
Automated Composition of E-services: Lookaheads

Çağdaş Evren Gerede
∗

Department of Computer Science,
University of California,

Santa Barbara, CA 93106, USA.

Richard Hull
Bell Laboratories/Lucent Technologies,

700 Mountain Avenue,
Murray Hill, NJ 07974, USA.

Oscar H. Ibarra
†

Jianwen Su
Department of Computer Science,

University of California,
Santa Barbara, CA 93106, USA.

ABSTRACT
The e-services paradigm promises to enable rich, flexible, and dy-
namic inter-operation of highly distributed, heterogeneous network-
enabled services. Among the challenges, a fundamental question
concerns the design and analysis of composite e-services. This
paper proposes techniques towards automated design of compos-
ite e-services. We consider the Roman model which represents e-
services as activity-based finite state automata. For a given set of
existing e-services and a desired e-service, does there exist a “medi-
ator” which delegates activities in the desired e-service to existing
e-services? The question was raised in an early study by Berardi et.
al. for a restricted subclass of delegators which does not take into
consideration of future activities. In this paper, we define a more
general class of delegators called ”lookahead” delegators and we
show that the hierarchy based on the amount of lookahead is strict.
We, then, study the complexity of constructing such delegators. We
prove that in the case of deterministic e-services, a k-lookahead
delegator can be computed in time polynomial in the size of target
and subcontractor e-services, and exponential in k and the number
of subcontractor e-services. We also present Wozart, an automated
mediator construction tool implemented to realize our approaches.

Categories and Subject Descriptors
H.1.m [Models and Principles]: Miscellaneous; D.2.2 [Software
Engineering]: Design Tools and Techniques—State diagrams; F.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems—Sequencing and Scheduling

General Terms
Algorithms, Design, Theory

Keywords
E-services, Automated Composition, E-service Modelling, Service

∗Contact Author: gerede@cs.ucsb.edu
†Research supported in part by NSF Grants CCR-0208595 and
CCF-0430945.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSOC’04, November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011 ...$5.00.

Oriented Computing, Service Representation, Service Composi-
tion, Roman Model, Automated Mediator Construction, Looka-
head, Delegator, Finite State Automata

1. INTRODUCTION
The e-services paradigm promises to enable rich, flexible, and dy-
namic inter-operation of highly distributed, heterogeneous network-
enabled services. Emerging standards such as SOAP [23], WSDL
[25], BPEL [4], and research efforts that are building on or taking
advantage of the paradigm such as the OWL-S (formerly DAML-
S) program [19], the Semantic eWallets project [13], ActiveXML
[2], have made a substantial progress toward this goal. However,
given the ostensible long-term goal of enabling the automated dis-
covery, composition, enactment, and monitoring of collections of
e-services (we also use web services interchangeably) working to
achieve a specified objective, key pieces are missing to make the
goal a reality. Among the challenges, a fundamental question con-
cerns the design and analysis of composite e-services. The focus of
this paper is on automated design of composite e-services.

Automated composition was studied in [24, 16] in the context of
workflows. In [24], the global dependencies are given as a tree
with optional and choices on some dependencies, resembling the
event algebra [22]. An algorithm was given to map to a Petri-net
that generates the root of the tree without violating the dependen-
cies. In a simpler model, [16] starts from a pair of pre- and post-
conditions and assembles the workflow by selecting tasks from a
given library. The synthesis problem for finite state specifications
has been studied intensely within the automata theory and verifica-
tion community [5, 1]. Consider synthesis of a collection of finite
automata interacting via bounded queues. The synthesis problem
has a variant for open and closed systems. In the closed case, a
”folkloric” result is that synthesis from a formula can be decided
by linear reduction to the satisfiability test for the logic hence it can
be done in PSPACE for LTL and in PTIME for ω-regular sets rep-
resented explicitly by an automaton. The open case is undecidable
[20] in general, but decidable when e-services are connected in a
linear topology [15].

Automated e-service composition has been the focus of several re-
cent studies. One approach was developed in the context of OWL-
S [18]. The basic question there is whether a given collection
of atomic services can be combined, using the OWL-S construc-
tors, to form a composite service that accomplishes a stated goal.
Their approach is to encode the underlying situation calculus world
view, the desired goal, the individual services in terms of their pre-
conditions and effects, and the OWL-S constructors into a Petri net
model. This reduces the problem of composability to the problem

of reachability in the Petri-net. In another approach [6, 10, 11],
the desired global behavior is a “conversation” (i.e., family of per-
mitted message sequences) specified using a finite state automaton.
Under certain conditions, the automaton can be “projected” to build
(abstract) web services, that when combined will realize the desired
conversation.

Recently, [3] developed a very interesting approach to automated
composition of web services, called here the Roman model. The
model focuses on activity-based finite state automata. One input
to this approach is a set of descriptions of existing web services
(called here “subcontractors”), each given as an automaton that de-
scribes possible sequences of activities. (This resembles web ser-
vices residing in a UDDI repository). The second input is a desired
behavior or “target” behavior, also specified as an automaton. The
output is a subset of the atomic web services, and a “mediator” that
will coordinate the activities of those services, through a form of
“delegation”.

Based on the Roman model introduced in [3], this paper makes the
following contributions:

1. A general notion of delegation is developed. Specifically, a
delegator in the model of [3] assigns an activity to atomic
services based only on the past activities. In our model, a
delegator can determine the assignment based on an entire
sequence of activities.

2. We show that deciding the existence of a mediator in the gen-
eral model can be done in EXPSPACE, the result generalizes
the result in [3].

3. We introduce the notion of ”lookahead” for a mediator to del-
egate activities, which is the number of future activities the
mediator has to know in order to delegate an activity. The
delegator notion in [3] corresponds to having no lookahead
or lookahead being 0. In particular, we give an alternative
constructive proof using automata-theoretic techniques for
determining whether a delegator without lookahead exists,
originally shown in [3]. A benefit of the automata-theoretic
approach is a finer characterization of the complexity bound
in terms of the size and the number of individual e-services.

4. We study the impact of lookahead on automated design of
mediators. We show that there exists a strict hierarchy based
on lookahead.

5. We show that in the case of deterministic e-services, a k-
lookahead delegator can be constructed in time polynomial
in the size of the target and subcontractor e-services, and ex-
ponential in k and the number of subcontractor e-services.

6. Finally, we present a tool for automated mediator construc-
tion named Wozart.

The paper is organized as follows. Section 2 introduces the model
of e-services and the central notion of a delegator. Section 3 focuses
on determining the existence of delegator. Lookahead is defined in
Section 4, along with results and algorithms concerning lookahead.
Section 5 talks about the tool Wozart and Section 6 concludes the
paper.

2. A MODEL FOR E-SERVICES AND COM-
POSITIONS

In this section we outline the key concepts for the technical discus-
sions, which include e-services, and ”composition” of e-services.

Roughly speaking, an e-service is a (publishable) specification of
a software program. Although data strucures and types are fun-
damental in such specifications, the more important (and difficult)
aspect concerns the “behavioral signatures” of e-services, since the
latter captures the “actions” and “reactions” an e-service can en-
gage in during the execuion. Behavioral signatures provides the
foundation for composing e-services.

A behavior model for individual and composite e-services has fun-
damental implications on how they can be discovered, combined,
and analyzed. It is not surprising that several paradigms for be-
havioral modeling are being used in current standards and research
explorations on web services composition.

In a broad term, the behavior of a service describes the changes of
its “states”. Depending on specific research topics, the “state” can
be (a) the actual internal execution state, (b) only a part of the state
of relevance to the parties connected with the e-service, or (c) the
state of the “external world”. Furthermore, different models rely
on different kinds of “actions” to change state; these might be (i)
messages, (ii) activities, and (iii) events.

The WSDL standard focuses heavily on passing messages between
e-services. This leads naturally to behavioral models that use mes-
sages as the “actions”, and use (abstract) internal states of individ-
ual e-services as the states that messages cause transitions between
[6, 10]. This perspective is closely related to work on process alge-
bras [17] and in the verification community [7], all of which study
distributed automata with message passing of one form or another.
It can also support investigations based on partial information of
the internal states, as typical in the verification community.

The workflow community has traditionally focused on activity-based
models. These represent a process by combining activities with es-
sentially some forms of control flow. The typical formalisms in
workflow community are flowcharts, Petri nets, and finite state ma-
chines or state charts.

The semantic web services community also favors an activity-based
perspective. Much of that work assumes that atomic services per-
form activities, which have the effect of changing the state of an
“external world”. A situation calculus [21] is typically used to
provide formal underpinnings. This framework permits the use of
logic-based axiomatizations and reasoning about how composite
web services affect their “external” world, and thereby permit the
use of goal-based planning algorithms for automated construction
of compositions.

Event-based formalisms have been used primarily in the context
of workflows [22]. An event can be viewed as an abstract version
of an activity. Event-based models allow declarative, logic based
semantics and provide an alternative to analysis of workflow spec-
ifications [9].

In this paper, we consider the Roman model which represents e-
services as activity-based finite state automata. The model was in-
troduced in [3] in their study on automated composition.

���������
�
	 ����
���������
	 � � �

�����
����������� � �
� � ��!�"$#

�����%�&�
	 � � �

���������
'���()	

*������������
��+�+���,-,.��/�� � � ��0

����������1&'�2$((

+���,43
" � "%� � � ��!�"$#
��5�"���!�� +�" ������� �

1&'�2$((

6� 7�� 18(86 �
%9&)� (

���������
1&'�2$((

���������
�
	 �����:
;

���������
'���()	&:�<

�������&�
	 � � � :
;

�������&�
1&'�2$((�:
<

���������
1&'�2�((�:�< 6� 7�� 18(&6 �

)9&)� (:
=

�������&�
'���(%	&:�<

���������
	 � � � :�>

�������&�
18'�2�((�:
<

������� �
1&'�2�((�:
< 6� 7�� 18(&6� �9&8� (:
=

�������&�
(6���� �?:�>

@�A BDC�E C�F�G$H I
J�K I�J
+���,43�# " � "��

� � ��!�"$# ��5�"���!$� +�"

6� 7�� 18(&6 �
%9&)� (

L ���&"�M
� 5 � "�� ��"�!�"�0 �

N������������
� � ��� 0$� � � ��!�"$#

���������
(6���� �

���������
��	 ����

�������&�
(6���� �
���������
'���(8	

���������
	 � � �

OQP R P

STP

Figure 1: A Composition Problem: Complete Travel Service

Before formulating our model of composition and e-services, let’s
have a look at an example illustrating the composition problem.

EXAMPLE 2.1. 1 Suppose that the services in Figure 1(a) are
available in some UDDI++ directory, which includes finite state
automata-based service descriptions, among other things. Each ser-
vice has different functionalities. For example, the user can use:
i) book air travel service to book a plane for a trip and then book
a limo to the airport, ii) book accommodation to arrange for ac-
commodation and iii) register event to register for the event. Note
that booking a limo service is provided by both book air travel
and book train travel services but the overall behaviors of these
two services are different. Suppose further that a 3rd-party ven-
dor would like to create and operate a composite service which is
specified again as a finite state automaton shown in Figure 1(b).
Here, we are interested in the question of whether it is possible to
reuse the existing services in order to achieve the desired e-service.
If that is possible, then effectively there must be a mediator who
orchestrates the services collectively in order to model the desired
e-service. For example, Figure 1(c) shows such a delegator that as-
signs each activity to an existing e-service. Note that as the exam-
ple shows, a delegator may not simply be a labeling of the desired
e-service.

2.1 Preliminaries
We assume some familiarity with formal languages and finite state
automata. Let Σ be a finite alphabet of activities (or symbols). A
word of length k ∈ N over Σ is a sequence of k symbols in Σ. Let
Σ∗ be the set of all words over Σ of length k for some k ∈ N. A
language is a subset of Σ∗.

We now define the central notion of an e-service.

DEFINITION 2.2. An e-service is a (possibly nondeterministic)
finite state automaton (FA) A = (S, Σ, δ, s0, F) where S is the
finite set of states, Σ is the input (activity) alphabet, δ is a mapping
from S × Σ to 2S , s0 ∈ S is the starting state, F ⊆ S is the set of
accepting states.
1This example is inspired from one developed by Daniela Berardi.

Intuitively, an e-service A is viewed as an acceptor. The notion of
a word accepted by A is defined in the standard manner. The (ac-
tivity) language of an e-service A, denoted as L(A), is the set of
words accepted by A.

In this model, FAs represent both ”atomic” as well as composite
e-services. In other words, a composition of a set of e-services is
expected to be another e-service [3]. Although FAs, therefore e-
services, are closed under composition (under various product con-
structions), the goal of this paper aims at determining whether a de-
sired e-service can be composed from a set of existing e-services.

We now formulate the notions of composition model and delegator
studied in this paper.

DEFINITION 2.3. A composition system C is a tuple (AT , I)
where AT is the target (or desired) e-service and I = {A1, A2..., Ae}
is a set of subcontractor e-services (that are available to compose
the target e-service).

We use the following preliminary notion to define the concept of
delegator.

DEFINITION 2.4. Let e > 0. For a word w, a delegation as-
signment over e is a mapping β : [1..|w|] → P>0([1..e]) (i.e.,
from the integers between 1 and |w| inclusive to non-empty sub-
sets of the integers from 1 to e, inclusive). Let β be a delegation
assignment for w = w1 . . . wn ∈ L(AT). For j ∈ [1..e], the
j-image of w under β is the subsequence imageβ

j (w) of w ob-

tained by including in imageβ
j (w) the letter occurrences wi such

that i ∈ β(j). Finally, delegation assignment β over e for w ∈
L(AT) is valid in composition system C = (AT , {A1, . . . , Ae})

if imageβ
j (w) ∈ L(Aj) for each j ∈ [1..e].

Intuitively, then, a delegation assignment for a word w is a mapping
that specifies which subcontractors should process each activity in
the sequence. It is valid if at the end of the delegations, each par-
ticipating e-service (FA) ends up in an accepting state.

We now have:

��� �

�����
	 � � �� ��	��
��� �

����	���� � � ����� �

��� �

�����
	 � � ��� ��	��
��� 	���� � � ����� �

���
���

���

Figure 2: A Composable E-Service

DEFINITION 2.5. Let C = (AT , {A1, . . . , Ae}) be a compo-
sition system over alphabet Σ. Let α : Σ∗ × N → P>0([1..e])
be a partial function. Then α is a delegator for C if for each
w ∈ L(AT), the function α(w, ·) is total on [1..|w|] and is a valid
delegation assignment for w in C .

So, there is a delegator for composition system C iff for each word
w ∈ L(AT) there is a delegation assignment for w.

The following example illustrates a composition system and a del-
egator. We keep the example very simple for the sake of simplicity
of the discussion.

EXAMPLE 2.6. For a commercial web site, let’s say, we would
like to develop a shopping service such that users first buy an item
and then pay for it. We would like to be flexible on the payment
method. That’s why, users can pay either by money order or by
credit card. This desired e-service can be represented by the FA
AT in Figure 2.

In the mean time, there are two existing e-services. As the payment
method, one of them uses only money order and the other uses only
credit card. These e-services are represented by the FAs A1 and A2

in Figure 2.

Let b, m and c denote the activities ’buy’, ’money order’, and
’credit card’ respectively. The desired target e-service AT accepts
the language (b(m|c))∗ while the languages for A1 and A2 are
(bm)∗ and (bc)∗, respectively. It can be verified that the desired
e-service AT can be achieved through the composition of A1 and
A2 (i.e., composable). For instance, for a sequence of activities
bmbc (i.e., the user first pays by money order then pays by credit
card), the assignments would be b/1, m/1, b/2, c/2 (A1 processes
the first shopping, and A2 does the second). Obviously, for any
word in L(AT), the activity m should be delegated to A1, while
the activity c should be delegated to A2. On the other hand, the
delegation of the activity b depends on whether the next incoming
activity is m or c. Therefore, in an online processing model where
there is an incoming sequence of activities, the decision on which
e-service a particular activity should be delegated to may depend
on the future activities in the sequence.

Our model is a generalization of that in [3]. Specifically, in their
model, the decision on delegating a particular activity depends only
on activities that have already processed, while in our model we al-
low delegation decisions to be made based on a lookahead, i.e.,
expected activities in the future. In Figure 2, AT is composable
from A1 and A2 in our model, although it is not composable in
their model. Therefore, the composition model studied in this pa-
per is more powerful.

The remainder of the paper focuses on determining the existence
of such delegators, and on special classes of delegators, called “k-
lookahead”.

3. DELEGATOR EXISTENCE
A key question for automated composition of e-services in this
framework is to determine whether a delegator exists and if so, how
to construct one. In this section, we use the standard automata the-
oretic technique to give positive answers to both questions. The key
idea is to build a finite state automaton for a given composition sys-
tem C = (AT , I) using a variant of standard product construction
for FAs[14]. Then, the product machine is used to check for the
existence of a delegator for the system, and in case of positive an-
swer, the product machine itself is a representation of the delegator.

For the simplicity of the discussion, we have a number of assump-
tions on FAs. First, we assume the desired e-service AT is a Deter-
ministic FA (DFA). If AT is an Nondeterministic FA (NFA), then
we can convert it to an equivalent Deterministic FA. We know that
this conversion may take exponential time in the size of AT [14].
However, even if we do this conversion, our complexity results in
this section don’t change, which is explained later. Second, all
machines in the system use the same input (activity) alphabet Σ.
Third, there is no nonproductive state in the target e-service, i.e.,
there exists a path from each state to an accepting state. This is
a valid assumption because an FA with nonproductive states can
be converted to an equivalent FA with no nonproductive states in
polynomial time and also in practical sense, an e-service shouldn’t
have nonproductive states. In addition, each e-service in the system
has no incoming transition to its starting state. Every FA can easily
be modified to satisfy this property by introducing a new starting
state while copying all the outgoing transition of the original start-
ing state.

Note that every FA can be seen as a labeled directed graph where
each state is represented by a node, and for each transition r ∈
δ(q, a), there is an edge from the node q to the node r labeled with
a.

Before we formally define the product construction which is used
to check the existence of a delegator, let’s look at an example:

�

� � �

� �

!#" !%$!%&

'

(

'

) (

'

)

,+-/.�0
1 + 1�2436587�9�:;1�<6245
= + =?>A@�3 0 :;>B24583�2

Figure 3: A Simple Composition System

EXAMPLE 3.1. In Figure 3, there is a simplified version of the
system described in the previous section. We would like to get the
service AT , using the existing e-services A1 and A2. The corre-
sponding product machine for this system is shown in Figure 4.
Basically, the product machine keeps track of configurations of the
system. For example, the configuration [110] implies that the cur-
rent states of AT , A1 and A2 are 1,1 and 0 respectively. Each
edge represents a transition of the system from one configuration
to another with the processing of the current activity. For example,
the edge (m/1) from [110] to [220] represents that the processing
of m is done by 1 and because of this delegation, A1 changes its
state to from 1 to 2, while A2 stays in the state 0. In configuration
[000], the activity b can be delegated to A1 and/or A2 because at
this configuration, both A1 and A2 can process a b. It is also possi-

ble that in some configuration, processing of an activity cannot be
delegated to any e-services. For example, under the configuration
[110], AT requires processing of a c. However, under this config-
uration neither A1 nor A2 has a c transition. Therefore, for such
cases, the delegation cannot be done and the machine goes to an
error configuration.

�����

�����

���
	 ������� 	

����

�����

�����

��� � ��� ��� � � � �

� ��� � �
�
� �
� � �
	

� ��� � �
	

��� � � � �

Figure 4: Product Machine for Figure 3

Below we give a formal definition for the product machine of a
composition system.

DEFINITION 3.2. Given a composition system C = (AT , I)
of FAs where AT = (ST , Σ, δT , s0

T , FT) is the target e-service,
and I = {A1, A2, ..., Ae} is the set of subcontractors where Ai

= (Si, Σ, δi, s
0
i , Fi), the product machine PRODC is a Mealy au-

tomaton (SC , Σin
C , Σout

C , δC , s0
C , FC) where

• Input and output alphabets: Σin
C = Σ, and Σout

C = 2{1,2...,e},

• States: SC ⊆ ((ST × S1 × ... × Se) ∪ {error}),

• Starting state: s0
C = [s0

T ; s0
1, ..., s

0
e],

• Accepting states: FC = {[qT ; q1, ..., qe] | qT ∈ FT ∧
∀i ∈ [1, e] (qi = Fi ∨ qi = s0

i)}.

We use the term configuration for a state of the product ma-
chine. For each word accepted by the desired e-service, there
is a corresponding run, i.e. a sequence of configurations, in
PRODC . If in the final configuration, the target e-service and
participating2 subcontractors are all in their accepting states,
then such a run is called an accepting run. Note that we
distinguish an e-service who participates in the computation
from the one who doesn’t by simply checking whether the
state of the e-service in the final configuration is the initial
state or not3.

• Before we define the transition mapping δC , let’s define the
set V of ”volunteer” subcontractors. For a given configura-
tion and an activity, V defines the set of e-services capable
of processing the requested activity. In other words, under
the given configuration, the activity can be delegated to any
subcontractor in V . More formally,
V([qT ;q1,...,qe],a) = {j | δj(qj , a) 6= ∅ , j ∈ [1, e]}.

2An e-service is participating in the computation if it processes some ac-
tivity.
3As mentioned before, we assume for this construction that there is no in-
coming edge to the initial state of an e-service; therefore, once it processes
an activity, it can never come back to the initial state again.

The transition mapping δC : SC × Σin
C → 2(SC ×Σout

C
) is

defined as follows: For each configuration [qT ; q1, ..., qe] in
PRODC , for each activity a where δT (qT , a) is defined, and
for each v ⊆ V([qT ;q1,...,qe],a):

i) if V([qT ;q1,...,qe],a) = ∅, then
δC ([qT ; q1, ..., qe], a) = {(error, ∅)}.
Intuitively, this says that if there is no volunteer, then
this is an error, because under the given configuration,
even though the target e-service requires the processing
of a, nobody can do it.

ii) else, δC ([qT ; q1, ..., qe], a) = { ([rT ; r1, ..., re], v) |
rT = δT (qT , a) ∧ (ri = δi(qi, a) if i ∈ v, and
ri = qi, otherwise)}. When an activity is processed,
the system moves from one configuration to another
and the next configuration depends on the current con-
figuration and delegation (output). In addition, the del-
egations are determined by the current configuration
and activity (input).

The size of the product machine is O(2e × |Σ| × s2e × sT) where
e is the number of subcontractors and, s is the maximum number
of states among the subcontractors and sT is the number of states
in the target e-service.

Now, we can make the connection between a product machine and
a delegator. Let L(PRODC) denote the language accepted by the FA
derived from PRODC by removing the outputs from the transitions.
Then, we have the following lemma which is easily verified:

LEMMA 3.3. For a composition system C = (AT , I), there
exists a delegator iff L(AT) = L(PRODC).

According to lemma 3.3 checking language equivalence of PRODC

and AT is the same question with the existence of a delegator. The
equivalence of two FAs can be checked in polynomial space in the
size of the FAs [14]. Therefore, this implies the following result.

THEOREM 3.4. Existence of a delegator of a composition sys-
tem can be determined in exponential space.

4. DELEGATOR WITH LOOKAHEAD
In the previous section, we consider delegators in general. In this
section, we formalize the concept of lookahead and introduce del-
egators having lookaheads, and then prove a series of characteri-
zation and complexity rusults. We assume in this section that all
e-services are deterministic.

4.1 Lookahead
Let α be a delegator for C = (AT , {A1, . . . , Ae}). Let u, v, v′ ∈
Σ∗ such that uv, uv′ ∈ L(AT). Under the definition of delegator,
which is quite general, there need not be any relationship between
the two delegation assignments α(uv, ·) and α(uv′, ·). In prac-
tice, we are interested in a delegator that can delegate incoming
requests online, i.e., it deterministically chooses the correct subset
of subcontractors that should process a request based only on let-
ters previously read. Such delegators will be formally defined as
“0-lookahead delegator” below. Although having such a delegator
is appealing, in some cases it may not be possible to decide on the
delegation without knowing the future requests. Let’s have a look
at an example illustrating this problem

EXAMPLE 4.1. Consider the composition system C = (AT ,
{A1, A2}) shown in Figure 5(a). When the system is in the start-
ing configuration, let’s say, a request for a arrives. Both A1 and A2

a

b

a

c
A2

A1

a

b

c

a

b

a

a

c

a

a
c

a

b

a

b

a

c

a

b

c a

a

a

AT

� ��� ����� � ���

A2

A1

AT

A2

A1

AT

Figure 5: Lookahead in Compositions

can process it. However, who should process a is determined by
the next request. If it is b, then A1 should process a. If it is c, then
A2 should process a. Therefore, the decision of the delegation re-
quires to check the next request. A similar concept in ”Compilers”
is called lookahead. Therefore, we say a delegator for the system
in Figure 5(a) needs at least 1 lookahead.

We now formulate what we mean by a k-lookahead delegator.

DEFINITION 4.2. Let C = (AT , {A1, . . . , Ae}) be a compo-
sition system, α a delegator for C , and k a number in N. Then α
is a k-lookahead delegator for C (also described as an LAk delega-
tor) if the following property holds: Suppose that u, v, w, w′ ∈ Σ∗

and |v| = k. Then α(uvw, ·) and α(uvw′, ·) coincide on each
i ∈ [1..|u|] (i.e., for each i either both are undefined, or both are
defined and equal).

It is easily seen that a delegator α is k-lookahead if its behavior on
the ith activity of word w = w1 . . . wn is dependent only on the
prefix w1 . . . wi+k of w (or simply w if i + k > n).

Intuitively, a (non-restricted) delegator uses unbounded lookahead;
we sometimes use the phrase ‘*-lookahead delegator’ or ‘LA∗ del-
egator’ in place of ‘delegator’, to emphasize the analogy to k-
lookahead delegator. At the other extreme, a 0-lookahead delegator
doesn’t consider any of the activities that it hasn’t read.

Let C be a composition system. It is straightforward to verify that
there is a 0-lookahead delegator for C iff there is, in the vocabulary
of [3], a ”composition” for C .

There is an automaton-based analog of k-lookahead delegator, which
we introduce in the following two definitions.

DEFINITION 4.3. Let k be a number in N. A k-lookahead pre-
delegator for a composition system C = (AT , {A1, A2 , ..., Ae})
is a (modified) Mealy automaton D = (SD, Σ, Γ, δD, s0

D, FD)
where SD is a set of states; Σ is the input alphabet; Γ, the output
alphabet, is equal to P>0([1..e]); δD : SD ×Σ×Σ6k → SD ×Γ
is the transition function (which may be a partial function); s0

D is
the starting state and FD ⊆ SD is the set of accepting states.

Intuitively, in a 2-lookahead DFA-based pre-delegator D, a transi-
tion, let’s say, δD(s1, a, bc) = (s2, {1, 4}) denotes the fact that the
execution of the activity of type a is delegated to the subcontractors
A1 and A4, based on the knowledge that the next 2 activities are b
and c.

More generally, a computation on input word w by a k-lookahead
pre-delegator D = (SD, Σ, Γ, δD, s0

D, FD) proceeds as follows,
starting from the start state s0

D. Suppose now that prefix u of w has
been processed, the computation is in state s ∈ SD , and the letter

after u is a. Let v be the maximal subword of w that starts imme-
diatly after ua and has length 6 k. Suppose that δD(s, a, v) =
(s′, Z) is defined. In this case, the computation proceeds by read-
ing a, moving to state s′, and producing set Z as output. (Compu-
tation fails on w if δD(s, a, v) is undefined.)

If the computation of D on w succesfully processes all of w, then
the delegation assignment β determined by D on w is defined so
that β(i) is the output of the ith step of the computation of D on
w.

DEFINITION 4.4. Let D = (SD, Σ, Γ, δD, s0
D, FD) be a k-

lookahead DFA-based pre-delegator for a composition system C =
(AT , {A1, A2 , ..., Ae}). Then D is a k-lookahead DFA-based del-
egator for C if the following conditions hold:

(a) If the output alphabet of D is ignored, then the language ac-
cepted by D is L(AT).

(b) For each word w ∈ L(AT), the delegation assignment deter-
mined by D on w is valid for C .

It is straightforward to show that if there exists a k-lookahead DFA-
based delegator for composition system C , then there exists a k-
lookahead delegator for C . The converse also holds, as shown in
Theorem 4.6 and Corollary 4.13 below.

In a practical sense, having lookahead corresponds to buffering
the input symbols. For instance, a composite e-service with a 1-
lookahead delegator can buffer the current activity and before pro-
cessing the activity, it can ask the customer what she intends to do
as the next activity. This way, the delegator can better guide the
delegation of the current activity.

Continuing with Figure 5, there exist LA∗ delegators for all three
composition systems (each system is composable). This can be
verified using the method described in the previous section. In ad-
dition, (a) has an LA1 delegator, while (b) has an LA2 delegator but
no LA1 delegator. In (c), the activity a can occur any number of
times, thus in this case there is no LAk delegator for any k ∈ N.
On the other hand, if all succeeding activities are known, each ac-
tivity can be delegated to A1 or/and A2 properly; therefore, (c) has
an LA∗ delegator. As can be seen from this example, the hierar-
chy based on the amount of lookahead is strict. As a result, the
following is established.

THEOREM 4.5. For each k > 0, there exists a composition sys-
tem C such that C has LAk delegators but no LA(k−1) delegators.
There is also a composition system C that has an LA∗ delegator but
no LAk delegator for any k in N.

As noted above, the model of delegators used in [3] is exactly LA0,
i.e., with no lookahead. Although it was shown in [3] that exis-
tence of an LA0 delegator can be determined in exponential time,
we present a direct analysis on LA0 delegators using FAs having a
finer characterization on the complexity bound. Later, we use this
technique for k-lookahead delegators.

4.2 0-Lookahead Delegator Construction
In this section, we show how to check the existence of a 0-lookahead
(LA0) delegator, and if one exists, how to construct a 0-lookahead
DFA-based delegator.

The following theorem makes a connection between an LA0 dele-
gator and the product machine.

THEOREM 4.6. Let C = (AT , {A1, . . . , Ae}) be a composi-
tion system with deterministic e-services. Then C has a 0-lookahead
delegator iff there is a 0-lookahead DFA-based delegator D for C
that is a subgraph of PRODC (denoted D ⊆ PRODC).

PROOF. (Sketch) Let Σ be the alphabet of C . Let α be a 0-
lookahead delegator for C . We begin by creating a minimal tree
T with a branch corresponding to each word of L(AT). (In par-
ticular if uv ∈ L(AT) then the branch corresponding to u in
T is a subbranch of the branch corresponding to uv.) For w =
w1 . . . wn ∈ L(AT) label the ith edge along the branch of w by the
pair (wi, α(w, i)), i.e., by the ith letter of w and by the delegation
assigned to position i by α acting on w. Since α is a 0-lookahead
delegator this labeling is well-defined. (Tree T is essentially the
“internal schema of a composition”, in the terminology of [3].)

We introduce a labeling function λ that associates to each node T
an element of SC , the set of states of the product machine PRODC ,
in the following inductive manner. Label the root with the start
state of PRODC . Suppose that λ(x) is defined for some node x of
T , and that y is a child of x where the edge from x to y is labeled
by (a, Z). Then set λ(y) to be the state of SC reached from λ(x)
by moving the AT -coordinate of λ(x) according to the transition in
AT upon reading a, and for each j ∈ Z moving the Aj -coordinate
of λ(x) according the transition in Aj upon reading a.

We note that by construction λ has the following properties with
respect to α and T . First, λ is consistent on T with PRODC in the
following sense: If y is a child of x, and the edge from x to y is
labeled by (a, Z), then there is a transition in PRODC from state
λ(x) that is labeled by (a, Z) which leads to state λ(y). Second,
λ is consistent on T with α in the following sense: for each word
w = w1 . . . wn ∈ L(AT), if x is the node reached by traversing
T while reading w1 . . . wi, then λ(x) is the state of PRODC that
is reached when processing w1 . . . wi according to α. These two
consistency properties will be preserved during each step of the
construction below.
We now perform a splicing argument on T which results in a 0-
lookahead DFA-based delegator for C . Suppose that u, v ∈ Σ∗,
and that x is the node of T corresponding to the end of word u and
y is the node of T corresponding to the end of word uv. Suppose
further that λ(y) = λ(x), and that there is no pair of nodes x′, y′

that are proper ancestors of y with λ(y′) = λ(x′). (Note that the
depth of y in T is at most |SC |.) It is easily verified, from the fact
that α is a 0-lookahead delegator, that for all w, uw ∈ L(AT) iff
uvw ∈ L(AT). Let z be the parent of y and let the edge (z, y) in
T be labeled by (b, Z). Create a graph G from T by (a) deleting
the subtree rooted at y, and (b) inserting a “back-edge” from z to
x, which is labeled by (b, Z). Define labeling function λ′ on the
nodes of G to be the restriction of the labeling λ on T to the nodes
of G. Create a new 0-lookahead delegator α′ from α, by using G
as a guide. (So in particular, for each w ∈ Σ∗ and each j > |uv|,
α′(uvw, j) = α(uw, j − |v|). An inductive argument can be used
to verify that α′ is again a 0-lookahead delegator. Furthermore, λ′

is consistent on G for both PRODC and α′.

This construction can be continued iteratively on graph G, at each
step deleting an infinite “subtree” of G. We continue to call the
new edges introduced “back-edges”. The end result is a graph H,
0-lookahead delegator β, and a labeling function γ which is con-
sistent on H with PRODC and β, where there is no back-edge-free
path in H that has two distinct nodes with the same value under
λ. This graph has size bounded by |Σ|s

e

, where s is the maximum
size of the e-services in C .

Now thatH is finite, we continue with the splicing operation. Specif-
ically, given nodes x, y with λ(x) = λ(y), we delete y and replace
all in-edges of y by in-edges to x (again retaining the same labels).
Also, delete all nodes no longer reachable from the “root” of H.
After each such step, inductive arguments are used to show that the
new graph again yields a 0-lookahead delegator γ for C , and that
the labeling function is consistent with PRODC and γ. The conclu-
sion of this iteration is a graph J where each node has a distinct
label. From here it is easy to convert J into a 0-lookahead DFA-
based delegator for C which is a deterministic sub-automaton of
PRODC .

Theorem 4.6 says that we can check the existence of an LA0 del-
egator by looking for a deterministic subgraph D of PRODC such
that L(D) = L(AT). Therefore, we can search through all sub-
graphs and check language equivalence; however, since in the worst
case there are exponential number of subgraphs, this brute force
approach can take exponential time in the size of PRODC which
is also exponential. Hence, the total time complexity of this ap-
proach would be double exponential. A better approach to reduce
the search space before checking for language equivalence. In or-
der to reduce the size of the search space we need to filter out some
of the subgraphs. For that purpose, we have the following observa-
tion:

LEMMA 4.7. Let a subgraph D of PRODC be an LA0 dele-
gator for a composition system C . Then, a configuration Q =
[qT ; q1, ..., qe] in PRODC cannot be part of the subgraph D if either

• Q 6∈ FC and qT ∈ FT (the configuration is not accepting but
the corresponding state of the target e-service is accepting),

• or there exists an activity a such that δT (qT , a) is defined
even though δ(Q,a)= {(error, ∅)}.

PROOF. (Sketch) Before go into the details, note that for every
configuration Q in D, there exists a path from the starting configu-
ration to Q with some word w (otherwise, it is not connected). In
addition, this path corresponds to a run of the machines in I on w.
We have two cases:

i) Assume Q 6∈ FC and qT ∈ FT . Then, since qT is an accepting
state in the target, this implies w ∈ L(AT). On the other hand, D
is LA0, and therefore there cannot be more than one path for each
word on D (remember that delegations of an LA0 delegator doesn’t
depend on any succeeding symbol). Therefore, w 6∈ L(D) is true
which means L(AT) 6= L(D) and this is a contradiction.

ii) Assume there exists an activity a such that δT (qT , a) is de-
fined while δC (Q, a)= {(error, ∅)}. Similar to the previous case,
there is a path in D with some word w, ending at Q. Since qT

is a productive4 state and δT (qT , a) is defined, there exists a word
wav ∈ L(AT). According the definition of LA0 delegator, first |w|
activities of w and wav are delegated in the same way. Therefore,
wav cannot be in L(D) since δ(Q,a) is error. Therefore, this im-
plies L(AT) 6= L(D) which is a contradiction.

Let’s call a configuration described in Lemma 4.7 a bad configu-
ration. According to Lemma 4.7, such a configuration cannot be

4Recall that a state is productive if an accepting state is reachable from that
state. In our system, the target e-service contains only productive states.
Note that any FA with nonproductive states can be converted an FA with no
nonproductive states in polynomial time.

����� � ���

� �	�

�
���

� ����� �
���

� ���
���

�����

��

����� ��� � �

����� � ��� � ���
��� � � � � ��� �����

����� � ����
���

� �������� ���
���

�����

��

��� � ��� � �
� ���
� � � ����� ���

 "!

!

Figure 6: First 2 Steps of Bad Configuration Removal from
PRODC in Figure 4: a) [221] is removed, b)[110] is removed.

part of any LA0 delegator D ⊆ PRODC ; therefore, it can be re-
moved from PRODC which reduces our search space. Algorithm 1
describes the remove operation and explains how to update PRODC .

EXAMPLE 4.8. Let’s reexamine the product machine shown in
Figure 4. The configurations [221] and [212] are bad because they
are not accepting, while the state 2 is accepting in AT . Also [110]
and [101] are bad configurations. For [110], neither A1 nor A2

can process c, although AT has a transition from the state 1 with
c. Figure 6 (a) and (b) show the product machine after [221] and
[110] are removed respectively. Note that when [221] is removed,
[111] becomes a bad configuration. On the other hand, the removal
of [110] doesn’t cause [000] to become bad.

Algorithm 1 RemoveBadConfiguration(Q, PRODC)

1: for each incoming edge e to Q do
2: Let e be labeled as (a, v). /∗ v is the set of delegations for

an activity a ∗/
3: Let Qs be the source configuration of e. /∗ e is an edge

from Q to Qs ∗/
4: Let δ(Qs, a) be the transition defined in Qs with the symbol

a. /∗ set of next configurations and delegations ∗/
5: if δ(Qs, a) − {(Q, v)} 6= ∅ then
6: δ(Qs, a) = δ(Qs, a) − {(Q, v)} /∗ there exist other

possible delegations ∗/
7: else
8: δ(Qs, a) = {(error, ∅)} /∗ no other delegations ∗/
9: end if

10: end for

Let λ denote Algorithm 1. Then, the following can be proven eas-
ily.

LEMMA 4.9. Let Q be a bad configuration in PRODC . If there
is an LA0 delegator D, then D ⊆ λ(Q, PRODC).

Lemma 4.9 suggests that we can apply Algorithm 1 enough num-
ber of times to eliminate all the bad configurations, and then we
can check for the existence of an LA0 delegator. For notational
convenience we call the final structure having no bad configura-
tions also PRODC . Algorithm 2 follows this approach. It removes
all the bad configurations and updates PRODC accordingly. Note
that the removal of a bad configuration may cause some other states
to become bad and the algorithm takes care of that while updating
the structure at each step. It is important to see that if the start-
ing configuration of PRODC is removed then there doesn’t exist an
LA0 delegator since the starting configuration must be part of any
delegator. Therefore, if PRODC is not empty, it contains an LA0

delegator as a subgraph. For example, in Example 4.8, the product
machine becomes empty. This shows that there is no LA0 delega-
tor for that system which is true because it can be verified that the
system requires at least 1 lookahead.

Although we reduce our search space using bad configuration re-
moval, we still need to search for an LA0 delegator among all the
left subgraphs. The following lemma shows that we can directly
construct an LA0 delegator from the product machine.

LEMMA 4.10. For a configuration [qT ; q1, ..., qe] ∈ PRODC

and an e-service A, let’s define a function α such that α([qT , q1,
...,qe],i) = qi where i ∈ {T, 1, 2..., e} (i.e., for the given configu-
ration, qi is the corresponding state of the ith machine). Also, for
a configuration Q ∈ PRODC , let L(Q) denote the language of the
same machine except Q is the starting configuration. Then, for any
two configurations Q1 and Q2 in PRODC , α(Q1, T) = α(Q2, T)
implies L(Q1) = L(Q2).

PROOF. (Sketch) Assume there exists a word w such that w ∈
L(Q1) but w 6∈ L(Q2). Since w ∈ L(Q1), the run on w starting at
Q1 ends in an accepting configuration Q′

1 while the run on w start-
ing at Q2 ends either in a rejecting or in the error configuration.
That’s why, we have two cases.

i) The run on w starting at Q2 ends in a rejecting configuration Q′
2.

Q′
1 is accepting; therefore, α(Q′

1, T) must be an accepting state
in AT . Since AT is a deterministic finite automata5 α(Q′

1, T) =
α(Q′

2, T). But then, Q′
2 is a bad configuration because it must be

an accepting configuration since α(Q′
2, T) is an accepting state in

AT . This is a contradiction, because there doesn’t exist any bad
configuration in the final product machine.

ii) The run on w starting at Q2 ends in the error configuration.
Then, there exists a prefix word ua of w such that run on u ends
in a configuration Q′

2 and from that configuration, the system goes
to the error configuration while processing a. Assume run on u
starting at Q1 ends in a configuration Q′

1. Since AT is a DFA,
α(Q′

1, T) = α(Q′
2, T). Since run on w starting at Q1 doesn’t end

in an error state, δ(Q′
1, a) is defined. That means δT (α(Q′

1, T), a)
is also defined. Then, Q′

2 must be a bad configuration because even
though δ(α(Q′

2, T), a) is defined (processing of a is in the desired
e-service is required), there is no volunteer subcontractor to process
a. Since there is no bad configuration in the final product machine,
this is a contradiction.

5As we specified before, we assume AT is a DFA. If it is an NFA then we
can first convert it to a DFA and the construct the product machine. Our
complexity results still hold despite the conversion.

By using Lemma 4.10, we can construct a DFA realizing an LA0

delegator D using the product machine in the following manner:
Start from the initial configuration. In each configuration Q, for
each activity a, we have a number of, say m, possible delegations,
i.e., δ(Q, a) = {(Q1, v1), (Q2, v2), ..., (Qm, vm)} where each vi

is a subset of volunteer subcontractors V(Q,a) and each Qi is a next
configuration. However, for all these next configurations, the corre-
sponding state of the target e-service is the same, i.e., α(Q1, T) =
α(Q2, T) = ... = α(Qm, T), because the target e-service is a
DFA. Therefore, by Lemma 4.10, it is true that L(Q1) = L(Q2) =
... = L(Qm). That’s why, picking one delegation and removing all
the other delegations don’t affect L(PRODC). Algorithm 2 below
removes all bad configurations and then does one graph traversal
on the product machine and at each configuration, picks one dele-
gation for each possible activity. By this way, it constructs a deter-
ministic FA representing a delegator for a given system.

Algorithm 2 Constructs an LA0 delegator for a composition system
C =(AT , I)

1: Construct PRODC

2: repeat
3: Find a ”bad” configuration in PRODC

4: Remove it and update PRODC

5: until No ”bad” configuration is left
6: if PRODC is empty then
7: return error /∗ there is no LA0 delegator ∗/
8: else
9: Construct a deterministic finite automata representing an

LA0 delegator
10: end if

Now let’s look at the time complexity of Algorithm 2. First line
of the algorithm takes exponential time as explained before. Line
2-5 is repeated at most the number of states which is exponential
and removal a bad configuration can be carried out in exponential
time. Line 9 requires a depth first search on PRODC which takes
exponential time. More specifically, if the target e-service is a DFA,
the total time complexity of the algorithm is O(|Σ|×22e×s2e×s2

T)
where |Σ|, e, s and sT denote the size of alphabet, the number of
e-services, the maximum number of states among subcontractors
and the number of states in the target e-service. Therefore, the
complexity is polynomial in |Σ|, s and sT , and exponential in e.
(If the target e-service is an NFA, then instead of s2

T we have 22sT

in the complexity formula.) To summarize:

THEOREM 4.11. For a composition system with deterministic
e-services, existence of an LA0 delegator can be determined in time
polynomial in the alphabet and sizes of the target and subcontractor
e-services, and exponential in the number of subcontractors.

4.3 k-Lookahead Delegator Construction
Here, we show how we can reduce the problem of deciding whether
a composition system of DFA’s has an LAk-delegator (for a given
k) to the problem of deciding whether a composition system of
DFA’s has an LA0-delegator. Note that for the sake of discussion,
we assume all the machines are DFA’s. The same approach can be
applied if the machines are NFAs.

Let C = (AT , {A1, ..., Ae}) be a composition system of DFA’s
and k be a positive integer. So that there are always always k looka-
head symbols, let # be a new symbol and f (resp., fi) be a new
state. Extend the transition function of AT (resp., Ai) by defining
the transitions from any accepting state, including f (resp., fi), on

symbol # to f (resp, fi). Then make f (resp., fi) the only ac-
cepting state. Thus the new DFA accepts the language L(AT)#+

(resp., L(Ai)#+). For the notational convenience, also call the
new machines AT , A1, ..., Ae.

Let δ be the transition function of the target DFA AT . Let x be a
string of length k over Σ∪{#}. We construct from AT a DFA Ax

T

with the transition function δx as follows:

1. The starting state of Ax
T is [q0, x], where q0 is the starting

state of AT .

2. For every state q of AT , every string y of length k − 1, and
any symbols a, b, let
δx([q, ay], b) = [δ(q, a), yb].

3. The only accepting state of Ax
T is [f, #k] where f is the

unique accepting state of AT .

Similarly we can construct for each Ai (1 6 i 6 e), the DFA Ax
i .

Figure 7 shows the application of the described construction to the
system in Figure 5(b).

�

�

��

�

���
�

�

�

	

�

�

�

�

�

	

��

�

���

�

�

��

�

�
�

�

�

	

Figure 7: Addition of # symbols to the machines in Figure 5(b)

Then we have:

THEOREM 4.12. Let C = (AT , {A1, ..., Ae}) be a composi-
tion system of DFA’s and k be a positive integer. Then C has an
LAk-delegator if and only if for every string x of length k, the sys-
tem C x = (Ax

T , {Ax
1 , ..., Ax

e}) has an LA0-delegator.

PROOF. Clearly, C has an LAk delegator if and only if for every
string x of length k, the product machine PRODC x has a determin-
istic subgraph that accepts L(Ax

T), and (by Theorem 4.6) if and
only if C x has an LA0 delegator.

The following is easily shown.

COROLLARY 4.13. Composition system C has a k-lookahead
delegator iff it has a k-lookahead DFA-based delegator.

The complexity of the algorithm just described can be determined
as follows: We have to check for every x of length k whether C x

has an LA0-delegator. Thus the time complexity is |Σ|k times the
time complexity of checking if C x has an LA0-delegator (where
|Σ| is the size of the input alphabet of the DFA’s). The size of each
DFA in C x is |Σ|k times the size of the original DFA. ¿From this
and Theorem 4.11 we obtain:

COROLLARY 4.14. For a composition system with determinis-
tic e-services and k in N, existence of an LAk delegator can be de-
termined in time polynomial in the alphabet and sizes of the target
and subcontractor e-services, and exponential in k and the number
of subcontractors.

We now give an example to illustrate the reduction.

�

�

�������

�
	�� ����

� ��� ����

�

�

� ��� ������

� ��� ������ �� ��� �����

�

� ��� ����

� ��� ���

� ��� ����

�������

��	�� ����

�
	�� ����

� ��� �����

� � � �����

� ��� �!���

� ��� �����
�

"

�

�

�

�

�

�

�

�

�
�

� ��� ���

�

"
� ��� ���

�
	�� ����

� ��� ����

�

�

� � � ������

� ��� �����

�$#����

� � � � �����

Figure 8: computation of C aa for Figure 5 (b)

EXAMPLE 4.15. Figure 5 (b) shows a system having an LA2

delegator. As described above, first a new accepting state f and
the transitions for the ending symbol # are added. Figure 7 shows
the resulting machines. Then, for every word of length 2, a new
composition system C x is computed and checked for the existence
of an LA0 delegator. Figure 8 shows the system for x = aa. Note
that the real construction produces many more states than that are
shown in Figure 8. For instance, in Aaa

T , the state [1,aa] is reachable
from [0,aa] and that’s why it should be part of Aaa

T . However, [1,aa]
can’t reach any accepting states (not productive); therefore, it has
no effect on the delegation construction as described before. As a
result, because of the space limitations such nonproductive states
are not shown.

Note that by using the reduction described above, any technique
for LA0 checking, e.g., the one proposed by [3], can be used. To
compare with [3], as we mentioned before, our technique has a finer
characterization of the complexity bound.

5. WOZART: A TOOL FOR AUTOMATED
COMPOSITION OF E-SERVICES

In this section, we briefly describe an automated composition tool
named Wozart implemented using the approaches presented in the
previous sections. Figure 9 shows the overall architecture of Wozart.
Wozart has two functionalities. First functionality is the construc-
tion of a deterministic delegator. Given a desired e-service, existing
e-services and a lookahead amount k (a number or *), the tool ap-
plies Algorithm 2 and tries to generate a k-lookahead delegator. If
it succeeds, the output is a Mealy FA having the activities as input
and the delegations as output so that it can be used to orchestrate
e-services collectively to achieve the desired e-service. Otherwise,
it means that k lookahead is not enough to determine the delegation
of the desired e-service to the given e-services.

%'&'()()*+%)%

, -). / &�01*

2�3)4 3'5
687 9'7 :;4�7 <=;> ?�@�@'=BA'C)3)A�D2�3�E 3�F�A;4
@'5
G�@82�3�E 3�FHA;4
@�5

I 7 4JC=K> ?�@'@'=BA�C)3)A�D

L�3;4!@HMN�OHA'7 E A�P�E 3Q!> :)3�5 O'7 <;3):

2�3):�7 5 3�DQ�> :H3�5 O'7 <K3

?�@�@!=BA�C)3)A�DN�6R@!S�9)4�T�=

UWV!X�Y�Z
[
\^]�_a`�]!b!c dJc]�egfhe�i�c e�j

kmlan

kporq

sut
v;w�w)s+xHy;z)xK{|�zH} zK~'xB� wH���wH�+�+� � �;��� � wH�
, -). / &�01* 9�@m?;Nh�!DH3�E 3�F�A;4
@'5

?HN��'D�3�E 3�FHA;4
@!5

<H@�68�'@H:)A�P'E 3� D�3�E 3'FHA;4
@'53;�'7 :;4 :��

9�@)4<�@�68��@H:)A�P�E 3� 9�@8D�3�E 3�FHA;4J@�5
�

%'&�(;()*K%)%

%'&�()()*+%)%

, -�. / &�0J*

��� zH�)� w)�BzK�B�)� �;~

��w����;w;�Kx��)� } � � ����HxH} �B�)� �

Figure 9: Wozart Architecture

Secondly, Wozart can give an answer to the question of delega-
tor existence. As described in the previous section, there are cases
where there is no bound on lookahead (i.e., determination of dele-
gations requires to check all succeeding activities), even though a
delegator exists. Therefore, for the user, it may not be possible to
specify a bound on the lookahead. In that case, the tool performs a
composability analysis and it gives a positive or negative answer to
the question of composability.

For the complete travel service, Figure 10 shows the LA0 delegator
computed by Wozart. As it can be seen, the delegator assigns each
activity to the existing e-services and achieves the behavior of the
desired complete travel e-service.

�H�;�)�1�
��� �K�!�����

�H�;�K���
�!�K �+�u��¡

�;�H�K�1�
� ¢ £ � ���

�;�H�K�1�
¤ ��¥� � ����¡

�)�;�;�u�
¤ �'¥� � ����¡ ¦ �1§'¢ ¤ � ¦ �

�B¨��+� ��©

�;�H�K�u�
���K �B����¡

�)�;�;�u�
� ¢ £ � ��ª

�;�H�K�u�
¤ ��¥� � ����¡

�H�;�;�u�
¤ �'¥� � ����¡ ¦ ��§�¢ ¤ � ¦� �B¨«��� ��©

�;�)�;�u�
 ¦ �)¢ ����ª

¬ �+� ��§�� � ¦+ � ¦
® � £���� � � �! ¦ �)¨+�«�� ¤«� ¦ ¨+¢ ®+�

Figure 10: LA0 delegator for the Travel Service Problem

Note that before both delegator construction and composability anal-
ysis, Wozart first performs a preprocessing on the FAs. Remember
that for the simplicity of the discussion, we previously assumed that
the target e-service is a DFA and doesn’t contain any nonproductive
states. Also, we assumed there is no incoming edge to the starting
states in the machines. Wozart preprocesses and modifies the FAs
so that they satisfy those assumptions.

Wozart is implemented using the WSAT library[12]. The input/output
format, source code and the other details can be found in the fol-
lowing address: http://www.cs.ucsb.edu/˜gerede/Wozart/index.html

6. CONCLUSION AND FUTURE WORK
In this paper, we defined a general class of delegators called ”looka-
head” delegators and investigated the complexity of constructing
such delegators, if they exist. We showed that for the case of de-
terministic e-services, a k-lookahead delegator can be constructed
in time polynomial in the size of the target and subcontractor e-
services, and exponential in the size of k and the number of sub-
contractor e-services. We also briefly described Wozart, an auto-
mated mediator construction tool that we implemented using the
techniques presented in this paper.

We should mention that a recent paper [8] also looked at the the
decidability of composability and existence of a bounded delega-
tor for various classes of machines including finite automata aug-
mented with unbounded storage (e.g., counters and pushdown stacks).
If some Presburger constraints (e.g., some linear relationships on
the number of symbols delegated to each service) are imposed on a
mediator, then the existence of such a k lookahead mediator for a
fixed k is also decidable. However, the complexities of the decision
procedures in [8] are rather high. In particular for the case of sys-
tems of nondeterministic finite automata, the procedure for decid-
ing the existence of a k lookahead delegator takes nondeterministic
exponential time in k and the sum of the sizes of the automata. We
have improved this result with a procedure that runs in determinis-
tic exponential time in this paper.

The result achieved in [8] concerning decidability of existence of
constrained mediator is quite interesting because in practical appli-
cations there may exist some constraints a mediator has to follow.
For example, it is possible that a specific type of activity shouldn’t
be delegated to the same service 5 times more than it is delegated
to the other services for fairness reasons. For another example, as-
sume delegation of an activity to each service costs differently and
the total cost of activities shouldn’t exceed some specified amount.
Both cases can be described by some Presburger formulas, and the
existence of such a constrained delegator is decidable. Therefore,
finding a delegator which delegates activities in an optimal way
with respect to a Presburger formula (e.g., cost minimization) is a
significant problem. In addition to this, the question of whether
there exists a bounded lookahead delegator (a bound on k) which
is left open in [8] is also left as future work.

Acknowledgement. The authors thank Daniela Berardi for many
useful discussions on material related to this paper.

7. REFERENCES
[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and

unrealizable specifications of reactive systems. In Proc. 16th
Int. Colloq. on Automata, Languages and Programming,
1989.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and
T. Milo. Dynamic XML documents with distribution and
replication. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 2003.

[3] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-services that export
their behavior. In Proc. 1st Int. Conf. on Service Oriented
Computing (ICSOC), volume 2910 of LNCS, pages 43–58,
2003.

[4] Business Process Execution Language for Web Services
(BPEL), Version 1.1. http:
//www.ibm.com/developerworks/library/ws-bpel,
May 2003.

[5] J. Buchi and L. Landweber. Solving sequential conditions by
finite-state strategies. Transactions of the American
Mathematical Society, 138:295–311, 1969.

[6] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: A new approach to design and analysis of
e-service composition. In Proc. Int. World Wide Web Conf.
(WWW), May 2003.

[7] E. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 2000.

[8] Z. Dang, O. Ibarra, and J. Su. Composability of infinite-state
activity automata. In Proceedings of the 15th International
Symposium on Algorithms and Computation, Hong Kong,
December 2004. To appear.

[9] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V.
Ramakrishnan. Logic based modeling and analysis of
workflows. In Proc. ACM Symp. on Principles of Database
Systems, pages 25–33, 1998.

[10] X. Fu, T. Bultan, and J. Su. Conversation protocols: A
formalism for specification and verification of reactive
electronic services. In Proc. Int. Conf. on Implementation
and Application of Automata (CIAA), 2003.

[11] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web
services. In Proc. Int. World Wide Web Conf. (WWW), May
2004.

[12] X. Fu, T. Bultan, and J. Su. Wsat: A tool for formal analysis
of web services. In 16th Internatioanal Conference on
Computer Aided Verification, July 2004.

[13] F. Gandon and N. Sadeh. A semantic eWallet to reconcile
privacy and context awareness. In Proc. Second Int. Semantic
Web Conf. (ISWC), Florida, Oct. 2003.

[14] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979.

[15] O. Kupferman and M. Y. Vardi. Synthesizing distributed
systems. In Proc. IEEE Symposium on Logic In Computer
Science, 2001.

[16] S. Lu. Semantic Correctness of Transactions and Workflows.
PhD thesis, SUNY at Stony Brook, 2002.

[17] R. Milner. Communicating and Mobile Systems: The
π-calculus. Cambridge University Press, 1999.

[18] S. Narayanan and S. McIlraith. Simulation, verification and
automated composition of web services. In Proc. Int. World
Wide Web Conf. (WWW), 2002.

[19] OWL-S 1.0 Release.
http://www.daml.org/services/owl-s/1.0/, May
2003.

[20] A. Pnueli and R. Rosner. Distributed reactive systems are
hard to synthesize. In Proc. IEEE Symp. on Foundations of
Computer Science, 1990.

[21] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT
Press, Cambridge, MA, 2001.

[22] M. Singh. Semantical considerations on workflows: An
algebra for intertask dependencies. In Proc. Workshop on
Database Programming Languages (DBPL), 1995.

[23] Simple Object Access Protocol (SOAP) 1.1. W3C Note 08,
May 2000. http://www.w3.org/TR/SOAP/.

[24] W. M. P. van der Aalst. On the automatic generation of
workflow processes based on product structures. Computer
in Industry, 39(2):97–111, 1999.

[25] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, March 2001.

