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Abstract

In this paper, we consider a data model for uncertain
trajectories of moving objects. In our model, the trajectory
is a vector of uniform stochastic processes. We study “uni-
versal range queries” which examine whether the spatial
properties of being inside a region hold throughout an en-
tire time interval. An example of universal range queries
is: “Retrieve all trucks staying in Santa Barbara area from
17:00 to 18:00 today.” The main technical contributions are
efficient algorithms for computing probabilistic answers to
universal range queries. We show that the algorithms are
efficient using theoretical worst case analysis and empiri-
cal studies. Interestingly, the practical complexity is better
than theoretical bounds.

1. Introduction
The locations of moving objects are continuously chang-

ing [27]. With the rapid advances in wireless communi-
cations and ubiquitous computing technologies, applica-
tions involving moving objects are fast growing. For ex-
ample, global positioning systems (GPS) are now widely
used in variety of applications on land, at sea, and in the
air. Emerging applications include fleet management, local-
ized information, emergency and safety services, network
management, etc. Location based service revenues world-
wide are expected to grow from approximately $1 billion in
2000 to over $40 billion in 2006 [1]. As a concrete exam-
ple, automatic vehicle location (AVL) is presently a $650
million industry and expected to exceed $1 billion annu-
ally by 2004 [28]. AVL combines both GPS and wireless
data networks for the purpose of tracking, monitoring and
exchanging information with remote vehicles. Telematics
is another rapidly growing real time application. Telemat-
ics utilizes wireless communication devices and location
sensing-technology and in some cases a service provider to
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provide safe and convenient services to drivers. It provides
emergency roadside assistance, stolen vehicle tracking, au-
tomatic crash notification, and navigation assistance. It is
estimated that over 20 million telematics-enabled cars and
light trucks will be on the road in the United States by 2006
[12], and the industry is expected to grow to at least $5 bil-
lion by 2005 [14].

Meeting this demand for applications involving location
information opens a door for new research areas. Among
the challenges is management and access of continuously
moving objects. Over the last few years various problems
in moving objects databases have been examined including
modeling and query languages [20, 27, 8, 7, 9, 23, 13], han-
dling large volume of location information through the use
of efficient index structures [16, 11, 2, 19, 24], efficient data
management, specifically, processing queries and handling
updates [20, 21], and query evaluation [10, 21, 3].

Much of the earlier work was based on the assumption
that exact trajectory information was available (or could be
obtained) at every time instant. Unfortunately, this assump-
tion cannot be guaranteed in real applications where trajec-
tory information is associated inherently with uncertainty
and lack of complete precise knowledge [15, 17, 25, 5]. For
example, although GPS provides reasonably accurate loca-
tions, applications typically acquire position data at some
(predetermined) time intervals, which means that the exact
position between those intervals need to be “predicted”. A
variety of factors make predicting precise object locations
an interesting research problem [15]. Those factors could ei-
ther be random (such as sudden wind changes, unexpected
speed slowdowns, etc.) in some applications [15], or a re-
sult of an object not sending instantaneous updates for its
current location [15, 25]. Although interpolation techniques
are widely available, for critical location-based applications
the accuracy of interpolation is not sufficient [18, 29, 4].

Inspired by the importance of this subject, we further
study the nature of moving object trajectories in presence
of uncertainty. We view the location of a moving object in
n dimensional real space at each time instant as a vector
of n random variables, and the trajectory of a moving ob-



ject as a vector of stochastic processes. We focus on effi-
cient query evolution in an uncertain trajectory setting.

Handling uncertainty in the context of moving object
databases was only investigated very recently. In [15] the
authors considered sampling errors in determining object
locations and modeling such errors using uniform distribu-
tions over a disc with radius as a parameter, and investigated
algorithms for answering window queries. The model was
extended in [25] to consider queries on trajectories. Quan-
tifiers such as “always”, “possibly”, “sometimes”, etc. and
their combinations were developed to indicate different de-
grees of likelihoods for window queries over trajectories.
However, the model cannot provide quantitative reasoning
about logical relationships over trajectories, since their ap-
proach treats uncertainty as “add-on”s to the data model,
rather than as first-class objects.

Query evaluation for uncertain trajectories was investi-
gated in [6, 5], the authors considered time instant queries
and presented algorithms for evaluating probabilistic time
instant range queries and time instant nearest neighbor
queries as well as some probabilistic aggregate queries.
Their techniques are only applicable for time instant query
but cannot be easily extended to answering time interval
queries studied in this paper.

Our model describes uncertainty of trajectories at a time
instant using uniform distributions and also allows differ-
ent dimensions to be constrained in a linear relationship.
The latter can be used to represent objects moving along
a road network. The focus of the paper is on the evalua-
tion of a class of spatio-temporal queries named “univer-
sal range queries”. A query in this class states a condition
about objects staying inside a region throughout a time in-
terval. Such queries easily arise in moving object database
applications.

The technical contributions of this paper are: First, we in-
troduce a data model for uncertain trajectories. The model
is based on the use of (time-dependent) uniform distribu-
tion. Second, we present a number of algorithms for evalu-
ating universal range queries. Finally, we present complex-
ity results, both theoretical and empirical to show that our
algorithms are efficient. Interestingly, while the theoretical
complexity bound is linear in the size of a trajectory and the
number of dimensions, empirical results show that in prac-
tical setting, the algorithms are far more efficient.

Although we focus in this paper on uniformly distributed
motions, we also outline how the technique developed here
could be extended for evaluating universal range queries
over other motion distributions specially the Gaussian dis-
tribution.

The paper is organized as follows. Section 2 introduces
the model for the moving object trajectories and defines uni-
versal range queries. Section 3 discusses the basic algorithm
for the simple case of 1-dimensional motions. Section 4 ex-

tends the algorithm to the general case of n-dimensional
motions. Based on these algorithms, Section 5 establishes
the complexity bound on evaluating universal range queries
trajectories and presents experimental results. Conclusions
are provided in Section 6.

2. A Model for Trajectories with Uncertainty

In this section, we introduce a data model for moving
object trajectories with uncertainty. Intuitively, a trajectory
in this model is represented as stochastic processes. Our
model treats each coordinate of a trajectory as a stochas-
tic process with a time-parametric uniform distribution. For
a given time instant, the object location is a random vari-
able whose values range over a (closed) interval represent-
ing the likely positions. We allow different coordinates of
a trajectory to be constrained. We aim at studying efficient
query evaluation techniques. We start with the following ex-
ample which illustrates the main ideas of our model.

For the technical presentation in this paper we assume
some familiarity with standard concepts in probability the-
ory (e.g. [22]) including: random variables, probability dis-
tributions and in particular uniform distributions, (continu-
ous) stochastic processes and their probability distributions,
and independence of random variables, etc.

Example 2.1 Consider an object o moving toward north-
east in a 2-dimensional plane as shown in Fig. 1. Due to un-
certainty, the location (xt, yt) of o at a time instant t cannot
be precisely known. One way to model this uncertainty is
to treat xt and yt as random variables x̄t and ȳt (resp.). As-
sume that x̄t and ȳt are independent and have uniform dis-
tributions. Fig. 1(a) shows the range [lx, ux] of possible val-
ues for x̄t with a mean mx.
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(a) x̄t at a time instant t

x

y

time = 5

time = 20

mx(t) = at+b

time = 10

(b) mx, lx, ux are linear
functions of t

Figure 1. A trajectory with uncertainty

Since the time t changes, x̄t is in fact a stochastic pro-
cess with t as a parameter. The mean mx and the range
[lx, ux] are functions of t. Fig. 1(b) shows the case when
mx, lx, ux are some linear functions of t with (1) positive
coefficients and (2) the coefficient in ux greater than that
in lx (and similar situation happens in the y-dimension).



In particular, the mean increases thus the object is moving
eastwards (or northwards for the y-dimension), and the un-
certainty range for the x-dimension increases.

The above example suggests a general framework of
modeling uncertainty in moving object trajectories. Specif-
ically, we can extend any distribution to allow the time pa-
rameter and use it to represent the uncertain coordinate in
one dimension. Although Example 2.1 considers only the
case of independent random processes, our model also al-
lows cases when objects move on a road network using a
linear relation constraining the stochastic processes for the
two dimensions.

In this paper we study trajectories whose uncertainty can
be described using uniform distributions. Uniform distribu-
tions are simple and easier to reason about in query evalu-
ation. They have been used in most of earlier work dealing
with uncertain trajectories including [25, 17, 15, 5].

We assume that time is continuous (represented by real
numbers) and fix t to be the time variable. Also, objects
move in some n > 0 dimensional continuous physical
space. We use random variables x̄1, ..., x̄n to denote coor-
dinates of object locations at a time instant and stochastic
processes x1, ...,xn to denote coordinates of object loca-
tions that can change over time.

Let u, d be two real numbers where d > 0. We repre-
sent the uniform distribution over the interval [u− d, u+ d]
by the pair (u, d). Note that u is the mean of the distribu-
tion. We define a uniform stochastic (random) process as
a pair (µ, δ) where µ, δ are (continuous, piecewise) linear
functions with the time parameter t such that for every real
number a, (µ(a), δ(a)) is a uniform distribution.

Uniform stochastic processes are used to model mov-
ing object locations. When an object moves along a road,
clearly the coordinates are related through a linear con-
straint. To model such situations, we represent one coor-
dinate by a linear equation involving the other coordinate.
In general, a (linearly) constrained stochastic process de-
rived from a set of stochastic processes S ⊆ {x1, ...,xn} is
a linear constraint Σxi∈S cixi+c0, where ci’s are real num-
bers. A linear constraint is unary if all but one coefficients
are zero.

Definition: An n-dimensional motion is an n-vector
(f1, ..., fn), where for each 1 6 i 6 n, fi is either a uni-
form stochastic process or a constrained stochastic process
derived from S, and S = {xj | fj is a uniform stochas-
tic process}. A motion is unconstrained if it does not
contain any constrained processes.

Example 2.2 Consider an object o moving northeast along
a road defined by the linear relation: x2 = 5x1 + 3. Let
the position of o at any time instant be given by a pair of
stochastic processes (x1,x2). Assume that the distribution
of x1 is (µ, δ), where µ = 2t+ 3 and δ = t+ 2 (Fig. 2(a)).

Then, the motion of o can be expressed as: m = (f1, f2)
where f1 = (2t + 3, t + 2) and f2 = (5x1 + 3). Fig. 2(c)
shows the constrained motion of o. Note that the uncertainty
region is a line.

Consider another object with 1-dimensional motionm =
f3 = (2t+ 3, b) (Fig. 2(b)) where δ = b is a constant.
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t

µ(t)

µ(t)−δ(t)

µ(t)+
δ(t)

(a) A 1D motion f1 where µ, δ are
functions of time

x1

t

µ(t)

µ(t)−b

µ(t)+b

(b) A 1D motion f3 where δ is a
constant

x2

x1

t1

t2

a b
(c) A constrained 2D motion

Figure 2. Examples of motions

Incorporating uncertainty in the representation of a tra-
jectory creates an uncertainty volume around the mean tra-
jectory. This uncertainty volume is governed by the linear
function δ in the uniform stochastic processes of a motion.
In this setting, the uncertainty volume can grow or shrink
over time. Increasing uncertainty volume is useful when an
object location information is becoming old. Decreasing un-
certainty volume is appropriate when an object is moving



closer to the time when its location is updated.
Let m = (f1, ..., fn) and m′ = (f ′

1, ..., f
′
n) be two mo-

tions and a a time instant. The motions m and m′ meet at
time a if for each 1 6 i 6 n,

1. fi is a uniform stochastic process iff f ′
i also is,

2. If fi and f ′
i are uniform stochastic processes, fi(a) =

f ′
i(a), and

3. If fi = Σxi∈S cixi + c0 and f ′
i = Σxi∈S c′ixi + c′0

where S is a set of uniform stochastic processes, then
Σxi∈S ciei + c0 = Σxi∈S c′iei + c′0 where ei is the
mean of the random variable x̄i in fi(a) (or f ′

i(a)).

Definition: Let k be a nonnegative integer. A trajectory is a
sequence (a0,m0, a1,m1, ..., ak,mk), where for each 0 6

i 6 k, ai is a real number or a special symbol in {−∞,∞}
andmi is a motion such that a0 6=∞, a0<a1< · · · < ak, and
for each 1 6 i 6 k, mi−1 and mi meet at time ai. A trajec-
tory is unconstrained if every motion in it also is.

Example 2.3 Consider an object moving in 1-dimensional
space whose trajectory is defined as: T = (2, (3t + 1, t +
1), 3, (2t+4, t+2), 4, (−3t+24, t+1), 5, (2t−1, t+1)).
T is illustrated in Fig. 3.

t

x1

Figure 3. A 1-dimensional trajectory

We assume the existence of an infinite set of object iden-
tifiers. A moving object database (MOD) is a finite set of
pairs (o, T ) where o is an object identifier and T a trajec-
tory such that each object identifier is associated to exactly
one trajectory. A MOD D is unconstrained if every trajec-
tory in D is unconstrained.

In this paper we consider a special type of spatio-
temporal queries that we refer to as “universal range
queries.” Specifically, a universal range query retrieves all
objects that have stayed in a region during a time inter-
val.

Example 2.4 Consider a GIS application which also tracks
various types of vehicles. Clearly, there are many queries
of interest [26] concerning, for example, at a fixed time re-
trieve the locations of certain kind of vehicles, or during a
time interval find vehicles occurring at least once inside a

region. The following are some queries concerning vehicles
staying in a region during the entire time (assuming the spa-
tial regions are approximated as rectangles):

• Q1 : Retrieve delivery trucks that stay in the Santa
Barbara area from 5pm to 7pm.

• Q2 : Find police cars that stay on State Street from
10am to 12noon with probability at least 75%.

• Q3 : Find the probability that bus #12 staying inside
UCSB campus from 3pm to 3:10pm.

A common problem in evaluating queries Q1, Q2, Q3 is
to provide a probabilistic answer for the spatio-temporal
predicates in the queries. For example, if the answer to Q1

can be computed, the technique for evaluating Q1 can then
be used to compute the probabilities of the corresponding
predicate in Q2 and Q3.

Note that for a given time instant, a motion (trajectory)
is a vector of random variables. Reasoning about the prob-
abilities of events concerning random variables (i.e., for a
time instant) can be done using traditional methods in prob-
ability theory. Extending to interval properties on continu-
ous random processes is not straightforward. The focus of
this paper is on evaluating such universal range queries.

Definition: A universal range (UR) query over an n-
dimensional MOD is a pair (I,W ) where I is a (closed) time
interval and W a bounded box (cross product of closed in-
tervals) in the n-dimensional space.

Let PROB[E] denote the probability of occurrence of
event E. We denote by T (τ) a vector of random variables
representing a trajectory T at a time instant τ . For each UR
queryQ = (I,W ) and trajectory T , we define the probabil-
ity of T satisfying Q as: P (T,Q) = PROB[∀τ ∈ I, T (τ) ∈
W ].

Let D be a MOD and Q a UR query. The answer of Q on
D is defined as the set:

Q(D) = {(o, p) | (o, T ) ∈ D, p = P (T,Q), p > 0}

For convenience, if (o, T ) is a moving object in a MOD, we
also use P (o,Q) to mean P (T,Q).

For a given UR query Q = (I,W ), the key to evaluat-
ing Q is to compute the probability of each object o with
trajectory T satisfying the query Q, i.e.,

P (T,Q) = PROB[∀τ ∈ I, T (τ) ∈W ]

3. One Dimensional Motions

In this section we consider evaluation of UR queries in
moving object databases. As discussed in Section 2 a key
property of UR queries states that spatial window conditions
on moving objects hold for every time instant during a given



time interval, i.e., universally true for the whole time inter-
val. In this section we focus on UR queries evaluation over
a 1-dimensional motion.

When trajectories are precisely given, a UR query can
be typically evaluated by eliminating trajectories that fail
to satisfy the condition at some time instants, i.e., evaluat-
ing a “(∀t)-condition” by removing objects satisfying some
“(∃t ¬)-condition”. In the presence of uncertainty, there are
no known algorithms to quantify the results, to the authors’
knowledge.

We first motivate the problem of evaluation of UR queries
through proposing two naive solutions that although they
are simple, they yield incorrect solutions. Next, we dis-
cuss our approach towards evaluating UR queries for 1-
dimensional motions. In Sections 4 and 5 we use the al-
gorithm for evaluating UR queries over higher dimensional
motions and over trajectories.

3.1. Naive Incorrect Solutions

In this subsection we illustrate through examples two ap-
proaches for evaluating UR queries for 1-dimensional mo-
tions. The examples show that even though the solutions
are simple, the answers are incorrect.

Example 3.1 Consider the query Q1 in Example 2.4,
which involves checking if a truck stays in Santa Bar-
bara region (approximated by a rectangular region R) dur-
ing the whole interval from 5pm to 7pm. Clearly, the truck
is in R during the period iff each of its x- and y-coordinates
is within the x- and y-projection of R during the time inter-
val.

Consider the x-dimension. Let [c, d] denote the time in-
terval of interest, [x1, x2] the x-projection of R, and x be
the uniform stochastic process of the x dimension for a de-
livery truck.

The core of evaluating this query is to compute the prob-
ability of the truck’s motion completely contained in the re-
gion formed by the x-dimension and the time dimension. A
naive approach is to compute this probability by the inte-
gral:

∫ d

c

∫ x2

x1

fx dx dt

where fx is the distribution of x at time t. While the com-
putation is simple, it is wrong.

The reason for the solution of Example 3.1 being wrong
is due to the fact that x is in fact a time-parametric distribu-
tion function and describes a stochastic process. The use of
fx in Example 3.1 treats x as a two dimensional joint den-
sity function. As a consequence, Example 3.1 may result in
a value > 1, hence not a valid probability.

Example 3.2 Continuing with Example 3.1. One could at-
tempt a simple fix by turning fx into a joint density func-
tion for both x and t̄ (the random variable for time). For ex-
ample, let ft̄ = 1

d−c be a uniform distribution of t̄ over the
time interval [c, d]. Assuming that t̄ and x are independent,
we can compute the probability by replacing solution of Ex-
ample 3.1 with

∫ d

c

∫ b

a

fxft̄ dx dt

However, the solution is still incorrect.

There are a few reasons for the incorrectness of Example
3.2. One is that picking a uniform (or any other) distribu-
tion for t̄ seems arbitrary. More importantly, even with the
assumption that fxft̄ is a proper joint density function, Ex-
ample 3.2 computes the probability of “there exists a time
instant in [c, d] when x̄ is in [a, b]” rather than the proba-
bility of “for each time instant in [c, d], x̄ is in [a, b]” as re-
quired by the query. Furthermore, Example 3.2 totally dis-
regards the constraint that each trajectory has to be contin-
uous.

Examples 3.1 and 3.2 suggest that probabilistic evalua-
tion of UR queries in Example 2.4 is fundamentally differ-
ent from time instant queries. This motivates the need for
different techniques for evaluating universal range queries.

In the next subsection we present a general technique
for evaluating 1-dimensional UR queries for moving objects
with uncertain trajectory information.

3.2. Complexity Result

The previous subsection motivated the need for an alter-
native efficient approach that correctly answers UR queries.
In this subsection we present our technique for evaluating
those queries. The main result of this section is the follow-
ing complexity result.

Theorem 3.3 Let Q = (I,W ) be a 1-dimensional UR
query,m a 1-dimensional motion of an object o, P (o,Q) =
PROB[∀τ ∈ I,m(τ) ∈ W ] can be computed in O(1) time
(i.e., constant time).

We discuss the idea of proofing Theorem 3.3 below and
outline a proof in Section 3.3.

If E1, E2 are events, we denote by PROB[E1 | E2] the
conditional probability of occurrenceE1 given E2.

We assume without loss of generality that W = [l, u].
Therefore, we need to compute the probability PROB[∀τ ∈
I(l 6 x1(τ) 6 u)], where x1(τ) is the random variable de-
noting the motion along x1 at time τ .

The main idea for computing PROB[∀τ ∈ I(l 6

x1(τ) 6 u)] is summarized as follows. We divide the



time interval I into small slices of width ∆, and com-
pute the conditional probability Pτ of the object o stay-
ing within the window [l, u] for a small time slice [τ, τ +∆]
of I if o starts from a point inside [l, u]. We denote the ran-
dom process at time τ + ∆ by x1(τ + ∆). In other words,
Pτ is defined as follows:

Pτ = PROB[l 6 x1(τ + ∆) 6 u | l 6 x1(τ) 6 u].

We approximate the motion of o within the time slice
[τ, τ + ∆] by a straight line. The probability Pτ can be
computed by considering each point xτ , inside the inter-
section of the query window [l, u] and the range of x1(τ),
and all the possible angles for o to move from this point
that results in a point x1,τ+∆ in the intersection of [l, u]
and the range of x1(τ + ∆) (i.e., at the time τ + ∆). In-
formally, PROB[∀τ ∈ I(l 6 x1(τ) 6 u)] is then the
product Π

|I|/∆
i>0 Pτi

where τ0 is the lower bound of I and
τi+1 = τi + ∆.

In the following subsection we use the above relations to
develop an evaluation technique for UR queries.

3.3. An Evaluation Technique

Using the above idea we obtain formulas for comput-
ing the probability of 1-dimensional motions m satisfying
Q, P (o,Q), in the following theorem.

Theorem 3.4 Let (I,W ) be a 1-dimensional UR query
and o an object with a uniform 1-dimensional motion
(µ, δ), where I = [Ilow , Ihigh], and W = [l, u]. Further-
more, let x1 denote the stochastic process for the mo-
tion, [Lmax, Umin] = W ∩ [µ − δ, µ + δ], and |I | be the
length of I . The probability of o satisfying Q is given be-
low:

1. If δ, is not constant,

P (o,Q)=PROB[∀τ ∈ I(l 6 x1(τ) 6 u)]

=
Umin − Lmax

range of x1(Ilow)
· e

2|I| · ((Umin − Lmax))
2|I|

(

(2aIhigh+2b)Ihigh+ b
a

(2aIlow+2b)Ilow+ b
a

)2

2. If δ is a constant,

P (o,Q)=PROB[∀τ ∈ I(l 6 x1(τ) 6 u)]

=
Umin − Lmax

range of x1(Ilow)

(

Umin − Lmax

2δ

)2|I|

In general, Theorem 3.4 gives a general formula for com-
puting the probability of an object staying within a query
windowW during a time interval I = [Ilow, Ihigh]. The for-
mulas in Theorem 3.4 are basically the product of 2 terms.
Since the motion is uniform, the first term Umin−Lmax

range of x1(Ilow)

is the probability of the object being initially insideW at the
start of the time interval Ilow, i.e., PROB[l 6 x1(Ilow) 6 u].

u

lτ0

xτ0

xτ1

……

τ0+∆

∆

xτ2

τ0+2∆

(a) Time slices division

Lmax

Umin

τ τ+∆

xτ

mean

xτ+∆

θ

(b) Staying within during
τ, τ + ∆

Figure 4. Illustrating the time slicing tech-
nique

The following discussion focuses on the second term,
which captures the probability of assuming the object starts
within W , it stays inside W for the entire interval.

An observation is that for a unit time interval (|I | = 1),
the probability of the object staying within W is basically
the ratio of the valid query window (i.e. intersection of x-
dimension range and x-dimension projection of the query
window) to the range of the x-distribution (i.e. [µ−δ, µ+δ]).
Such observation is reasonable due to uniform distribution.

We now first show in more details our approach for de-
riving the second term in the above result. Then we present
different cases that represent the different possible spatial
relationships between the motion and the query window.
Those cases are derived from the above theorem.

Let x1,τ be some position of o at the time τ such that
Lmax 6 x1,τ 6 Umax. Let x1(τ + ∆) be the random vari-
able for the position of o at the time τ + ∆. We assume the
trajectory motion of o within the time slice to be a straight
line. Let θ̄ be a random variable for the angle of o mov-
ing from x1,τ to x1,τ+∆. Let Ilow denote the lower bound
of the time interval I . Our approach proceeds as follows:

We start by dividing the time interval I into N small
slices of width ∆ where ∆ = I/N . Since o moves along a
straight line in the interval [τ, τ+∆], and θ̄ is a random vari-
able for the angle of o moving from x1,τ to x1,τ+∆.

• We define Θ̄ = tan(θ̄) =
x̄1,τ+∆−x1,τ

∆ . (Note that we
are only interested in θ̄ values that define the possible
angles for the motion so that o remains inside the win-
dow [Lmax, Umin] during the time slice.)

• Since the o moves with motion (x1 denotes the ran-
dom process with uniform distribution function given
by (µ, δ)), the distribution fΘ̄ of Θ̄ during a time slice
∆ is

fΘ̄ =

{

∆
2δ if (µ−δ)−x1

∆ 6 Θ 6
(µ+δ)−x1

∆
0 otherwise (1)



Having obtained the distribution for Θ̄, we next consider
each ∆ and compute the conditional probability, denoted
as Pτ of the object o staying within the window [l, u] for
a [τ, τ + ∆] of I if o starts from a point in [l, u]. In other
words, Pτ is defined as

Pτ = PROB[l 6 x1(τ + ∆) 6 u | l 6 x1(τ) 6 u]

Thus Pτ can be expressed as follows:

Pτ =

∫ x1=Umin

x1=Lmax

∫ Θ=
Umin−x1

∆

Θ=
Lmax−x1

∆

fΘ̄fx̄1 dΘ dx1 (2)

where fx̄1 = 1
2δ is the distribution for x̄1. Note that Lmax

and Umin may be functions of time.
Plugging Equation (1) into Equation (2) above, and with

simple mathematical manipulations we get:

Pτ =

∫ x1=Umin

x1=Lmax

∫ Θ=
Umin−x1

∆

Θ=
Lmax−x1

∆

∆

2δ

1

2δ
dΘ dx1

=
(Umin − Lmax)

2

(2δ)2
(3)

Now as we have the probability of staying within each
slice, we compute the probability of staying within the win-
dow [Lmax, Umin] for the whole time interval I . This can be
obtained by the following mathematical manipulations:

PROB[∀τ ∈ I(l 6 x1(τ) 6 u)]

=
Umin − Lmax

range of x1(Ilow)
·
|I|/∆
∏

i>1

Pτi

=
Umin − Lmax

range of x1(Ilow)
· eln

Q

i>0 Pτi

=
Umin − Lmax

range of x1(Ilow)
· e

P

i>0 ln Pτi (4)

where τi+1 = τi +∆ as defined earlier and Umin−Lmax

range of x1(Ilow)

is the probability of the object being initially inside the
query window at time Ilow. Let Ei be the event of condi-
tion l 6 x(τi) 6 u is satisfied. Then,

Pτi
= PROB[Ei | Ei−1] and

PROB[∀τ ∈ I(l 6 x(τ) 6 u)]

= PROB[E0] ·
∏

i>0

PROB[Ei | E0E1 · · ·Ei−1]

Since the trajectory within a slice only depends on the
starting point,Ei, Ej are conditionally independent for |i−
j| > 2. Equation (4) follows from this.

Finally, since we are interested in the continuous case,
taking the limit as ∆ → 0, Equation (4) can be expressed in
a continuous form as:

PROB[∀τ ∈ I(l 6 x1(τ) 6 u)]

=
Umin − Lmax

range of x1(Ilow)
· e

R

I
ln(lim∆→0 Pτ )dτ (5)

Following the result of Equation (3), it is clear that
lim∆→0 Pτ = Pτ . Based on this analysis and together
with some mathematical manipulations, Theorem 3.4 can
be proved.

Although the general case is given in Theorem 3.4, it is
also useful to consider special cases based on the the spatial
relationships between the query window W and the range
of the distribution R. There are 6 possible cases depending
on the spatial configuration between W and R, assuming
the boundaries of W and R do not intersect except for end-
points. However, only 3 cases are actually interesting. Two
other cases correspond to W ∩ R = ∅ which yield prob-
ability 0. And the last case is symmetric to one of the first
three cases.

Case 1 shown in Fig. 5 is the most trivial case. In this
caseR ⊆W , and the formula in Theorem 3.4 yields 1. This
is correct since the object stays within W for the time inter-
val I , i.e., object o always satisfies the UR query (I,W ).
Case 2 shown in Figure 5 is when W is totally enclosed in
R. Therefore, Lmax = l and Umin = u, where W = [l, u].
Case 3 shown in Fig. 5 is whenW is partially enclosed inR.
Therefore, Lmax = f(t) and Umin = u, where W = [l, u]
and R = [f(t), g(t)]. (There is a symmetric case for case
3.)

In the remainder of this section we give further dis-
cussion for Cases 2 and 3. Remember that (I,W ) is a
1-dimensional UR query and o an object with uniform 1-
dimensional motion m.

Corollary 3.5 Consider Case 2 of Fig. 5 where Lmax = l
and Umin = u. Let x1(τ) be the random variable of m with
a uniform distribution function at time τ defined by (µ, δ),
where µ and δ are linear functions of time. Letting δ = at+
b, we have

PROB[∀τ ∈ I(l 6 x1(τ) 6 u)]

=
|W |

g(Ilow) − f(Ilow)
· e2|I| · |W |2|I|
(

(2aIhigh+2b)Ihigh+ b
a

(2aIlow+2b)Ilow+ b
a

)2

The corollary is obtained by plugging the value |W | into
the term Umin − Lmax in Theorem 3.4.

Corollary 3.6 Consider Case 2 of Fig. 5 again where
Lmax = l and Umin = u. Let x1(τ) be a random vari-
able with a uniform distribution defined by (µ, δ) at time
τ , where µ is a linear function of time and δ is a con-
stant. Then,

P (m,Q) = PROB[∀τ ∈ I(l 6 x1(τ) 6 u)]

=
|W |

g(Ilow) − f(Ilow)

( |W |
2δ

)2|I|

The above corollary is also obtained by plugging the
value |W | into the term Umin − Lmax in Theorem 3.4.



Corollary 3.7 Consider Case 3 of Fig. 5 where Lmax =
f(t) and Umin = u. Let x̄1(τ) be the random variable of
motionmwith a linear uniform distribution function at time
τ defined by (µ, δ). Letting δ = at+b and u−f(t) = ct+d,
we have

P (m,Q) = PROB[∀τ ∈ I(l 6 x1(τ) 6 u)] =

u−f(Ilow)

g(Ilow)−f(Ilow)
· [(cIhigh+d)2Ihigh+

2d
c ][(aIlow+b)2Ilow+2b

a ]

[(cIlow+d)2Ilow+2d
c ][(aIhigh+b)2Ihigh+

2b
a ]

The corollary is obtained by replacing Umin − Lmax in
Theorem 3.4 by u − f(t), where u is the top bound of W ,
and f(t) is a linear function defining the lower bound of the
distribution.

For the case of constant δ the result is a simplified form
of the one proved for Corollary 3.7. The only difference is
that δ is now a constant:

PROB[∀τ ∈ I(l 6 x1(τ) 6 u)] =

u− f(Ilow)

g(Ilow) − f(Ilow)
· (cIhigh + d)

2Ihigh+ 2d
c

((2δ)2|I|)(cIlow + d)
2Ilow+ 2d

c

u

l
Ilow

f(t)

g(t)

Ihigh

(a) Case1

u

l

Ilow

f(t)

g(t)

Ihigh

(b) Case 2

u

l
Ilow

f(t)

g(t)

Ihigh

(c) Case 3

Figure 5. Spatial relationships between query
window and trajectory motion region

Using the above special cases we can now compute the
probability of any motion staying within a query window
P (m,Q). This can be obtained by dividing the time inter-
val into several intervals causing the motion in each inter-
val to resemble one of the cases considered above. Theo-
rem 3.3 follows easily. We use the following example to il-
lustrate the main idea.

Example 3.8 Consider the spatial relation between W and
the range of the distribution R shown in Fig. 6. To com-
pute the probability of the object staying within W during
I = [Ilow, Ihigh], we use the spatial cases defined above.
The time interval is thus divided into the shown set of mo-
tions (i.e. {m1,m2,m3}). To compute the probability in
this case, we simply apply the results for cases 1, 3 and 2
resp.

Ilow Ihigh

l

u

S1 S2 S3

Figure 6. Compound spatial relationships

The above discussion proves the correctness of Theorem
3.3 since the results show that for computing the probabil-
ity of any 1-dimensional motion satisfying a 1-dimensional
UR query we need to apply any combinations of the above
cases at most 3 times. Since each case takes only a con-
stant time O(1), the overall computational complexity is
thus O(1). Therefore, we can efficiently compute P (m,Q)
for 1-dimensional uniform motions and 1-dimensional UR
queries.

3.4. An Extension for Gaussian Motions

In the above discussion we focused on motions whose
distributions are defined to be uniform. In this subsection
we show that the previous technique is also applicable for
objects whose motion could be defined by any probability
distribution function, specifically Gaussian distributions.

We define a Gaussian stochastic (random) process as a
pair (µ, σ) where µ is the mean of the distribution and σ
is the standard deviation, both µ, σ are (continuous, piece-
wise) linear (real) functions with the time parameter t such
that for every real number a, (µ(a), σ(a)) is a Gaussian dis-
tribution.

We define an n-dimensional Gaussian motion as
an n-vector (f1, · · ·, fn) where for each 1 6 i 6 n,
fi is either a Gaussian stochastic process or a con-
strained Gaussian stochastic process from S, and
S = {xj | fj is a Gaussian stochastic process}. A
motion with no constraints is an unconstrained mo-
tion.

A trajectory is defined just similar to its definition in Sec-
tion 2 except that here each motion is a Gaussian motion.

Continuing with the same definition of the random vari-
ables and with the same derivation steps applied in the pre-
vious subsection, our goal is to find analogous equations
for Equations (1) and (3) for the Gaussian motion. The re-
sulting new equations can then be used to obtain an answer
for UR queries as proposed in the previous subsection. Thus
the main objective is to first use Equation (2) that express
PROB[l 6 x1(τ + ∆) 6 u | l 6 x1(τ) 6 u]. Then we plug



into it the new definition for Equation (1), so that we end
up with an equation similar to Equation (3). Finally, we fol-
low the same approach to obtain the result for the continu-
ous case using the result of Equation (5).

Under the assumption of Gaussian motion, the distribu-
tion function for the Gaussian stochastic random variable
x̄1 can be expressed by the Gaussian distribution function
as:

fx̄1 =

∫ ∞

−∞

1√
2πσ

e
−1
2 (

(x1−µ)
σ

)
2

dx1 (6)

Since we have Θ̄ = tan(θ̄) =
x̄1,τ+∆−x1,τ

∆ . We obtain a
definition for the distribution of Θ̄ to be:

fΘ̄ =
∆√
2πσ

e−
1
2 (

θ∆+x1−µ

σ
)
2

(7)

Following the above guide lines, we get the following
main result for Gaussian motions.

Theorem 3.9 Let (I,W ) be a 1-dimensional UR query and
o an object with a Gaussian 1-dimensional motionm = (f)
where f = (µ, σ), I = [Ilow, Ihigh], and W = [l, u]. Fur-
thermore, let x1 denote the stochastic process for the mo-
tion, [Lmax, Umin] are the window boundaries, and |I | be
the length of I . The probability of o satisfying Q is given
below:

P (o,Q) = PROB[∀τ ∈ I(l 6 x1(τ) 6 u)] =

Umin − Lmax

range of x1(Ilow)
· exp





∫

I

[ln (φ− ψ + ω)] dt





where,

φ =
1

2
√
π

1√
2
(−U+µ

σ )
2

∫

y=0

e−y2

dy

ψ = − 2

π

1√
2
(−U+µ

σ )
∫

y=0

e−y2

dy ·

1√
2
(−L+µ

σ )
∫

w=0

e−w2

dw

ω =
1

2
√
π

1√
2
(−L+µ

σ )2

∫

y=0

e−y2

dy

This result follows from plugging Equations (6) and (7)
into Equation (2). Then through the use of mathematical
manipulations and error function (i.e. as erf) [22], we ob-
tain a formula for P [o,Q] that is free of ∆. Thus substitut-
ing in Equation (5), the lim∆→0 can be eliminated and the
above result is deduced.

Corollary 3.10 Under the same assumptions in Theorem
3.9 and in addition assuming that µ and σ are constants,
then,

P (o,Q) = PROB[∀τ ∈ I(l 6 x1(τ) 6 u)] =
Umin − Lmax

range of x1(Ilow)
· (φ+ ψ + ω)|I|

where, φ, ψ, and ω are as defined in Theorem 3.9.

Although in this subsection we illustrated the case of
Gaussian motions, the technique is still valid for arbi-
trary motion distributions as long as a distribution for Θ̄ can
be obtained through transformation of motion random vari-
ables [22]. Then the new distribution can be simply plugged
into Equations (2) and (5) to get the result for UR query for
those motions.

4. Multi-dimensional Motions
In the previous section we only considered the sim-

plest case of a 1-dimensional motion for moving objects.
In this section we extend our results to single motions in
n-dimensional space. Specifically, we show how to evalu-
ate UR queries for n-dimensional motions, i.e., computing
the probability. We consider two different cases of moving
object motions, unconstrained motions and motions with
unary constraints, respectively.

4.1. Unconstrained Motions

Recall that a motion is unconstrained if it does not con-
tain any constrained stochastic processes. Thus, an uncon-
strained motion corresponds to an object moving in an n-
dimensional space where the uncertainty along each dimen-
sion is independent of other dimensions.

Due to the pairwise independency of the n dimensions,
Theorem 3.4 can be easily extended to n-dimensions. It is
known that the probability of a set of independent random
variables is the product of the probabilities of the random
variables individually. We have:

Theorem 4.1 Let (I,W ) be a UR query and
m = (x1, ...,xn) an unconstrained motion in n-
dimensional space. If Wi denotes the projection of W
on the ith-dimension,

PROB[∀τ ∈ I,m(τ) ∈W ] =
∏

16i6n

PROB[∀τ ∈ I,xi(τ) ∈Wi].

Furthermore, the query can be evaluated in O(n) time.

4.2. Motions with Unary Constraints

We consider the two dimensional case with one coordi-
nate derived from the other; generalization to n dimension



is straightforward. In this case, let x1 and x2 be two ran-
dom processes corresponding to the two coordinates of a
motion in which x2 is constrained by c1x1 + c0. Recall that
this can also be understood as whenever x1 has a value, the
value for x2 is also fixed. The linear constraint relation can
be easily used for modeling the trajectory of a vehicle mov-
ing along a road.

In the general case, an n-dimensional motion
(x1, ...,xn) with unary constraint consists of uniform
stochastic processes and constrained stochastic processes
where only one coefficient is nonzero. In other words, the
constraints are all of the form cixi + c0 where xi is a uni-
form stochastic process.

Let (I,W ) be a UR query and m a motion with unary
constraints in n dimensional space. Consider each con-
straint xj = cixi + c0 in m. For m to satisfy the UR
query condition, the event xj ∈ Wj must hold where Wj

is the projection of W on jth dimension. Define Ci
j = {z |

ciz + c0 ∈ Wj} and it is easy to see that C i
j is an inter-

val. Therefore the intersection W ′
i = Wi ∩ (

⋂

j C
i
j) defines

the interval for xi which is equivalent to all query condi-
tions on xi and on constrained processes derived from xi.
The following is immediate:

Theorem 4.2 Let (I,W ) be a UR query and
m = (x1, ...,xn) a motion with unary constraints in
n dimensional space. Suppose W ′

i is the intersection de-
fined in the above discussion.

PROB[∀τ ∈ I,m(τ) ∈W ] =
∏

xi is a uniform stochastic process

PROB[∀τ ∈ I,xi(τ) ∈ W ′
i ].

Furthermore, the query can be evaluated in O(n) time.

Example 4.3 Consider a car moving on a road defined as
x2 = x1 + 2. Consider a UR query with window W =
[3, 10]×[6, 10]. In this case,W1 = [3, 10] andW2 = [6, 10].
For the car to stay in W2, its x1 value has to be in the inter-
val [4, 8]. Thus W ′

1 = W1 ∩ [4, 8] = [4, 8].

Example 4.4 Consider a car traveling from Santa Barbara
to Berkeley. Assume that there exist 4 different routes that
can be followed to reach the destination. However, fol-
lowing any of those routes will cause the driver to pass
through a desert area (approximated by a rectangle). As-
sume a driver wants to choose a route that minimizes his/her
chances of being in the desert area from 2pm to 3pm. We
can use the technique in Section 4.2 to evaluate this query,
since the routing information can be viewed as trajectories.

5. Evaluating Universal Range Queries
In this section we consider the evaluation of UR queries

over unconstrained trajectories and trajectories with unary

constraints. The technical results concern the computation
of the probability of a trajectory satisfying a UR query. We
give two types of results on complexity. On the theoretical
side, we show that the complexity of evaluating one such
trajectory is linear in both the numbers of dimensions and
motions in the trajectory. We also conduct an experimen-
tal study and show that in practical settings, the complex-
ity is actually better: the number of probability computa-
tions is sub-linear in the number of motions and/or dimen-
sions.

Theorem 5.1 Let T be a trajectory with k motions and Q
a UR query in n-dimensional space. If T includes no con-
straints or only unary constraints, the probability P (T,Q)
can be computed in O(nk) time.

The idea of the proof is to consider motions individually
and apply Theorems 4.1 and 4.2 in a straightforward man-
ner. The probability of the trajectory is then the product of
that for all motions.

Although the linear complexity bound indicates efficient
computation, there is room to improve further for actual al-
gorithms. For a given UR query Q, we consider the times
P (m,Q) is computed where m is a 1-dimensional motion.
Clearly if the uncertainty region of m is disjoint from or to-
tally contained in the query window,P (m,Q) is simply 0 or
1 (respectively). Moreover, in the computation of P (T,Q)
if there is a motionm such that P (m,Q) = 0, P (T,Q) = 0
thus there is no need to do any probability computation.

Therefore the idea of the algorithm is to perform con-
tainment and disjointness checking for each motion with re-
spect to the query window and calculate probabilities only
when it is necessary.

The algorithm is quite simple and omitted here. Below
we present experimental results which counts the number of
times the probability computations are done in a UR query.
The results confirm our intuition.

The experiments are conducted for 1-dimensional case.
We generated 1-dimensional trajectories consisting of 200
motions with the following characteristics: motion lengths
are uniformly distributed between 2 and 5, moving veloc-
ities are uniformly distributed between 30 and 120. Given
a start time, a position, a velocity, and an update time of a
motion, we computed the next update position. The trajec-
tories generated are similar to that in Figure 3, where the
locations at update times are precise and the uncertainty is
proportional to the distance to the closest update position.
For uncertainty range δ, we generated deviation at the mid-
dle point between two consecutive updates, for fast objects
δ is large and for slow objects δ is small.

The query workload consists of windows that have dif-
ferent spatial position and that have various widths. We con-
sidered 20 sets of windows whose temporal extents span
over 2i (1 6 i 6 20) motions. Spatial extents of query win-



dows cover 5%, 10%, 20%, 25%, 50% of the entire space.
This gave a query workload of 100 different universal range
queries.

Fig. 7(a) shows the average number of times motion
probability computations need to compute. The average is
over queries with different temporal extents. It is interest-
ing to observe that the number of computation actually de-
crease, in contrast to the worst case linear complexity in
Theorem 5.1. The main reason is that as more motions are
covered, it is more likely that some motion probability be-
come 0 or 1.
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Figure 7. Number of probability computa-
tions

Fig. 7(b) gives a closer look into the previous result. It
shows the average for each temporal extent covering 2imo-
tions for 1 6 i 6 20. For windows of small spatial extents,
more probability computations are needed on the average
initially, and this number decreases as the temporal extent
enlarges. The reason for this phenomenon is that as more
motions are considered, the chances of some motion be-
ing disjoint with the query window increase. Windows with
larger spatial extents tend to have more probability compu-
tations initially since they are more likely to intersect mo-
tions.

However, when the spatial region of the window is too
large (50% of the space), it is likely that the uncertainty re-
gion of motions will be completely contained in the win-
dow and thus the number of probability computation be-
comes very small. This difference also exists for the tempo-
ral extent analysis. As more motions are covered, the num-
ber of computations rises instead of decreases. It is expected
that after some point the number should go down, resem-
bling the small window cases.

Fig. 7(c) shows the effect of the update frequency
on the number of computations needed by the tech-
nique. It considers different window spatial extents
(5%,10%,20%,25%,50%) and shows the effect of vary-
ing the update frequency for the different spatial cases.
For windows with small spatial extents, more probabil-
ity computations are needed on the average when the
frequency of update is very low. The reason for this phe-
nomenon is that fewer motions are considered and due
to narrow windows, the likelihood of intersection in-
creases. Windows with larger spatial extends tend to have
fewer average number of needed computation, the rea-
son is that more uncertainty regions will be likely to be
completely contained in the query window. It could be eas-
ily observed as well that as the frequency of updates in-
creases, the number of computations decreases and this
result follows the result in Fig. 7(a) since more updates in-
deed means more number of motions.

The experimental results are encouraging as they give
some realistic indication of the complexity of the problem,
while Theorem 5.1 merely gives the worst case bound.

6. Conclusions and Future Work

In this paper we discussed moving objects with impre-
cise trajectory information. We borrowed techniques from
probability theory and proposed a data model for uncer-
tain trajectories. The model proposed views a trajectory as a
uniform stochastic process. Using this model, we presented
a general technique for the evaluation of a type of spatio-
temporal queries named universal range (UR) queries. In
those queries the answer set is basically a set of objects and
probability values that specify the probability of the object



satisfying the UR query. In addition, we presented experi-
mental results that show that in reality complexity results
are much cheaper than expected theoretical analysis.

This paper presents a start for more possible work in this
area that handles uncertain trajectories. For example, it is
unclear how to evaluate UR queries where the spatial regions
are not rectangles. It is also interesting how to index trajec-
tories with uncertainty and evaluate UR and other queries
more efficiently.
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