performed on JMV and our system only. The tube
model type of JMV, which was very close to our ribbon rep-
resentation, was compared as the ribbon model. We tried
to make the visual representations as close as possible by

Protein Size Size Protein Size Size
(PDB ID) (# of residues) (# of atoms) (PDB ID) (# of residues) (# of atoms)

1BH0 29 242 1A05 716 5386
1PTQ 50 402 1DUV 999 7648
1DF4 68 463 1A0S 1239 9606

1GCM 102 814 13PK 1660 12508
1K52 144 1122 1F8R 1992 15291
2AID 198 1516 1B25 2476 19144
1D9C 242 1993 1L1F 3030 23244
1A4F 287 2250 1DP0 4092 32500
3MDS 406 3282 1H6D 5196 35555
1SYN 528 4300 1GYT 6036 46152
1D3A 606 4602 1AON 8337 58688

Table 1: Sizes of Test Proteins

Figure 11: Bonds Model for protein molecule 2MHR

adjusting the display options of the compared systems, e.g.
number of sphere divisions. Figures 10, 11, and 12 shows,
for each system, the visual representations used for the tests.

Figure 12: Ribbon Model for protein molecule
2MHR

The calculation of the timings and rendering speed mea-
surements was possible because source codes of both tools
were available. We’ve measured the scene building times
and real-time interaction speed. The scene building times
become important, when the user wants to switch between
models during interaction. The latency between switching
from one representation to another can be intolerable if it
is more than a few seconds. One may consider building
all the available models during start-up to decrease model
switching time during interaction, but this requires much
more memory compared to the memory required by a single
model type. Therefore, the size of the largest loadable pro-
tein molecule decreases drastically. All the programs that
we’ve compared use the suggested approach, which is build-
ing a specific model type on demand. That’s why we’ve
taken scene building times into consideration. The impor-
tance of the real-time interaction speed is obvious. It is one
of the main quality metrics of interactive visualization tools.

Figures 13, 15, and 16 show results of the rendering speed
tests. To measure rendering speed we’ve used a RotationIn-
terpolator object to have the molecules rotate around y-axis

Figure 13: Rendering Speed for the VDW Model

at a constant speed. We then calculated rendering speed by
looking at the difference in frame numbers at certain time
intervals. Values of 25 and more are ideal in the graphs
showing the results of rendering speed tests, because 25fps
is the highest frequency the human eye can detect.

In the VDW Model rendering speed test, our system had
better performance compared to the other programs, while
they performed close to each other. That’s because the new
Sphere classes that we have implemented to get rid of the
TransformGroup nodes and encapsulate many spheres un-
der a single Shape3D node. Thus our system had up to
eight times better rendering speed performance (at protein
1DUV) compared to the other programs. Furthermore, our
system was able to load the largest molecule, which has
58688 atoms, while JMV and JMVS2 could at most load
proteins that have 35555 and 23244 atoms respectively. Fig-
ure 14 shows the largest molecule of the test set displayed by
our program, FPV. Furthermore, our program could render
this molecule at 4 frames per second.

In the Bonds Model test, the performances of our system
and JMV were close to each other, while JMVS2 had ac-
ceptable speeds for only small molecules. JMV performed
better than FPV for large molecules, but it should be noted
that even for those large molecules FPV could establish a
rendering speed over 26 frames per second. So the difference
between JMV and our program was not noticeable practi-
cally. Our scene graph structure for the bonds model con-
sists of a single line segments array for all of the bonds of
the protein molecule, thus resulting in a very simple scene
graph structure. The JMV program uses a similar approach
thus has similar performance results. However, the scene
graph used by JMVS2 tries to put every bond in a separate

Figure 14: Spacefill model for protein 1AON

Shape3D object, thus resulting in a very poor performance.
The rendering speed comparison of the ribbon model was

performed only with the JMV program. Our program per-
formed better than JMV as seen in Figure 16. In ribbon
model test, we could again load the largest molecule in our
data set (1AON), which was 8337 amino acids long, while
the largest molecule loaded by JMV had 3030 amino acids
(1L1F). Furthermore, FPV achieved up to 20 times better
rendering speed performance (at protein 1B25) compared to
JMV.The main reason for this was again our method of com-
bining related primitives under a single scene graph node.

Figure 15: Rendering Speed for the Bonds Model

Figures 17, 18, and 19 show results of the Java 3D scene
graph building tests. By presenting these results we show
that the scene graph manipulation techniques we’ve pro-
posed do not cause any overhead on molecular scene build-
ing.

Figure 16: Rendering Speed for the Ribbon Model

Figure 17: Scene Building Times for the VDW
Model

Figure 18: Scene Building Times for the Bonds
Model

For the VDW model JMV program performed worst
among all three programs compared. The time required to
build the molecular scene grows very quickly with the size
of the protein. For the large molecules the time required for
JMV to build a molecular scene can grow up to hundreds
of seconds, which is not acceptable. JMVS2 and our pro-
gram had reasonable scene building times in the scene graph
building tests for VDW model type.

Figure 19: Scene Building Times for the Ribbon
Model

For the bonds model, our program and JMV had similar
results and the scene building time was negligible (much less
than 1 sec). This time JMVS2 performed poorly compared
to our system and JMV. In these results, it is seen that
processing some primitives together under a single Shape3D
note has benefits rather than an overhead.

Our program outperformed JMV on the scene graph build-
ing test for the ribbon model. As mentioned before the rib-
bon model tests were not performed for JMVS2 because it
didn’t have a ribbon type representation. It can be seen
from Figure 19 that scene graph building times for FPV
were less than 1 second for all the test proteins. This means
FPV has a very low latency when switching between model
types during interaction with the molecule. The results for
this test again shows that processing related primitives to-
gether under a single group node has benefits instead of an
overhead during scene building.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a high-performance pro-

tein visualization application called FPV. We’ve proposed
implementation techniques to increase the usability of our
application by improving the real-time rendering speed and
increasing the range of protein data that can be examined.
These improvements are accomplished by modifying the
scene graph structure used by the Java 3D API. We have
showed the effectiveness of our methods by comparing our
system to two other molecular visualization tools based on
Java 3D.

In order to make our tool more attractive to researchers,
we are looking for ways to increase the functionality of our
system. One way incorporating new functionality is pro-
viding new 3D representation types for protein molecules,
such as electron density map and molecular surface repre-
sentation. Since we’ve designed the visualization system as

a toolkit, it is easy to add new functionalities depending
on an application’s needs, such as adding superpositioning
functionality to the Graphics Module for comparison of pro-
tein structures. The design of our system also allows users
to decouple and use components of the system, such as PDB
Loader Module.

8. ACKNOWLEDGEMENTS
This work is supported in part by NSF grants IIS-9817432,

IIS-9908441, and IIS-0101134.

9. REFERENCES
[1] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland,

T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E.
Bourne, “The Protein Data Bank”, Nucleic Acids
Research, 28 pp. 235-242, 2000.

[2] P.E. Bourne, M. Gribskov, G. Johnson, J. Moreland,
and H. Weissig, “A Prototype Molecular Interactive
Collaborative Environment (MICE)”, Pacific
Symposium on Biocomputing, 1998, pp. 118-129.

[3] S.K. Burley, S.C. Almo, J.B. Bonanno, M. Capel,
M.R. Chance, T. Gaasterland, D.W. Lin, A. Sali,
F.W. Studier, and S. Swaminathan, “Structural
genomics: beyond the human genome project”, Nature
Genetics, vol. 23, pp .151:157, 1999.

[4] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes,
“Computer Graphics Principles and Practice”, Second
Edition Addison-Wesley, Reading, 1990.

[5] N. Guex and M. C. Peitsh, “SWISS-MODEL and
Swiss-PdbViewer: an environment for comparative
modeling.” Electrophoresis, pages 2714-2723, 1997.

[6] W. F. Humphrey, A. Dalke, and K. Schulten, “VMD -
Visual Molecular Dynamics”, Journal of Molecular
Graphics, 14:33-38, 1996.

[7] W. Kabsch and C. Sander, “Dictionary of Protein
Secondary Structure: Pattern Recognition of
Hydrogen-Bonded and Geometrical Features,”
Biopolymers, 22:2577, 1983.

[8] R. Koradi, M. Billeter, and K. Wüthrich, “MOLMOL:
a program for display and analysis of macromolecular
structures”, J Mol Graphics, 14, 51-55, 1996.

[9] P. J. Kraulis, “MOLSCRIPT: A Program to Produce
Both Detailed and Schematic Plots of Protein
Structures”, Journal of Applied Crystallography, vol.
24, pp. 946-950, 1991.

[10] Java 3D API Specification, Version 1.1.2, June 1999,
http://java.sun.com/products/java-media/3D/
/forDevelopers/j3dguide/j3dTOC.doc.html

[11] S. Meloan, “Exploring The New Frontier: JavaTM

Technology Powers the ”Post-Genomic” Era”, Feature
Stories, java.sun.com, September 28, 2001.

[12] R. A. Sayle and E. J. Milner-White, “RASMOL:
biomolecular graphics for all”, Trends in Biochemical
Sciences, 20(9):374, Sep 1995.

[13] C. Shirky, “Seven Ways of Looking at a Protein”,
FEED Magazine, After Darwin Column, 23 Oct, 2000.

[14] D. Walther, “WebMol - a Java based PDB viewer”,
Trends Biochem Sci, 22: 274-275, 1997,
http://www.embl-heidelberg.de/cgi/viewer.pl.

