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Abstract

Due to the distributed nature of modern composite web
services, designers are facing new challenges in both re-
quirement specification as well as logic validation. This pa-
per proposes a top-down design/verification strategy that
helps construct composite web services to meet preset sys-
tem goals. The key to this approach is to specify desired
global behaviors with a “conversation protocol” and ver-
ify preset system goals on the global protocol. Then peer
implementations are synthesized from the conversation pro-
tocol. Three realizability conditions are provided to guar-
antee that the composition of synthesized peers will satisfy
the previously verified system goals.

1 Introduction

Web services are revolutionizing the way that many e-
commerce, consumer software, and telecommunication ap-
plications are provided, as indicated by the rapid growing
development in the industry standards (e.g., SOAP, UDDI,
WSDL, BPEL4WS) and technology (e.g., IBM’s Web ser-
vices Toolkit, Sun’s Open Net Environment and JiniTM
Network technology, Microsoft’s .Net and Novell’s One Net
initiatives, HP’s e-speak). Research communities are pro-
viding complimentary technologies from different perspec-
tives. Modeling at a more fundamental level both e-services
themselves, and frameworks for combining them have been
studied in [5, 8, 14, 15, 29, 16, 2, 1, 17]. New languages for
defining services were proposed in [3, 19]. Specialized type
systems were considered in [22]. Finally, tools were devel-
oped for annotating e-services and for planning, aiming at
combining web services automatically to achieve a speci-
fied functionality [25, 4, 27, 13]. In this paper, we discuss
the issues and techniques in the design, specification, and
verification of composite web services.

Since each component of a composite web service is au-

tonomous, no single peer has the control over the global
interaction process. Such a distributed nature makes it ex-
tremely hard to ensure the correctness of the composite web
service merely through the design of each peer individu-
ally. In this paper, we argue for a top-down approach from
a global perspective in specification and design of web ser-
vices. On one hand, we show that the bottom-up approach
of designing composite web services may result in more
complex global behaviors. On the other hand, we illus-
trate that the top-down approach may further enable existing
tools for verification of web services.

In this paper we extend a web service model introduced
in [10] and further studied in [20]. A composite web service
in this model consists of a set of peers that communicate via
asynchronous message passing. In particular, each peer is
modeled using a guarded finite state automaton, which ab-
stracts emerging web service choreography standards (e.g.
BPEL4WS [6], WSCI [30], BPML [7], ebXml [18]) to
characterize behaviors of complex long running services.
The asynchronous message passing is achieved by associ-
ating each peer with a queue for storing its input messages.
This FIFO queue based model resembles many industry ef-
forts like Java Message Service (JMS) [24] and Microsoft
Message Queuing Service (MSMQ) [26]. Unlike JMS and
MSMQ, there is a virtual “global watcher” in our model
that “records” the sequence of messages as they are sent by
the peers. A central focus on the global behavior of a web
service is to study the set of message sequences generated
by the web service, where temporal logics such as LTL [28]
can be extended to this framework to specify “good” behav-
iors. Our previous work in [10] and [20] concentrates on a
contentless message model and on how to design a “realiz-
able” global specification, from which (FSA) peers can be
synthesized to ensure specified global behaviors without a
global coordinator.

Specifically, we define a conversation protocol as a set of
permissible sequences of messages observed by the global
watcher. In [10, 20], we show that it is possible to realize a
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Figure 1. Global conversation specification

conversation protocol using a set of finite state peers, if the
protocol satisfies three conditions. Our framework enables
a top-down verification strategy where

1. A conversation protocol is specified by a realizable
Büchi automaton [9],

2. The properties of the protocol are verified on the Büchi
automata specification, and

3. The peer implementations for the conversation proto-
col are synthesized from the Büchi automaton via pro-
jection.

In contrast, we also present a negative fact about the al-
ternative bottom-up approach of specifying the peers of a
composite web service in isolation. We show that the com-
position of finite state peers may result in a non- � -regular
behavior set globally, which makes it difficult to use model
checking techniques. In this paper, we generalize the frame-
work of [10, 20], which considers only message classes
(names), by allowing messages to have contents. We show
that this technique can be used to tackle the U2M problem
described in the workshop announcement.

This paper is organized as follows. Section 2 illustrates
the conversation protocols with the U2M example in the
workshop announcement. Section 3 defines a variation of
LTL logic to express system goals such as the “freshness”
requirement in U2M scenario. We apply formal model

checking techniques in Section 4. In Section 5, we syn-
thesize each peer based on the global conversation protocol
in Section 4. As a comparison, Section 6 shows a negative
result concerning the bottom up approach. Section 7 con-
cludes the paper.

2 Conversation Protocols

Consider the UpToTheMinuteNews.com (U2M) exam-
ple: A user accessing the pages of U2M using a web
Browser has to go through a Corporate IT (IT) web proxy
on the corporate firewall. A company called Acme Web
Speedup Services (AWS) provides a caching proxy web
service which is used by IT for accelerating web access.
This has the undesirable effect of displaying stale web pages
from U2M at the user’s Browser.

We argue that the system goal that Browser always re-
ceives fresh web pages from U2M is fundamentally a global
constraint. Although one could derive ad hoc solutions
that are local, it is more desirable to obtain a more general
global solution, depending on the properties of IT, AWS,
and U2M. In Figure 1, we present a conversation protocol
specifying the global web service, which consists of four
peers: Browser, IT, AWS, and U2M.

A conversation protocol is a guarded Büchi automaton
enhanced with message contents, and each transition of the
automaton consists of two parts:
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1. a message transmitted from one peer to another, and

2. a transition guard that specifies the condition to take
the transition as well as assigns the contents of the
message being sent.

We use a conversation protocol to characterize the set
of conversations, i.e., all possible sequences of messages
communicated between peers. Then we check whether the
conversations meet some preset goals.

As shown in Figure 1, there are two types of messages in
the U2M scenario: Req and Data. Note that we use sub-
scripts to distinguish the same message class transmitted on
different channels, e.g. Req � and Req � . The two message
classes are declared in the following.

class Req{ class Data{
string url; string url;
... string src;

} bool NoCache;
string htmlPage;
...

}

Message class Req represents an http request, and its
attribute url contains the address (original source) of the
requested web page. Message class Data is the response,
where htmlPage is the web page content, src is the
actual address it is retrieved from (e.g., a cache server),
and attribute NoCache is set to true if the header of
htmlPage contains a “no-cache” tag.

In Figure 1, each transition guard is written in the form
of “condition � assignment”. Take as an example the tran-
sition labeled with “IT � U2M: Req � ”. The condition
“Data � .NoCache � true” means that only if the web
page returned from AWS contains a “no-cache” tag can the
transition take place. The assignment “Req � ’ � Req � ”
means that IT simply relays the request Req � . Note that
here primed variables refer to the contents of the current
message being sent, and non-primed variables denote the
corresponding fields of the latest transmitted message of
that message class.

Intuitively, the desired conversations specified by the
protocol in Figure 1 are as follows. In each round of a
conversation, the first message is a request (Req � ) from
Browser to IT. IT relays this request to cache service AWS,
and waits for its response Data � . AWS guarantees that
Data � is a matching response for Req � , by ensuring that
their url are equal; and AWS also sets the actual source
src of the response to the value “AWS”. IT then exam-
ines the contents of Data � from AWS, if the page does
not contain a “no-cache” tag, IT just sends this cached page
to Browser; otherwise, it will fetch the page directly from
U2M. Note that U2M guarantees that each page it sends
contains the “no-cache” tag, and their url and src are
properly set.

3 Using LTL to State the System Goal

Now the immediate question is how to express the pre-
set system goal that Browser should always get non-cached
U2M news pages from IT. We extend the linear temporal
logic (LTL) [28] to fit into our message passing framework.
To facilitate the discussion, we clarify some of the technical
notions first. Given a conversation �	�
������ � ����������� , a
sequence of messages with contents, let ��� denote the � -th
message in � , and � � ������������ � ��������������� denote the � -
th suffix of � . An atomic proposition is either in the form
of � where � is a message class, or � � !#"%$%& where !'"($%& is a
predicate over the attributes of � .

Let )�* be the set of atomic propositions. A message +
is said to satisfy an atomic proposition ,.-/)0* , written as
+21 �3, , if

1. when , is a message class, the type of + is , , and

2. when , is in the form of � � !#"%$%& , then the type of + is
� and !#"%$%&546+879�;:<">=?$ .

LTL properties are constructed from such atomic proposi-
tions, logical operators @ACBAED , and LTL operators X, G, U,
F. Given LTL formulas F , and G , and an atomic proposition
,3-H)0* ,

�I1 �;, iff � � 1 �3, if ,3-8)�*
�I1 �JDKF iff �
L1 �MF
�I1 �JFN@OG iff �P1 �MF and �I1 �;G
�I1 �JFNBOG iff �P1 �MF or �P1 �3G
�I1 � X F iff � � 1 �JF
�I1 � G F iff for all �9QSRT�� � 1 �MF
�I1 � F F iff there exists �UQVR'�� � 1 �;F
�I1 �JF U G iff there exists WXQVR' s.t. ��YZ1 �;G

and, for all RN[\�U]^W��� � 1 �JF
Intuitively temporal operator X means “next”, G means

“globally”, F means “eventually”, and U means “until”. We
give some examples of LTL properties and their semantics
in the following.

1. GData _ every message appeared in the conversation
is of type Data.

2. G 4 Req.url � "U2M" ` FData.url � "U2M" 7a_
for each message Req with url equal to “U2M” even-
tually there is a matching response Data with url
equal to “U2M”.

Similarly, the “freshness” system goal of U2M scenario
can be expressed as

G 4 Data � ` Data � � url � Data � � src � "U2M" 7 (1)

That is, every U2M news page retrieved by IT should be a
non-cached fresh page.
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Signed(“U2M”,Data) � Data.NoCache = true

[ true �
Data1’ = Data3 ]

! Req3� U2M! Data1 � B
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Figure 2. Synthesized implementation of each peer

4 Model Checking the U2M Design

Given a Büchi specification of conversation protocol, it
is possible to transform it into the language of a model
checker, such as Spin [23], SMV [12], and Action Lan-
guage Verifier [11]. Note that, depending on the restric-
tions on data types and domains imposed by model check-
ers, the translation may require abstractions. After the trans-
lation, we can verify whether the proposed system goal is
satisfied by the conversation protocol using model check-
ing. For the example presented in Figure 1, model check-
ing can reveal that the LTL property (1) is not guaran-
teed by the initial design, and an error trace is marked
using dashed arrows in Figure 1. The problem with the
initial design is that AWS may forge a page whose at-
tribute NoCache is false, which is later relayed by IT to
the Browser. Thus we need to require that AWS is always
“honest”. To express this concept, we introduce a predi-
cate Signed(url: site, Data: page), which
means intuitively that page is digitally signed by the web
service at url site. Then the following formula can be in-
serted into the guard of the transition AWS � IT _ Data �
in Figure 1.

Signed(Data � � url’,Data � ’) � true (2)

Interestingly, even if AWS makes the “no-deception”
promise, it still cannot guarantee the freshness requirement.
For example, if at some point, U2M forgets to insert “no-
cache” tag into its web page, and somehow this page hap-

pens to be stored in AWS. When IT requests the page, AWS
can send this digitally signed “bad” page to IT which causes
the failure of freshness. Therefore if we strengthen the de-
sign of U2M with the following system assumption:

Signed("U2M", data)
` data.NoCache � true

(3)

we can safely reach the conclusion that the LTL property
(1) is satisfied. Model checking of the new composed sys-
tem with guard (2) and system assumption (3) requires the
ability to handle first order formulas.

5 Synthesis of Peers

Synthesis of peers is obtained by projecting the con-
versation protocol to each peer by removing non-relevant
transitions for each peer. Then we detach guards for those
transitions that are labeled with incoming messages, since a
peer cannot control the contents of its incoming messages.
The projection results in a guarded Büchi automaton for
each peer. As an example, in Figure 2, we present the syn-
thesized peers for the refined version (enhanced with Equa-
tions 2 and 3) of the U2M example in Figure 1.

It can be verified that, in an asynchronous message pass-
ing environment (where a FIFO queue is used to store in-
coming messages), the composition of finite state peers in
Figure 2 produces exactly the same conversation set as de-
scribed by the refined protocol of Figure 1. However, not
every conversation protocol has this “realizable” property.
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In [20], we presented three conditions that can ensure the
realizability of a conversation protocol. We briefly intro-
duce them below:

Lossless join property requires that a conversation proto-
col should be equivalent to the Cartesian product of its
projections to each peer.

Autonomous property requires that at any moment accord-
ing to the protocol, each peer can make a deterministic
decision on whether to wait, or to send, or to terminate.

Synchronous compatible property requires that there is no
“illegal” state in a conversation protocol where some
peer is ready to send a message that is not expected by
its receiver.

We argue in [20] that conversation protocols satisfying
these three realizability conditions can still capture a large
category of web service patterns. However results in [20]
cannot be directly applied to conversation protocols with
message contents. In [21] we show that by employing the
state space exploration technique, for a conversation proto-
col with finite domains, we can always construct a standard
guardless protocol which bisimulates the original protocol.
Running realizability check on its guardless bisimulation
usually suffices to justify a realizable guarded conversation
protocol with message contents.

6 Problems of Bottom-up Approach

One natural question concerning the bottom-up specifi-
cation of composite web services, i.e., to specify each single
peer first and then compose them, is whether we can always
construct such a global conversation specification recog-
nized by a finite state automaton? A positive answer would
imply that many verification techniques become immedi-
ately available. Unfortunately, we show that the answer is
negative, even when message contents and guards are not
considered. There are composite web services whose con-
versation set cannot be recognized by finite state automata.

Consider the scenario shown in Figure 3. There are three
participants, namely OSB (Online Stock Broker), RD (Re-
search Department), and Investor, involved in a “Fresh Mar-
ket Update” (FMU) service. We describe each service using
a Büchi automaton, and note that each service is equipped
with a FIFO queue to store incoming messages under the
asynchronous message passing environment like the Inter-
net.

The interaction pattern between the three peers is de-
scribed as follows. In each round of message exchange,
OSB first collects “Rawdata” (e.g. the market price and vol-
ume of each stock) from the market, and then sends them to
RD for further analysis. After all “Rawdata” are collected
and sent, OSB sends the message “EndofRdata” to mark
the end of “RawData”, and it sends the message “Start” to
inform Investor about the planned arrival of a sequence of
“Data”. RD processes each “Rawdata” and generates a cor-
responding polished report named “Data”. After all “Raw-
Data” have been processed, RD sends the message “Com-
plete” to Investor. Once informed by the “Complete” mes-
sage, Investor sends the message “Ack” to OSB so that OSB
can start another round of market information collection and
analysis.

The seemingly simple FMU scenario produces a non � -
regular language. To see why this is the case, consider its
intersection with an � -regular language1 (R b ESD b CA) c .
One can infer that the result is (R � ESD � CA) c . By an ar-
gument similar to pumping lemma, we can show that this
intersection cannot be recognized by any Büchi automaton,
and hence the set of conversations is not � -regular. In fact,
given a set of finite state peers, the problem of checking if
all conversations generated by them satisfy an LTL prop-
erty is undecidable due to the unbounded input queues as-
sociated with peers. This negative result is one of the mo-
tivations for our top-down approach to specification of web
services.

1We denote each message by its first letter. For example, R is the “Raw-
data”.
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7 Discussions

While using the top-down approach enables us to take
advantage of model checking techniques, there are other
challenges. One possible drawback of the top-down ap-
proach may be that for the same design, the global speci-
fication can be much larger than its bottom-up counterpart.
Another drawback can be that the top-down approach does
not work well when we try to compose a service from exist-
ing services which do not allow alteration of their internal
implementations. In addition, the current version of conver-
sation protocol requires that the participants are fixed, i.e.,
we cannot dynamically determine the destination of a mes-
sage, e.g., “check the url of the Req from Browser, and
then send a second request to Req.url”. We are inves-
tigating the trade-off between the top-down and bottom-up
approaches to address these challenges.

Automatic verification and validation of composite web
services is a new area with interesting challenges — the
difficulties arise from both the open system aspect and the
hardness of verification problem itself. As we mentioned
earlier, to verify the design of U2M example in Figure 1, a
model checker with abilities to handle first order constraints
is required. We are also looking into the issue of enhanc-
ing model checkers with theorem provers to validate a non-
trivial composite web service design.
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