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ABSTRACT
An interesting issue in moving objects databases is to find similar
trajectories of moving objects. Previous work on this topic focuses
on movement patterns (trajectories with time dimension) of moving
objects, rather than spatial shapes (trajectories without time dimen-
sion) of their trajectories. In this paper we propose a simple and ef-
fective way to compare spatial shapes of moving object trajectories.
We introduce a new distance function based on “one way distance”
(OWD). Algorithms for evaluating OWD in both continuous (piece
wise linear) and discrete (grid representation) cases are developed.
An index structure for OWD in grid representation, which guaran-
tees no false dismissals, is also given to improve the efficiency of
similarity search. Empirical studies show that OWD out-performs
existent methods not only in precision, but also in efficiency. And
the results of OWD in continuous case can be approximated by dis-
crete case efficiently.

Categories and Subject Descriptors
H.3.3 [Database Management]: Information Search and Retrieval.

General Terms
Algorithms, Performance

Keywords
Moving object trajectories, similarity search, spatial shape, one
way distance

1. INTRODUCTION
Advances in wireless communications and ubiquitous comput-

ing technologies provide significant stimuli for location dependent
applications. The available hardware for both collecting and stor-
ing data makes it more tempting than ever to obtain and manage
various types of data for applications. Among these data of gen-
eral interest are location information of “moving objects”. Indeed,
global positioning systems (GPS) are now widely adopted in vari-
ety of applications. Navigation and positioning are becoming more
important and even critical in many cases. One interesting type of
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applications requires finding “similar” trajectories of moving ob-
jects. For instance, in many sports such as football and tennis, it is
very useful for sports researchers to figure out the movement pat-
terns of top players by finding similar trajectories of objects’ (play-
ers, balls) motions. By analyzing similar trajectories of animals, it
is possible to determine migration patterns of them. In a city traffic
monitoring system, it is helpful to locate popular routes by com-
paring similarity between vehicles’ trajectories. This paper aims at
similarity search for trajectories.

Similarity search is not a new topic and has been investigated
in various context, e.g., motion tracking in videos [10, 8], time
series analysis [6, 2, 15, 14, 7, 3, 12], and recently, trajectories,
[16, 14, 9, 18, 17, 4, 11]. Partly due to the difficulty in formalizing
“similarity” and partly due to the diversity of applications, known
results aren’t satisfactory in many application contexts.

Consider an imaginary traffic control application where com-
muters are tracked and their daily trajectories are stored. The trajec-
tories of a commuter can be aggregated over a specific time interval
(e.g. a month) to find its typical shape. An interesting problem is to
analyze the aggregated trajectories to investigate the feasibility of
a new bus route. The goal is to find how much benefit commuters
can get. In this case, the similarity of the planned bus route and
a commuter trajectory concerns more about the shared segments
or location proximity, rather than completely matching the actual
timed location sequences. In other words, the speed and direction
information of trajectories are not critical, but the “spatial shape”
is. For example, in Figure 1, trajectory B is more similar to A than
C, while C is more similar to D than B. Analogously if the aggre-
gated commuter trajectories are stored and compared, the similarity
will also focus on the spatial closeness. In fact, the time ordering
of an aggregated location sequence does not have much semantic
meanings in this context.

In general, travel or traffic routes concern mostly with the start-
ing and ending locations. In many applications, similarity of routes
focus primarily on the closeness of the physical positions of the
routes, while detailed timing and speed information may not be
as important. This motivates the need for a new similarity notion
based on closeness of their spatial shapes. Compared with move-
ment pattern similarity, spatial shape similarity has the following
characteristics:

• Time is not sensitive, and thus trajectories are represented
without time information.

• Trajectories can be of different length.

• Similar trajectories must be spatially close to each other.

• When performing similarity comparison, the mapping be-
tween trajectories may not be continuous and monotonic.

Known results in dealing with similarity are not well suited for
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Figure 1: Spatial Similarity of Trajectories 1

dealing with aggregated trajectory information. Similarity notion
for motion tracking in videos are typically invariant with respect to
rotations and translations. In time series analysis, trajectories are
one dimensional and the time dimension is treated very differently;
it is not trivial to employ the techniques in the moving objects set-
ting. In the prior work on similarity of moving object trajectories,
the similarity notion takes the time ordering into consideration.

Since existing algorithms focus on movement patterns of moving
objects, they cannot be directly applied to the spatial shape similar-
ity search problem. In this paper, we propose a simple but effective
similarity distance function and develop algorithms based on this
distance function for spatial shapes similarity search of moving ob-
ject trajectories. The major contributions of this paper are:

• We introduce a new similarity distance definition based on
“one way distance” (OWD, Section 3) of trajectories (con-
tinuous and discrete).

• We develop an efficient algorithm for computing similarity
distance between trajectories in the discrete case (grid repre-
sentation), which achieves a O(mn) complexity, where n is
the length of a trajectory and m is the number of local min
points.

• An index structure, which guarantees no false dismissals, is
also introduced to enhance the performance of OWD algo-
rithm.

The remainder of the paper is organized as follows. Section 2
discusses related works. Section 3 defines trajectories, OWD dis-
tance in different representation, and the similarity search problem.
Detailed algorithm description and analysis of OWD are given in
Section 4. An index structure for OWD is described in Section 5.
Section 6 evaluates OWD by comparing it other algorithms. Sec-
tion 7 concludes this paper.

2. RELATED WORK
Similarity search has been well studied in the context of time se-

ries [6, 2, 15, 14, 7, 3, 12]. Original similarity search algorithm is

1The map is obtained from http://maps.google.com.

based on Euclidean distance, which is sensitive to noise and can-
not be performed on sequences with different length and sampling
rate. Referenceds [6] and [2] are dimensionality reduction meth-
ods based on Discrete Fourier Transformation and Discrete Wavelet
Transformation respectively to improve search performance with
approximation. Reference [7] presents an indexing method called
Adaptive Piecewise Constant Approximation, which is also a di-
mensionality reduction technique for sequence matching based on
the Euclidean distance. This technique uses constant-value seg-
ments to approximate sequences and achieves better approximation
quality [7]. [12] approximates trajectories with Chebyshev Polyno-
mials, then compute the distance based on the polynomials. How-
ever, similar to the Euclidean distance, these measures also require
that trajectories are of the same length.

[15] introduces Dynamic Time Warping (DTW) distance to make
it possible compare sequences with different lengths, with and with-
out time information. DTW is a method that allows local stretch of
sequences to minimize the distance between sequences. [14] gives
an improved version of DTW, which filters out unpromising se-
quences by using an index structure with segmentation and lower
bounded distance measure. Its indexing techniques are extended
and utilized in our index structure (see Section 5). A distance mea-
sure which is both metric and allowing time-shifting is introduced
in [3]. But all their algorithms require the mapping between trajec-
tories to be continuous and monotonic.

Recently interests of similarity search also arise in trajectory
comparison [10, 16, 14, 9, 18, 17, 8, 4, 11]. DTW has some vari-
ants for trajectories similarity search [10, 16]. [10, 16] both present
a representation of trajectories invariant to rotation, shifting, and
scaling. [9] utilizes the distance between minimum bounding rect-
angle to compute the distance between two multidimensional se-
quences. But the distance function can not avoid false dismissals.
[18] shows an algorithm extended from time series similarity search
method which is based on Euclidean distance. But this algorithm
can only compare trajectories with the same lengths or with the
same time interval. [8] proposes a method which allows global
stretch to match sequences similar but in different scale. [4] in-
troduces EDR (Edit Distance on Real sequence) distance function
based on edit distance. But the mapping between trajectories in
these two algorithms is still continuous and monotonic. [17] com-
pares sequences by extracting their longest common subsequences.
This method removes the mapping continuity requirement and is
more flexible in similarity comparison. But it still require the map-
ping between trajectories to be monotonic. In [11] an aggregation
method based on rasters is developed for both spatial and spatial-
temporal trajectories. But the method can only support aggregation
queries, not similarity search queries.

Most of these algorithms focus on movement patterns of moving
object trajectories. As we discussed in Section 1, most techniques
cannot be directly applied to spatial shape similarity search. One
exception is the DTW technique, which is originally introduced in
sequences comparison [15]. But its complexity is quadratic and
its mapping requires continuity and monotonicity. Comprehensive
comparison of DTW and OWD will be presented in Section 5.

3. TRAJECTORY SIMILARITY
In this section we define the two notions of a trajectory based

on “linear” and “grid” representations, and the notion of similarity
between a pair of trajectories (in their respective representations)
using “one way distance” (OWD) from one trajectory to the other.
A formulation of the similarity search problem for trajectories is
given in Subsection 3.3.



3.1 Linear representation
In order to define the similarity measure between trajectories, we

need to formulate the notion of a trajectory. As mentioned in Sec-
tion 1, our focus is on the spatial shapes of trajectories. Therefore,
there is no time information in a trajectory.

Since completely continuous location information of a trajectory
is not always available and the computation cost of such continu-
ous data is likely high, in many applications the (piecewise) linear
representation is employed to solve the problems. A linear repre-
sentation is to approximate a trajectory using a sequence of line
segments.

A line segment is represented by a pair of points (p, q), the length
of a line segment (p, q) is defined as the Euclidean distance be-
tween the points p, q.

DEFINITION 1. A (piece wise) linear (or PWL) trajectory is
a sequence of points (p1, p2, ..., pn), where each adjacent pair of
points (pi, pi+1) (1 6 i 6 n − 1) is a line segment in the trajec-
tory. The length of a trajectory T , denoted as |T |, is the sum of
lengths of the line segments in it.

For convenience, we assume that trajectories have lengths > 0.
The distance from a point p to a trajectory T is defined as:

Dpoint(p, T ) = minq∈T DEuclid(p, q)

where DEuclid(p, q) denotes the Euclidean distance between points
p and q.

We now define the one way distance from a trajectory to another
trajectory based on Dpoint(p, T ).

DEFINITION 2. The one way distance (or OWD) from a trajec-
tory T1 to another trajectory T2 is defined as the integral of the
distance from points of T1 to trajectory T2 divided by the length of
T1:

Dowd(T1, T2) =
1

|T1|

„
Z

p∈T1

Dpoint(p, T2) dp

«

The distance between two trajectories T1 and T2 is the average
of their one-way distances:

D(T1, T2) =
1

2
(Dowd(T1, T2) + Dowd(T2, T1))

Clearly Dowd(T1, T2) is not symmetric but D(T1, T2) is. Note
that Dowd(T1, T2) is the integral of shortest distances from points
in T1 to T2. If T1 is a sub-trajectory of T2, Dowd(T1, T2) is 0; if
T1 is very close to a sub-trajectory of T2, Dowd(T1, T2) is close
to 0. In both of these cases, the opposite distance Dowd(T2, T1)
can be very large. That is, Dowd(T, Q) can be understood as “how
much trajectory T is similar to the query trajectory Q?” (Smaller
values means more similarity). It is easy to see that Dowd(T1, T2)
can be used in sub-trajectory search. Furthermore, the algorithms
developed in this paper can be used in both similarity search and
sub-trajectory search.

3.2 Grid representation
As we will show in our experiments, the computation cost of

distances between piecewise linear represented trajectories is still
high. Therefore, we need to have discrete definition to achieve bet-
ter performance with acceptable precision. In this paper we con-
sider grid representation to describe discrete trajectories. In the
remainder of this paper, our discussions focus on grid representa-
tion.

In a grid representation, the entire workspace is divided into
equal-size grid cells, and each grid cell is labelled according to its
position in the x and y dimensions. For instance, the left-bottom
grid cell is labelled as (1, 1) and the right-top grid cell is labelled
as (m,n), where m and n are total numbers of columns and rows,
respectively. Obviously all labels are integer numbers. Given a grid
cell g = (i, j), i is called the x-label of g (i.e. g.x) and j is the
y-label (i.e. g.y).

We define the distance between two grid cells g1, g2 as follows:

Dgrid(g1, g2) =
p

(g1.x− g2.x)2 + (g1.y − g2.y)2.

Based on Dgrid(g1, g2), a trajectory in grid representation can
now be defined.

DEFINITION 3. A grid trajectory is a sequence of grid cells,
T g = (g1, g2, ..., gn) such that for each 1 6 i < n, gi and gi+1 are
adjacent, i.e., Dgrid(gi, gi+1) = 1. The number n in the trajectory
T g shown above is called the length of T g, and denoted as |T g| =
n.

The distance from a grid cell g to a grid trajectory T g is defined
as the shortest distance from g to T g .

Dg

point(g, T g) = ming′∈T g Dgrid(g, g′).

Similar to Definition 2, the one-way grid distance and the dis-
tance between grid trajectories can be defined as follows.

DEFINITION 4. The one way distance in grid representation
from one trajectory T g

1 to another trajectory T g
2 is defined as the

sum of the distance from grid cells of T g
1 to that of T g

2 divided by
the length of T1.

Dg

owd(T
g
1 , T g

2 ) =
1

|T g
1 |

„

X

p∈T
g
1

Dg

point(p, T g
2 )

«

.

The distance between two grid trajectories T g
1 and T g

2 is defined
as the average of Dg

owd(T
g
1 , T g

2 ) and Dg

owd(T
g
2 , T g

1 ).

Dg(T g
1 , T g

2 ) =
1

2

`

Dg

owd(T
g
1 , T g

2 ) + Dg

owd(T
g
2 , T g

1 )
´

One important feature of grid representation is its insensitivity to
noises. And coarser grid leads to less sensitivity to noises. It is also
quite clear that coarser grid representation means less computation
cost and accuracy. Therefore, the trade-off between computation
cost, accuracy, and sensitivity to noises can be achieved by varying
grid cell size in grid representation.

3.3 Similarity Search
Based on the definitions provided in Subsections 3.1 and 3.2, we

can now measure the similarity with distance between trajectories.
Therefore, similarity search problem can be described as follows.

SIMILARITY SEARCH PROBLEM: Given a set of trajectories
S = {T1, T2, . . . , Tn}, a query trajectory Q, and a positive integer
k, find the k trajectories in S which have the smallest distances to
Q.

4. DISTANCE COMPUTATION
The similarity search problem stated in Section 3 can be ad-

dressed in two steps. The first step is to find a similarity comparison
algorithm to compute the similarity (distance) between two trajec-
tories. The second step is to find an indexing structure to speed up
the search computation through a large number of trajectories.

The similarity comparison algorithms based on one-way distance
(OWD) for both PWL and grid representations are given in Subsec-
tions 4.1 and 4.2, respectively. Theoretical analysis of both algo-
rithms is also given. In the next section (Section 5) we will focus
on the indexing problem for trajectories.



4.1 Linear (PWL) representation
The basic idea of this algorithm is to compute the OWD dis-

tance piece by piece. Since a trajectory in PWL representation is
composed of a sequence of segments. Given a linear trajectory
T = {p1, p2, ..., pn}, let LS(T ) = {linesegment(pi, pi+1) | 1 6

i 6 n − 1} represent all line segments in T . Then the one way
distance from a trajectory T1 to another trajectory T2

Dowd(T1, T2) =
1

|T1|

„

X

s∈LS(T1)
(Dowd(s, T2) · |s|)

«

where |s| is the length of a line segment s.
In order to compute Dowd(s, T2), we view s as a function of t

where t is a new variable. Specifically, a line segment s = (p1, p2)
(p1 and p2 are the endpoints of s) can be represented as a function
s(t) = p1 +(p2− p1)t, where t is in the range [0, 1]. So the OWD
distance Dowd(s, T2) from s to T2 can be represented by a function
f(t) and Dowd(s, T2) =

R 1

0
f(t) dt. The function f(t) is called the

global min function from s to T2. To compute f(t), it is necessary
to examine each segment s′ ∈ T2, compute the OWD distance
function from s to s′. Then, f(t) can be obtained as the lowest
envelope of all these functions using plane-sweeping algorithms
[5] and the algorithms computing the intersections of curves [13].

(0,0) (2,0)

(2,2)
(4,2)

(0,1)

(2,3)

s

s1

s3

s2

(0.5,0)

(2,1.5)

Figure 2: An Example of Global Min Function Computation

Figure 2 shows an example of the computation of f(t). In this
example the trajectory T2 consists of three line segments s1, s2, s3

(in this order). The OWD distance functions f1, f2, f3 from a line
segment s to s1, s2, s3 (respectively) can be computed as follows.

f1(t) = 1 + 2t (0 6 t 6 1)

f2(t) =

(

2 − 2t (0 6 t 6 0.5)√
8t2 − 12t + 5 (0.5 < t 6 1)

f3(t) =
√

8t2 − 12t + 5 (0 6 t 6 1)

Using these functions, f(t) can be computed as

f(t) =

8

<

:

1 + 2t (0 6 t 6 0.25)
2− 2t (0.25 < t 6 0.5)√

8t2 − 12t + 5 (0.5 < t 6 1)

Figure 3 shows the computation of f(t). It is easy to see that
f(t) is the lowest envelope of functions f1(t), f2(t), and f3(t) in
the range of [0, 1].

The detailed algorithm is shown in Algorithm 1. The outer “for”
loop goes through all segments in T1, and Lines 3 to 8 compute
Dowd(s, T2). Line 5 computes the OWD distance from a line seg-
ment s to another line segment s′. The global min function f(t)
from s to T2 is computed in Line 7 using the algorithms in [13, 5].
Line 10 gets Dowd(T1, T2).

The plane sweep algorithm in Line 7 requires O(n log n) time
complexity [5]. It follows that Algorithm 1 has O(n2 log n) com-
plexity, where n is the numbers of segments in a trajectory.

10.5

1

2

3

t

OWD distance

f1(t)f3(t)

f2(t)

0
0

0.25

Figure 3: The f(t) Computation of the Example in Figure 2

Algorithm 1 OwdPwl(T1, T2)
1: C ← 0
2: for each segment s = (p1, p2) in T1 do
3: Initialize an empty function set F
4: for each segment s′ = (q1, q2) in T2 do
5: Find the parameterized (with t) OWD function

from s to s′, put it into F
6: end for
7: Compare all functions in F and

compute the global min function f(t) from s to T2

8: C ← C +
R 1

0
f(t) dt× |s|

9: end for
10: Return C/|T1|

4.2 Grid representation
As discussed in Subsection 4.1, the computation cost of trajec-

tory similarity comparison in the PWL representation is at least
quadratic in terms of the number of segments. As we are going
to show in this section, This complexity can be improved. A key
idea is to find “local min points” of grid cells. It turns out that
local min points of a grid cell can be effectively inferred from its
neighbor’s. Based on local min points, we develop an algorithm of
“semi-quadratic” O(mn) complexity for grid trajectories, where n
is the length of a trajectory T1 and m is the average number of local
min points of grid cell. In this subsection we focus on the details
of this similarity comparison algorithm for grid representation of
trajectories.

Before introducing the algorithm, it is necessary to mentioned
that in the algorithm the most time consuming part is the distance
computation for two grids, which accounts for up to 80% of CPU
time in our experiments. So the number of calls of the grid distance
computation is the major metric when we analyze the complexity
of algorithms for grid representation.

The naive algorithm for OWD in grid representation requires
computing the distance for all pairs of grids on different trajectories
and has a O(n2) complexity, where n the length of a grid trajec-
tory as defined in Section 3. But some computation of the distance
between grids are not necessary. In this section we will show that
a lower complexity O(mn) can be achieved, where n is the length
of trajectories and m is the number of local min points.

Before presenting the details of our algorithm, we first introduce
the concept of Local Min Point.

DEFINITION 5. (Local Min Point) Given a grid cell g and a
trajectories T , a grid cell g′ ∈ T is a local min point to g if
D(g′′, g) > D(g′, g) for each grid cell g′′ in T adjacent to g′.

In other words, local min points of a grid cell g are those grids



whose distances to g are shorter than those of their neighbors. Fig-
ure 4 displays an example of local min points. g is a single grid
cell and the grid cells marked with bold lines represent a trajectory.
g has three local min points in the trajectory: g1, g2, and g3. And
among the three local min points, g3 is the one whose distance to g
is the shortest distance from g to the trajectory.

g

g3

g1

g2

Figure 4: Examples of Local Min Point

According to the definition of local min points, it is clear that to
compute Dg

owd(g, T2), it is only required to compute D(g, g′) for
all local min points g′ ∈ T2 of g. A better news is that in grid
representation local min points can be inferred without using the
time consuming grid distance function. Algorithm 2 shows how to
determine among two adjacent grid cells g1, g2, which one is closer
to g. Before we explain this algorithm, it is necessary to establish
the following easily verified fact first.

LEMMA 1. For each pair of two adjacent grid cells g1, g2 on a
trajectory, either g1.y = g2.y and |g1.x − g2.x| = 1 or g1.x =
g2.x and |g1.x− g2.x| = 1.

According to Definition 3, given any two adjacent grid cells
g1, g2 on a trajectory, Dg(g1, g2) = 1 means that (g1.x−g2.x)2 +
(g1.y − g2.y)2 = 1. Since the coordinates must be integers, ei-
ther g1.y = g2.y and |g1.x − g2.x| = 1 or g1.x = g2.x and
|g1.x− g2.x| = 1.

Therefore, given two adjacent grid cells g1, g2, either g1.y =
g2.y or g1.x = g2.x. Therefore, we only need to consider these
two situations in Algorithm 2. When g1.y = g2.y (Lines 1 to 7),
it is only required to compare the distances on x-dimension; when
g1.x = g2.x (Lines 8 to 13), only the comparison on y-dimension
is necessary. The distance computation function is invoked in nei-
ther case.

Based on Algorithm 2, we can easily find the local min points of
a grid cell in a trajectory.

But actually a further improvement can be achieved—in most
cases even the calling of Algorithm 2 is not necessary. The reason
of this is that a grid cell’s local min points can be inferred from its
neighbors’ local min points. Before showing this statement is true,
we first prove the following theorem:

THEOREM 2. Let T, T ′ be two trajectories and g1, g2 two ad-
jacent grid cells in T . Suppose further that g′ ∈ T ′ is a local min
point to g1. If g1.y = g2.y and g1.x 6= g′.x or g1.x = g2.x and
g1.y 6= g′.y, then g′ is also a local min point to g2.

PROOF. We first prove the case when g1.y = g2.y ∧ g1.x 6=
g′.x. According to Lemma 1 and Definition 5, for an adjacent grid
cell g′′ of g′, there are only two possibilities:

Algorithm 2 Closer(g, g1, g2)

1: if g1.y = g2.y then
2: if |g1.x− g.x| < |g2.x− g.x| then
3: return g1

4: else
5: return g2

6: end if
7: end if
8: if g1.x = g2.x then
9: if |g1.y − g.y| < |g2.y − g.y| then

10: return g1

11: else
12: return g2

13: end if
14: end if

(1) g′′.x = g′.x and |g′′.y − g′.y| = 1, and

(2) g′′.y = g′.y and |g′′.x− g′.x| = 1.

For Case (1), it is obvious that D(g′′, g2) > D(g′, g2) since
D(g′′, g1) > D(g′, g1) and g1.y = g2.y. Thus g′ is a local min
point to g2.

For Case (2), if g′′.x = g′.x + 1, then

D(g′′, g1) < D(g′, g1)⇔ g1.x 6 g′.x

Since g1.x 6= g′.x, so

g1.x < g′.x⇔ g2.x 6 g′.x⇔ D(g′′, g2) < D(g′, g2).

Similarly, we can also show that when g′′.x = g′.x − 1, it is also
true that D(g′′, g2) < D(g′, g2). We conclude that g′ is also a
local min point to g2.

The case when g1.x = g2.x ∧ g1.y 6= g′.y can be addressed
similarly.

Figure 5 illustrates the main idea of Theorem 2. In the figure g1

has 4 local min points in T2: g′

1, g
′

2, g
′

3, and g′

4. g′

1 is also a local
min point of g2 because g1.y = g2.y ∧ g1.x 6= g′

1.x. Similarly, g′

3

and g′

4 are also local min points of g2. But g′

2 may not be a local
min point of g2 since g1.x = g′

2.x. Actually in this example g′

2 is
not. For the same reason, g′

1, g
′

2, and g′

3 are local min points of g3;
but g′

4 is not.

g1

g′
g′

g′

g2

g3

g′

T2

T1 4

3

2

1

Figure 5: An Example of Theorem 2

Based on Theorem 2, we proceed to construct the OWD algo-
rithm for grid representation. To compute the OWD distance from
T1 to T2, the local min points of the first grid cell in T1 are com-
puted. Then we gradually infer other grid cells’ local min points



based on their precedents’ local min points. The shortest distance
from a grid cell in T1 to T2 can be computed by comparing its dis-
tances to its local min points. The OWD distance from T1 to T2 is
the sum of all grid cells’ (in T1) shortest distances to T2 divided by
the length of T1.

The details of the algorithm is given in Algorithm 3. In the ini-
tialization (Lines 1 to 4), the local min points from the first grid cell
g1 of T1 to T2 are computed by going through T2, and the short-
est distance from g1 to T2 is computed as well. The outer “for”
loop (Lines 5 to 23) computes the shortest distances from grid cells
gi(2 6 i 6 m) to T2, one after another. When computing the
shortest distance of gi, the local min points of gi−1 are utilized
(Lines 7 to 19). For each local min point gp of gi=1, if the condi-
tions in Theorem 2 are met, it is also a local min point of gi (Lines 8
and 9). Otherwise, Algorithm 2 is employed to check if there are lo-
cal min points of gi between gp−1 and gp+1 in T2 (Lines 11 to 17).
According to Theorem 2, it is only necessary to check the grid cells
whose x-label (if gi−1.y = gi.y) or y-label (if g(i − 1).x = gi.x)
is equal to gi’s.

Algorithm 3 OwdGrid(T1, T2)
1: m = |T1|, n = |T2|
2: Find the local min points of the first grid cell g1 of T1 in T2

3: Compute the shortest distance d1 from g1 to T2

4: C ← d1, L← 1
5: for each grid cell gi(2 6 i 6 m) in T1 do
6: Initialize an empty local min point set S
7: for each local min point gp of gi−1 do
8: if (gi−1.y = gi.y ∧ gp.x 6= gi−1.x) ∨

(gi−1.x = gi.x ∧ gp.y 6= gi−1.y) then
9: S ← S + {gp}

10: else
11: for each grid cell g′ between gp−1 and gp+1 in T2 do
12: if (gi−1.y = gi.y ∧ g′.x = gi.x) ∨

(gi−1.x = gi.x ∧ g′.y = gi.y) then
13: if g′ is a local min point of gi

(using Algorithm 2 to check) then
14: S ← S + {gp}
15: end if
16: end if
17: end for
18: end if
19: end for
20: Compute the shortest distance di from gi to T2 using S
21: C ← C + di

22: L← L + 1
23: end for
24: Return C/L

Since the grid distance function is called only between grids of
T1 and their local min points in T2, the complexity of Algorithm 3
is O(mn), where n is the length of T1 and m is the average number
of local min points in T2 for each grid cell in T1. Although m is
not completely independent of n, as shown in Section 6, it grows
much slower than n. So compared to a quadratic complexity in
DTW algorithm, Algorithm 3 achieves a better complexity bound.

5. SIMILARITY SEARCH
In Section 4, we present the OWD algorithms for comparing two

PWL or grid trajectories (respectively). When performing similar-
ity search on a large collection of trajectories, an index structure
composed of multiple granularity levels can be employed to im-

prove the efficiency. The index structure introduced here is similar
to the index structure used in [14]. But we use a different defini-
tion of the lower bound distance, which is designed for grid rep-
resentation, and prove the lower bounding feature of this distance
definition.

The index structure is defined as follows.

I = 〈L1, L2, ..., LM 〉
Li = 〈si, T

i
1 , T i

2 , ..., T i
N 〉 (1 6 i 6 M)

si = h · si+1 (1 6 i 6 M − 1)

where I is the index, M is the number of levels, Li’s (1 6 i 6 M )
are levels with different granularity, N is the number of trajectories,
si is the grid cell size at level i, T i

j ’s (1 6 j 6 N ) are trajectories at
level i, and h is some positive integer. In the index structure, level 1
is the coarsest with the largest grid cell size s1 = hM−1sM , while
level M is the finest level (smallest cell size).

Intuitively, the index is composed of several levels of grid rep-
resentations of trajectories, from coarsest to finest. The grid cell
size of a level is h times of that of its successive level. Figure 6
shows two levels of an index of trajectories. Two linear trajectories
(T1, T2) are shown, their grid representations consist of shaded grid
cells. Note that the grid cell size of the upper level (Figure 6(left))
is twice of that of the lower level (Figure 6(right)).
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Figure 6: Illustration of Trajectory Index
The structure is similar to the index structure used in [14] for

time series similarity. Key differences are: (1) time series data are
segmented along the time dimension in [14] and thus their “grid”
structure is one dimensional, while our index is based on 2 dimen-
sional grid structures. (2) similarity distance functions used in this
paper are very different from that in [14], and consequently, the
search operations are different (though both use sequential search).
The detail of the distance functions are presented later in this sec-
tion.

Given a set of trajectories, an index should be built before pro-
cessing similarity search. Each level is built through sequential
search of trajectories. As we can see in the definition, different lev-
els in an index are relatively independent. Insertion of a trajectory
into an index can be translated to a series insertions into each level,
which is straightforward. The building process is done in a similar
fashion as in [14].

The process of a similarity search can be divided into two steps:

• (Step 1) Search k-nearest neighbors in the coarsest level.
Compute these k candidates’ OWD distance to the query
trajectory in PWL representation. Make the largest one the
threshold θ.

• (Step 2) Gradually enhance the accuracy by searching from
coarser to finer levels. At each level, use θ to filter out non-
promising trajectories to reduce the search space of the next
level, and update the candidate list and θ accordingly. Af-
ter searching through all levels, the final candidate list is the
answer.



One problem is that the OWD distance in grid representation is
not a lower bound of the OWD distance in PWL representation.
This will cause false dismissals. Figure 7 demonstrates this prob-
lem. There are three trajectories in Figure 7: T1, T2, and T3. It
is obvious that the OWD distance between T1 and T2 is smaller
than that between T2 and T3 in PWL representation. But in grid
representation shown in the figure, the OWD distance between T2

and T3 is 0 because their grid representations are exactly the same.
Hence T3 is closer to T2 than T1 in grid representation, which is
different from the PWL representation.

T3

T2

T1

Figure 7: The Problem of OWD Distance

To address this problem, we introduce a lower bound distance
(LBD) Dg

lbd(g1, g2) between two grid cells g1, g2 as follows.

Dg

lbd(g1, g2) =
p

l2(g1.x, g2.x) + l2(g1.y, g2.y)

where

l(x1, x2) =



0 (x1 = x2)
|x1 − x2 − 1| (x1 6= x2)

Basically, the lower bound distance treats the distance between
adjacent grid cells (whose x or y-label difference is at most 1) as
0. Lower bound distance is slightly less accurate than grid distance
with the same granularity, but it carries a nice lower bound feature
as shown in Lemma 3.

LEMMA 3. Let p1, p2 be two points and s, s′ two grid cell sizes
such that s′ = hs for some positive integer h > 1. Suppose further
that points p1 and p2 are mapped to g1 and g2 (respectively) in grid
representation with grid cell size s, and to g′

1 and g′

2 (respectively)
in grid representation with grid cell size s′. then

h ·Dg

lbd(g
′

1, g
′

2) 6 Dg

lbd(g1, g2)

PROOF. We first show that h · l(g′

1.x, g′

2.x) 6 l(g1.x, g2.x).
Note that

h · l(g′

1.x, g′

2.x) =



0 (g′

1.x = g′

2.x)
h · |g′

1.x− g′

2.x− 1| (g′

1.x 6= g′

2.x)

If (g′

1.x = g′

2.x), h · l(g′

1.x, g′

2.x) = 0 6 l(g1.x, g2.x).
On the other hand, if (g′

1.x 6= g′

2.x), then (g1.x 6= g2.x) must be
true since the cell size of g′

1, g
′

2 is greater than that of g1, g2. Hence
h · l(g′

1.x, g′

2.x) = h · |g′

1.x − g′

2.x − 1| 6 |g1.x − g2.x − 1| =
l(g1.x, g2.x), noting that s′ = hs. Therefore, h · l(g′

1.x, g′

2.x) 6

l(g1.x, g2.x).
Using a similar reasoning, we can show that h · l(g′

1.y, g′

2.y) 6

l(g1.y, g2.y).

Finally, we have

h ·Dg

lbd(g
′

1, g
′

2)

=
p

h2 · l2(g′

1.x, g′

2.x) + h2 · l2(g1.y′, g2.y′)

6
p

l2(g1.x, g2.x) + l2(g1.y, g2.y)

= Dg

lbd(g1, g2)

This concludes the proof.

From Lemma 3, it is easy to establish Theorem 4 (proof omitted).

THEOREM 4. Let T1, T2 be two trajectories and s, s′ be two
grid cell sizes such that s′ = h · s for some positive integer h >
1. If T g

1 , T g
2 are grid trajectories of T1, T2 (respectively) in grid

representation with grid cell size s, and similarly, T ′g
1 and T ′g

2 are
grid trajectories of T1, T2 (respectively) in grid representation with
grid cell size s′, then the following holds:

h ·Dg

lbd(T
′g
1 , T ′g

2 ) 6 Dg

lbd(T
g
1 , T g

2 )

Since continuous trajectories can be treated as trajectories repre-
sented with tiny grid cells, we can easily establish Corollary 5.

COROLLARY 5. Given two PWL trajectories T1, T2 and a grid
cell size s, if T g

1 and T g
2 are grid trajectories of T1 and T2 in grid

representation with grid cell size s, then

s ·Dg

lbd(T
g
1 , T g

2 ) 6 Dowd(T1, T2)

Corollary 5 indicates that the OWD distance between trajectories
in grid representation is always a lower bound of the OWD distance
in continuous representation.

We now turn to the index structure. A key algorithm is to search
for similar trajectories. The basic idea is to utilize the property of
Corollary 5 to reduce the number of OWD distance computation.
The tree is searched from coarser level to finer level. For each level,
k nearest neighbors candidates are collected and the threshold is
computed based on them. Then all trajectories with distance greater
than the threshold are filtered out. Upon the end of the tree, we will
get the answers to the query.

The detailed algorithm is given in Algorithm 4. Line 1 searches
the k-nearest neighbors of Q in the coarsest level (i.e. the high-
est level) of the index structure I using Algorithm 1 to compare Q
with each trajectory in this level and the results are stored in C. A
temporary set P is used to keep intermediate trajectories filtered
from the previous level. The “for” loop from Lines 3 to 11 imple-
ments Step 2 of the similarity search strategy. First, the threshold θ
produced from the previous level is computed (Line 4). Then each
trajectory in P is examined against the new threshold (Lines 5 and
6). Here Dgi

lbd(T, Q) means the LBD distance between T and Q on
level i, and I.Li.si represents the grid cell size of level i. Promiss-
ing cadidates are compared with candidate trajectories in C (Line
7), while unpromising trajectories are filtered out (Line 9).

Although the search algorithm has the same worst case complex-
ity as sequential search, it is expected that the index will reduce the
complexity for real datasets. Experimental results with synthetic
datasets clearly support this claim.

We conslude this section with the following remarks. The simi-
lary search technique developed in this paper works fine if the tra-
jectory lengths are different. This is the consequence of the distance
model and thus not surprising. Secondly, the technique remains ef-
fective if the similary measure is to match a sub-part of a trajectory.



Algorithm 4 Search(S, Q, k, I, M )
Input: S — a set of trajectories,

Q — the query trajectory,
k — number of nearest neighbors,
I — A set of grid representations of trajectories in S

with different levels,
M — number of levels in I

1: Find the k-nearest neighbors of Q in I.L1 and
put in C their identifiers and distances to Q.

2: P ← S
3: for i from 1 to M do
4: θ ← maxx∈CDowd(x, Q)
5: for each trajectory T in P do
6: if I.Li.si ·Dgi

lbd(T, Q) 6 θ then
7: C ← k closest trajectories (and their distances)

in C ∪ {T}
8: else
9: P ← P − T

10: end if
11: end for
12: end for
13: return C

6. EXPERIMENTAL EVALUATION
In this section we evaluate the grid OWD algorithm (OWD in

short in this section) by comparing it with the well known Dynamic
Time Warping (DTW) algorithm and the Piecewise Linear OWD
algorithm (PWL in short in this section).

The main findings from the experimental study are:

• OWD achieves better accuracy than DTW in spatial shape
similarity search.

• OWD out-performs DTW in all settings and the gap between
them increases rapidly with length of trajectories.

• OWD can approximate PWL fast with high accuracy.

6.1 Experiments setup and parameter settings
In the experimental evaluation, we choose Network generator—a

moving object dataset generator developed by Brinkhoff [1]. Using
this generator, we simulate two dimensional trajectories of vehicles
on the road network in the city of San Francisco.

The number of trajectories varies from 10,000, 20,000, 50,000,
to 100,000. The number of nearest neighbor (i.e., k) is 10, 20,
50, or 100. When evaluating performance, we use CPU time as
the standard because all dataset sizes are small enough to fit into
memory. All experiments are run on a linux PC with AMD Athlon
900MHz CPU, 256MB memory, and 20GB hard disk. A new pa-
rameter granularity is introduced to measure the fineness of grid
representations, which is the number of divisions on each dimen-
sion (we apply the same number of divisions on both dimensions).
So higher granularity means finer grid representation. Granularity
varies from 10, 20, 40, to 80. The typical setting of experiments,
if not explicitly mentioned, is 50,000 trajectories, 20 nearest neigh-
bors, 80 granularity.

6.2 Precision
In this section we evaluate the precision of OWD and DTW by

comparing them with PWL. We define the precision of OWD and
DTW using the following formula:

Precision =
|S ∩ Spwl|
|Spwl|

where S is the result set of OWD or DTW, and Spwl is the result
set of PWL with the same setting.

Figure 8 (left) shows the precision results defined above with
different granularity. Clearly OWD achieves better precision than
DTW in the same grid representation. OWD’s precision grows to
near 100% when the grid granularity becomes finer, while DTW
stays at the level less than 80%. The reason is that DTW ignores tra-
jectories with similar spatial shape but different orientation, since
DTW requires mapping between trajectories to be continuous and
monotonic.

Figure 8 (right) displays the precision results with different k. It
also shows that OWD achieves better precision than DTW. In this
case, the parameter k has little impact of the precision, although
smaller k has slightly better precisions.

Figure 9 gives another view of precision of OWD. The error per-
centage of OWD distance to PWL distance is displayed. In this
figure we do not include DTW because its distance is in a differ-
ent measure from PWL. The error percentage Perroris defined as
follows.

Perror =
|Dpwl −Dowd|

Dpwl

where Dpwl and Dowd are distance of PWL and OWD in the same
setting, respectively.

It is easy to see that the error percentage decreases rapidly when
granularity increases. When granularity equals 80, it is already very
small. This also explains why OWD can achieve high precision
rapidly.
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Figure 9: Distance Error Percentage of OWD to PWL

6.3 Scalability
In this set of experiments, we compare the comprehensive per-

formance of OWD and DTW, with and without indexing, using
datasets with different number of trajectories. The CPU time for
one k-nearest neighbor query over the dataset is used as the com-
parison standard.

Figure 10 shows the performance of DTW and OWD without
indexing. It is shown that OWD performs much better than DTW,
especially when dataset size increases.

Figure 11 performs the comparison with indexing. We choose
FTW [14] as the index method for DTW, because FTW is the best
known index [14] for DTW so far. OWD uses the indexing tech-
nique introduced in Section 5. In all dataset sizes, OWD achieves
much better performance than FTW. The difference of the perfor-
mance increases with the size of the dataset.
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Figure 8: Precision of DTW and OWD with different granularity and k
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Figure 10: Performance of DTW and OWD without indexing
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Figure 11: Performance of FTW and OWD with indexing

6.4 Performance with different granularity
This section shows the performance comparison between OWD,

DTW, and PWL with different granularity.
Figure 12 shows the comparison of OWD and DTW with dif-

ferent granularity. It is clear that the computation cost of DTW
is much higher than OWD in all settings. The time consumed by
DTW increases much faster than OWD when the granularity grows.
This is because DTW has a quadratic complexity while OWD’s
complexity is O(mn), where n is the length of trajectories and m
is the number of local min points (Subsection 4.2).

Figure 13 displays the performance comparison of PWL and
OWD. In this figure, the average CPU time for a pair of trajectories
similarity comparison is measured. The granularity of OWD is 80.
It is shown that PWL is much slower than OWD in all cases. When
the number of segments of trajectories increase, the gap between
PWL and OWD grows as well. It is already shown in Subsection
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Figure 12: DTW and OWD with different granularity
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Figure 13: Performance Comparison of PWL and OWD with
trajectories of different length

5.2 that PWL can be approximated by OWD with reasonable high
granularity. So OWD is a good substitute of PWL when perfor-
mance is critical.

7. CONCLUSIONS
An interesting issue in moving objects databases is to find similar

trajectories of moving objects. The similarity can be time sensitive
or insensitive. In this paper we study the time independent similar-
ity search problem of moving object trajectories. We introduced a
new distance function (OWD) for comparing spatial shapes of tra-
jectories, developed algorithms for computing OWD in both con-
tinuous (piecewise linear) and discrete (grid representation) cases,
and an index structure which guarantees no false dismissals to en-
hance search performance. The discrete OWD algorithm achieves



a better complexity than known quadratic algorithms by utilizing
local min points in grid representation. Different grid cell size can
be chosen to trade-off the accuracy, performance, and sensitivity to
noises. Our comprehensive experimental results show that OWD
out-performs traditional Dynamic Time Warping (DTW) algorithm
in terms of both precision and performance, with and without in-
dexing. Moreover, the continuous OWD distance can be approx-
imated with the discrete one efficiently with reasonable accuracy.
Comparison of OWD and other existing algorithms (e.g. [17]) are
under investigation. One interesting problem is the choice of gran-
ularity to further shorten the search process. It would be interesting
to develop theoretical models or heuristic guidelines for the trade-
off between running time of the algorithm and accuracy of results.
It is also interesting to focus on more flexible representations and
algorithms which can accommodate transformations such as spatial
shift, rotation, and scaling etc.
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