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Abstract— Rapid development of mobile devices makes it
possible that billions of mobile and personal devices will soon
be used in every daily routine work. This emerging environment
presents a number of challenging problems in several research
areas including databases. The need for managing and querying
continuously moving objects is among the new demands of
this development. Although global positioning systems (GPS)
are widely used nowadays, it is still a fact that the position
information obtained is not accurate at every time instant.
Thus, in most cases trajectory information is in fact “expected”
trajectory with uncertainty. An interesting problem is indexing
and querying trajectories with uncertain information. In this
paper we introduce a data model for moving object trajectories
with uncertainty and develop a new index structure (TPRU-tree)
for uncertain trajectories based on TPR-tree. We discuss query
evaluation using TPRU-tree and present an empirical study.

I. INTRODUCTION

We are currently facing a rapid change towards a world
based on personal and mobile devices. such a wide spread of
personal devices enables a wave of new database applications.
Moving object databases and location based data management
are among the consequences of this new environment. In par-
ticular, managing and querying continuously moving objects
is becoming increasingly urgent, especially in the presence of
devices such as global positioning systems (GPS).

Due to a variety of unpredictable and somewhat random
factors such as sudden wind changes, unexpected speed slow-
downs, device failures, etc., obtaining future object locations
is an interesting research problem. As argued by Pfoser and
Jensen [1] and Trajcevski et al [2], the location of a moving
object is typically associated with uncertainty due to a variety
of factors.

Although many issues have been studied for precise tra-
jectories (see e.g., [3]) for moving objects, modeling uncer-
tain trajectories is fundamentally different. In this paper we
propose a model that is partially motivated by and signifi-
cantly extends earlier models [1], [2]. Pfoser and Jensen [1]
focused on sampling errors in determining object locations
and modeling such errors with uniform distributions over
a disk whose radius is a parameter, they also looked into
evaluating window queries. On the other hand, Trajcevski et
al [2] studied queries on trajectories. Quantifiers as “always”,
“possibly”, “sometimes”, etc. were developed and used to
express different degrees of likelihoods for window queries
over trajectories. However, their model lacks the ability to
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provide quantitative answers for the queries. Moreover, their
model uses a fixed radius to indicate that at any time instant the
object can be within that radius from the mean. Therefore they
model uncertainty as a cylinder around the mean with uniform
distribution inside it to specify the location of the object.
Query evaluation for uncertain trajectories was investigated
in [4], [5], where the authors considered time instant queries
and presented algorithms for evaluating probabilistic time
instant range and nearest neighbor queries and well as some
probabilistic aggregate queries.

In this paper we present a general model for moving
object trajectories with uncertainty. The framework borrows
techniques from probability theory. We take the approach of
viewing the location of a moving object in an n-dimensional
space at a time instant as a vector of n random variables. And
the trajectory of a moving object as a vector of stochastic
(random) processes. We use time-parametric uniform and
Gaussian distributions to represent coordinates of moving
object locations.

Based on this model, we develop a new index structure,
“TPRU-tree”, for indexing uncertain trajectories. TPRU-tree is
extended from TPR-tree [6] to allow uncertainty information
to be represented. We also develop algorithms for evaluating
moving objects queries such as “find the delivery trucks that
will be in Santa Barbara area tomorrow at 5pm with at least
90% probability”. We study exact and approximate evaluation
of “top k” queries (k most probable objects) and propose
6 search strategies. Experimental results show the following.
(1) Evaluation of queries is more efficient with TPRU-tree.
(2) Approximate answers can significantly reduce the I/O
complexity of queries while producing very accurate answers.

Section 2 presents the model of trajectories with uncertainty.
Section 3 introduces the TPRU-tree index structure, including
search strategies. Section 4 discusses queries and query evalu-
ation. Section 5 includes the experimental results, and Section
6 concludes the paper.

II. A MODEL FOR UNCERTAIN TRAJECTORIES

In this section we introduce a data model for moving
object trajectories with uncertainty. Intuitively, a trajectory in
this model is represented as a vector of stochastic (random)
processes. More specifically, our model treats a coordinate of a
trajectory as a stochastic process with either a time-parametric
uniform or Gaussian distribution. For a given time instant,
a coordinate of an object location is a random variable that
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ranges over a (closed) interval of likely positions. The model
is based on the following two assumptions: (1) trajectories of
different objects are independent, and (2) different coordinates
of the same trajectory are independent.

We assume the time to be continuous (represented by real
numbers) and fix t to be the time variable. Also, objects move
in some n > 0 dimensional continuous physical space.

Consider an object o moving towards northeast in a 2-
dimensional plane as shown in Fig. 1. Due to uncertainty, the
location of o at a time instant t cannot be precisely known.
One way to model this uncertainty is to treat the coordinates
of o's location as a pair of random variables, �x t and �yt, with
some given distributions.

Fig. 1. The coordinate �xt at a time instant t
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Fig. 1 also shows the range [lx; ux] of possible values for
�xt with a mean mx. We can easily associate a distribution
with �xt to model the uncertainty of xt. �yt can be similarly
represented.

Under these assumptions a trajectory is treated as a vector
of stochastic processes with time-parametric distributions,
e.g, uniform distribution with the distribution bounds being
functions of time or Gaussian distribution with the mean and
variance being functions of time. Uniform distributions are
interesting since they are simple. Gaussian distributions, on
the other hand, are often used to model random variables
that are affected by many factors [7], for example airplane
trajectories [8]. We use a variant of the traditional Gaussian
distribution. A “modified Gaussian distribution” is a Gaussian
distribution with time-parametric distribution bounds. In this
paper we consider linear functions of time and hence linear
time-parametric uniform and Gaussian distributions.

We represent each (time-parametric) Gaussian distribution
by a triple of linear continuous (real) functions over time
(�; �; �) where �(t) is the mean of the distribution at time
t, �(t) > 0 for all time instants t such that [�(t)��(t); �(t)+
�(t)] is the range of possible values, and �(t) is the variance
of the Gaussian distribution at time t. Similarly, a (time-
parametric) uniform distribution is represented by the pair
(�; �), where � and � are as the same as in a Gaussian
distribution.

For each Gaussian distribution (�; �; �), its distribution
function G�;�;� is modified from a standard Gaussian distribu-
tion function so that for all time instants t

R u

`
G�;�;�dx = 1 and

R `

�1
G�;�;�dx =

R
1

u
G�;�;�dx = 0

where u = �+� and ` = ���. Note that u and ` are functions
of time t.

Similarly, for each uniform distribution (�; �), its distribu-
tion function U�;� is defined as follows.

U�;�(x) =

�
1

2�
for �� � 6 x 6 �+ �

0 otherwise

Fig. 2 shows a trajectory with uniform distribution for both
coordinates. In particular, the distribution for the x dimension
is (mx; �).

Fig. 2. A trajectory with uniform distribution
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Note that both types of distributions can degenerate to the
special case when the range becomes a point, i.e., �(t) = 0.

In general, introducing uncertainty in the representation of
a trajectory creates an uncertainty region (volume) around
the mean (expected) trajectory. Our approach to modeling
uncertainty using stochastic processes, allows the uncertainty
volume to change over time. Such flexibility in the uncertainty
region captures the nature of uncertain information. At the
beginning of motion exact information about the starting
location is available, as time goes, this precise information
can no longer be guaranteed and hence the uncertainty region
widens. As the object approaches its final destination which
is again a defined location, the uncertainty region shrinks to
reflect the available amount of precise information.

III. AN INDEX STRUCTURE FOR TRAJECTORIES WITH

UNCERTAINTY

In this section we introduce a new index structure, TPRU-
tree (Time Parameterized R-tree with Uncertainty), which is
an extension of TPR-tree [6]. TPRU-tree efficiently indexes
uncertain trajectories of moving objects. A TPRU-tree treats
each dimension independently. In the following, we focus on
one dimension in describing TPRU-tree.

We start with describing leaf nodes. Suppose that an un-
certain trajectory in this dimension is given by a Gaussian
distribution (�; �; �), where �; �; � are linear functions. (A
uniform distribution only needs � and � and will be dealt with
similarly.) Let �(t) = a+bt, �(t) = c+dt, and �(t) = e+ft,
where a; b; c; d; e; f are real numbers. Then each entry in a
leaf node contains (1) a; b; c; d; e; f as floating point numbers
for this dimension, and (2) tref , where tref is a floating point
number denoting the last update time of this object (having
the trajectory). For a uniform distribution, we set c = d = 0.
This flag allows the same data structure to be used for both
types of distributions. We choose to have an implicit flag since
larger entry sizes will reduce the number entries stored in a
node (page), i.e., the fan-out factor.

In the above description, a leaf entry contains six floating
point numbers for each dimension, which increases the stor-
age requirement of an entry significantly and consequently
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reduces the fan-out factor for the leaf level. To overcome this
problem, we let c; d; e, and f be k-bit numbers, and specify
Mc;Md;Me;Mf (defined globally for the entire tree) as their
maximum values, respectively. Their actual values are given by
x
2k
Mi, where x 2 fc; d; e; fg. This method however sacrifices

some precision in order to improve the performance of TPRU-
tree. For different applications, we can adjust parameter k to
get a satisfactory trade-off between precision and performance.

To describe the data structure for internal nodes, we first
view each trajectory as an “expanding box” which coincides
with its uncertainty region. Note that the boundaries of this
box are linear functions of time.

For internal nodes of TPRU-tree, the key is to compute
the bounding rectangle of a set of expanding boxes. In our
design, a bounding rectangle in an entry contains all expanding
boxes in the corresponding child node. Let o1; :::; on be a set
of expanding boxes (from a child node). We define tref =
maxfoi:tref j 1 < i < ng to be the latest update time of the
child nodes. Let [zl; zu] be the minimal bounding interval for
all oi 's at time t ref , and vl; vu be the minimum and maximum
velocities (resp.) of the boundaries of oi 's. Thus, the entry in
the internal node contains zl; zu; vl; vu for this dimension and
tref .

We now briefly discuss the search, insertion, and deletion
operations for TPRU-tree. TPRU-tree employs three different
search strategies based on the use of depth-first (DF), breadth-
first (BF) traversals, and a priority queue. Due to the need to
explore multiple paths in a TPRU-tree, the different strategies
explore the multiple paths in different orders. The DF and BF
explore the paths in the depth-first and breadth-first manners.

For the priority queue strategy, TPRU-tree maintains a
priority queue of entries whose bounding boxes intersect the
query window. The ordering used in the priority queue may
depend on some cost function (e.g. the area of intersection
between each the tree node and the query window). Initially,
there is only one entry, namely, the root in the priority queue.
At each step, the top (root) entry of the priority queue is
removed. If the entry is a leaf node, it is evaluated to produce
possible answers. Otherwise we expand the entry and evaluate
its children against the query window. Children entries whose
bounding boxes intersect the query window are then inserted
back into the priority queue. The process is repeated until
either the priority queue is empty or some pre-condition of the
query is satisfied (e.g. enough number of objects are found).

In addition to using different search algorithms, we also
consider different ordering metrics. We investigate 2 metrics,
namely, distance and overlap area. The former measures the
distance between the center of the box in consideration and the
center of the query window, while the latter the intersection
area of the box and the window.

The metrics are used for not only the priority queue based
strategy, but also for DF and BF strategies in the following
sense. When a child node is chosen to explore, we may use
the distance metric, by choosing the child whose bounding
box center is closest to the center of the query window, or
the overlap area metric by choosing the child whose bounding
box has the largest overlap area with the query window.

By combining the three different search strategies together

with the two ordering metrics we have a total of 6 different
algorithms for the search operation.

Fig. 3. Summary of Search Strategies

Metric Depth-first Breadth-first Priority queue

Distance DFD BFD PQD
Area DFA BFA PQA

Insertions are similar to that in TPR-tree with the following
exception: entries in leaf nodes are not moving points, but
uncertain trajectories. So during the split procedure, when we
need to sort the uncertain trajectories, we sort them by their
current expected positions. For deletions, TPRU-tree locates
the trajectory and deletes it. When a node underflows, it is
eliminated and its entries are reinserted.

IV. QUERY EVALUATION

In this section we present an approach towards query evalu-
ation over moving objects. We focus on studying “probabilistic
range queries” and investigate different query evaluation tech-
niques.

A range consists of a closed rectangular spatial region and
a time instant. A range query is a pair (W; t) where W is a
range and t a time instant. Given a moving object o and a
range query Q = (W; t), let P (o;Q) denote the probability of
the event “at time t, the object o is inside the range W .”

In this paper, we consider “top-k” queries. For each integer
k > 0, a top k range query involves a range query Q and a
real number p between 0 and 1 representing the probability
threshold. An answer to the top k range query consists of
the k moving objects o who have the highest probabilities
P (o;Q) > p.

Example 1: Consider the query “retrieve the top 5 VONS
delivery trucks in Santa Barbara area at 5pm today that have
probability at least 90%”. The answer of this query is basically
the 5 trucks set S that satisfy the following condition: the area
of the intersection between the uncertainty region of each truck
s 2 S with the query region is at least 90%, assuming uniform
distributions are used.

Evaluating the query in Example 1 proceeds by computing
the intersection area between each objects and the query
window, after computing this probability and with the help
of the TPRU-tree index structure, the objects with probability
> 0:9 can be efficiently retrieved.

The use of intersection area is valid for uniform distribution.
And thus probability computation for uniform distributions is
straightforward. For Gaussian distributions (�; �; �), let G�;�;�
be the distribution function. The probability Pr[x 6 a] can be
computed as follows:

Z a

�1

G�;�;�dx =

R a

�1
Gdx �

R
��

�1
GdxR �

��
Gdx

where G is the corresponding standard Gaussian distribution
function (i.e., with �; �), [��; �] specifies the distribution
range. The probability can be then be computed by first
transforming each term into standard Gaussian form (i.e.,
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� = 0 and � = 1), then we use the Q-function that has
an excellent approximation formula due to Börjesson and
Sundberg (see [9]), with maximum error of 0.27% for any
x > 0.

It is easy to observe that the different search strategies
behave similarly with respect to the query in Example 1 and
in fact to all top k range queries. The reason behind this
observation is the fact that all search strategies need to find
exactly the same set of objects in order to obtain the top k

objects in an answer.
On the other hand, in many cases the top k objects in an

answer need not be the k best matching objects. In other
words, the answer may be approximated. While there are many
ways to compute approximate answers, in the following we
outline one approach.

For each integer k > 0, an any k range query involves a
range query Q and a probability threshold p. Unlike a top k

query, an answer to the any k range query consists of any k

moving objects o with probabilities P (o;Q) > p. Clearly, any
k queries are possibly faster to evaluate since there is no need
to exhaust all potential objects.

Given a top k range query, we can compute its approximate
answer in two steps:

1) Compute the answer to an any k0 range query for some
k0 > k.

2) Select k objects among the k0 objects found with the
highest probabilities.

Consider the query in Example 1 which asks for the top
5 trucks. We can approximate the answer by finding any 10
VONS delivery trucks in Santa Barbara area at 5pm today that
have probability at least 0.9 and then pick the highest five.

V. EXPERIMENTAL EVALUATION

In this section we present an empirical study on the relative
behaviors of the six search strategies in Fig. 3. In particular,
we present experimental results to show the impact of the
different search strategies on the performance and accuracy of
the TRPU-tree in evaluating both the exact and approximate
probabilistic range queries.

For query performances, we focus on the number of I/Os
(i.e., page reads and writes) since the I/O is expected to be
the dominant factor in the overall complexity.

For exact answers, all six strategies will search through all
objects that may possibly be in the answer. As a result, their
performances have little differences. We will use “EXT” to
denote search strategies for precise answers. For approximate
answers, the strategies are different. The reason for this is that
we no longer need to find all objects that are possible in the
precise answer. We use Axxx to denote the strategy xxx in Fig.
3 for computing approximate answers.

For accuracy, we measure the percentage of objects in an
approximate answer that are in the precise answer. Recall that
our approach is to use any k0 queries to approximate top k

queries for k0 > k. In our experiments, we will consider
the impact of k0 and the probability threshold p on both
performance and accuracy.

Our experimental results suggest the following:

1) The TPRU-tree index structure provides efficient access
to the moving object positions in roughly logarithmic
I/Os.

2) Approximate answers are far more efficient to compute
with varying degrees of accuracy depending on k 0 and
p.

a) When k0 is some multiple times of k, the accuracy
is 1 or close to 1, while I/O complexity is merely
a fraction of that for the exact answer.

b) High p improves accuracy of approximation and
pays more cost on performance, while low p means
low accuracy and less cost. Users can get a sat-
isfactory trade-off between accuracy and cost by
adjusting p.

Our data set consists of moving points that are generated
randomly in a workspace of size 1000� 1000 kilometers. A
time unit is set to one minute. The number of moving points
is 200; 000 for most experiments. About a half of moving
points have uniform distributions, and the other half Gaussian
distributions. The speeds of moving points range from 0.75
to 2.5 kilometers per minute. For all experiments, the disk
page size is set to 1k bytes to get trees with reasonably
large size. So the maximum number of entries is 36 for leave
nodes and 28 for intermediate nodes. Buffer size is set to 0 to
observe queries with small I/Os. All queries are either exact
or approximate probabilistic range queries. A parameter QWS

is used to describe the size (area) of query windows in terms
of a fraction of the total workspace. For most experiments
QWS = 1%.

After a moving point data set is loaded into a TPRU-tree,
a workload composed of both queries and updates is executed
over the TPRU-tree. An update in our experiments involves
a change in speed, direction and distribution parameters of
a moving object. For most experiments, we evaluate the tree
performance at time unit 100. It is clear that fixing a time
unit has little impact on the relative performance of different
strategies and no impact on accuracy results.

Fig. 4 shows performance of TPRU-tree for computing exact
answers of top k range queries with different sizes of data sets.
In this experiment we restrict the uncertainty range parameter
� to prevent uncertainty regions from growing too big and set
QWS = 0:1%. Fig. 4 displays that TPRU-tree is efficient for
such queries and is scalable.

Fig. 4. Scalability of TPRU-tree (k = 20; p = 0:5)
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Fig. 5 shows the impact of parameter k0 on the performance
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and accuracy of different search strategies for approximate
queries as well as the performance for corresponding exact
queries. All the approximate queries perform much better
than the exact query. Depth first and priority queue strate-
gies' perform better than breadth first strategies. In terms of
accuracy, area-based search strategies are better than distance-
based ones. In general, when k0 increases, the accuracy of the
approximate queries increases as well. When k0 = 4k, the
accuracy of all approximate queries is close to 1.

Fig. 5. Impact of k0 (p = 0:5; k = 20)
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Fig. 6 shows the impact of the threshold p. Performance
goes down when p increases. But the improvement by approx-
imate queries in performance is still high. Similar to Fig. 5,
area-based search strategies are more accurate than distance-
based ones. In general, higher p means higher accuracy. When
p approaches 1, the accuracy gets close to 1 as well.

Fig. 6. Impact of p (k = 20)
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To study the impact of the data freshness on the performance
and accuracy, a parameter called Update Interval (UI) is used
in data generation [6]. It represents the approximate time
interval between two consecutive updates for the same object.
Smaller UI means more data freshness. For most experiments
UI = 200.

Fig. 7 shows the impact of the parameter UI (i.e. Update In-
terval). When UI is small, this means the update frequency is
high (i.e. data is refreshed more frequently), and consequently
the uncertainty regions are small. In general, approximate
queries perform better than exact queries. When UI increases,
the performance of exact queries goes down quickly, but that
of approximate queries goes down relatively slower. On the
other hand, accuracy increases as UI decreases. However, to
achieve better performance and higher accuracy we have to

pay more on the update maintenance. In general, area-based
search strategies are more accurate than distance-based ones.

Fig. 7. Impact of Update Interval (k = 20; p = 0:5)
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VI. CONCLUSIONS

In this paper we developed a data model for trajectories of
moving objects with uncertainty, and a new index structure for
moving objects with uncertainty. We also studied evaluation of
top k range queries with exact and approximate answers and
considered 6 evaluation strategies in conjunction with TPRU-
tree. Experimental results show that the index structure TPRU-
tree can efficiently answer top k range queries. In addition,
they show that different search strategies behave differently
towards accuracy and I/O performance.

We think that querying moving objects with uncertainty is
far from mature. It is especially interesting to study evaluation
techniques for other types of queries, and to improve index
structures and search strategies to speed up query evaluation
in presence of uncertainty.
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