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ABSTRACT

A critical issue in moving object databases is to develop appropriate in-
dexing structures for continuously moving object locations so that queries
can still be performed efficiently. However, such location changes typically
cause a high volume of updates, which in turn poses serious problems on
maintaining index structures. In this paper we propose a Lazy Group Up-
date (LGU) algorithm for disk-based index structures of moving objects.
LGU contains two key additional structures to group “similar” updates so
that they can be performed together: a disk-based insertion buffer (I-Buffer)
for each internal node, and a memory-based deletion table (D-Table) for the
entire tree. Different strategies of “pushing down” an overflow I-Buffer to
the next level are studied. Comprehensive empirical studies over uniform
and skewed datasets, as well as simulated street traffic data show that LGU
achieves a significant improvement on update throughput while allowing a
reasonable performance for queries.

Categories and Subject Descriptors: H.3.3 [Database Manage-
ment]: Information Search and Retrieval

General Terms: Algorithms, Performance.

Keywords: Moving objects database, lazy group update, TPR-
Tree.

1. INTRODUCTION

With the rapid advances in wireless communications and ubig-
uitous computing technologies, applications involving moving ob-
jects are fast growing. To meet this application demand opens a
door for many research problems. Major issues in moving objects
databases include: modelling moving objects [8], query language
and evaluation [27, 29, 17], and improving application performance
by using efficient index structures [4, 12, 25, 31, 11, 19, 35]. In this
paper we focus on indexing of moving objects.

Existing index structures for moving objects can be divided into
two categories: location-based index structures focusing on cur-
rent/anticipated future locations of moving objects [25, 31, 19], and
trajectory-based ones for (historical) trajectories [4, 12, 35].

The locations of moving objects are frequently and continuously
changing [34], which causes high volume of updates. The updates
pose serious problems on index structures. Frequently changing
data causes problems in information systems in general [21].
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One effective method to improve the performance of an disk-
based index is to increase the memory size. This method can dra-
matically reduce the I/O cost of queries. But for updates, if one
cannot put the entire index into memory, the same strategy is not
equally effective. This is because updates are more likely random
distributed and can display less locality.

In this paper we develop grouping updates techniques to achieve
better memory management in order to effectively improve update
performance of disk-based index structures. The key ideas are the
use of disk-based “I-Buffers” to process group insertion and of a
memory-based “D-Table” to perform group deletion.

Insertions are performed in groups top down through the I-Buffers
while deletions are performed in groups bottom up via the D-Table.
These techniques in conjunction with a hash based lookup table en-
able wise utilization of main memory. We also studied different
push down strategies for group insertion and analyze the optimal
I-Buffer size.

Our major contributions are:

e We develop a “lazy group update” (LGU) algorithm which can

manage memory wisely via [-Buffer and D-Table and signifi-

cantly improve update performance of a disk-based index.

We formulate an analytical model for the LGU algorithm to esti-

mate overall throughput and decide the optimal size of I-Buffers.

e Comprehensive empirical evaluation over uniform, skewed, and
simulated street traffic data show that LGU can improve update
throughput by about 100 times for TPR-tree [25], about 30 times

for R-tree [9], and about 10 times for FUR-tree [15], when I-

Buffer size is reasonably large.

The remainder of the paper is organized as follows. §2 gives a
motivating example. §3 briefly reviews R-tree and TPR-tree. De-
tailed algorithm description is given in §4. §5 analyzes the LGU al-
gorithm. §6 evaluates LGU by comparing it with other algorithms
for both R-tree and TPR-tree. §7 concludes the paper.

2. FREQUENT UPDATES

An important consequence of continuous movement of moving
objects is that objects’ current locations are frequently updated.
The combination of the update frequency and the large number of
objects could result in failure of database systems to process the up-
dates in time. In this section we first motivate the frequent update
problem with an application example concerning the maintenance
of moving object locations. We then discuss briefly possible ap-
proaches to the problem.

Suppose we are to track locations of 1 million cell phones in the
Great Los Angeles area (of 4 million population). If the locations
are used for ad hoc queries, index structures (likely external) need
be maintained. If an application updates each cell phone’s location
once every hour on the average (not very frequent!), it translates to



around 280 updates per second. Such a high update rate is a chal-
lenge for external memory index structures. It should be noticed
that in extreme cases when the update frequency is very high, it is
easy to see that any disk based algorithms will fail. It will become
necessary to seek in-memory solutions in these situations. Main-
memory index structures such as cache conscious B -tree [22] and
buffering access technique [23] are relevant. Discussion of this cat-
egories of methods is beyond the scope of this paper.

Fig. 1 illustrates a serious problem of TPR-tree in dealing with
frequent updates. It shows the maximal number of location update
operations TPR-tree can handle per second and the update frequen-
cies of different size of data (the points labeled 100K and 400K).
For the example mentioned above with 1 million moving points,
TPR-tree can only process less than 15 out of the 280 requested up-
dates per second (the detailed experimental setting is given in §6).
Even if we reduce the number of moving points to 400 thousand,
TPR-tree is still incapable of handling all incoming updates. The
largest number of points a TPR-tree can handle in our experiments
is around 100,000 points. Clearly, both the number of points and
the update interval are at the lower spectrum of such applications.

A reason that TPR-tree cannot achieve higher update throughput
is that it has to search the tree for the target entry upon a deletion.
An immediate solution is to keep an in-memory look-up table for
all entries’ locations in the tree. The result is an improved algo-
rithm TPRK [24]. Surprisingly TPRK does not improve TPR a lot
(Fig.1). This is because the look-up table occupies a significant
portion of memory (which is used as system buffers to speed up
performance in TPR).
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Figure 1: Update Throughput of TPR-tree

Different approaches have been taken to solve the frequent up-
date problem. Group update [14, 16, 7, 3, 1] is a typical one.
[16] discusses group update for in-memory tree structure (AVL
and Red-Black trees). [14] focuses on Multi-way trees (similar
to BT tree). Neither algorithms can be extended to R-tree natu-
rally. Another idea is to reduce the cost for each update. [7] intro-
duces a group insertion algorithm for R-tree, which does not han-
dle updates. [3] proposes a buffer-tree [1] based algorithm, which
can perform group insertions, deletions and queries in a top-down
way. This algorithm can perform interleaved updates and queries
together in a lazy way. But queries can not be answered until they
are pushed down to the leaf level, which means long response time
[2] and is not favorable to moving objects applications.

Another approach is to improve the efficiency for individual up-
dates. [13] provides direct access to leaf level of R-trees with the
help of a main-memory resident index. [15] extends the main-
memory index to a structured summary to help both updates and
queries and presents more heuristics in update process to achieve
better performance. But the improvement of individual update is
limited because each update costs at least 2 1/Os.

[28] proposes a non-tree index structure aiming at reducing fre-
quency of updates. This method uses hashing based buckets com-
bining with filter layers. Moving objects are indexed in the buckets
and updates are handled by filter layers. If the updated location
is still inside the same bucket, the update is ignored by the index
structure. Thus the number of actual updates to the index is re-

duced. But the efficiency of queries is significantly worse since
all points in the buckets which intersect the query window have
to be scanned by sequential search. In our algorithm we employ
both buffer and group update technologies and achieve much higher
update throughput for TPR-tree. [10] introduced an index struc-
ture based on dual transformations. Compared with TPR-tree, this
method provides comparable query performance and better update
performance. But the improvement of update performance is not
very significant (e.g. 3-5 times in their experiments).

3. INDEX AND THROUGHPUT

R-tree [9] is widely used in different applications relating to spa-
tial data and other low-dimensional data. All leaf nodes are at
the same level in R-tree. Each internal node contains a minimum
bounding rectangle (MBR) which bounds all objects in the sub-tree
rooted at itself. There may be overlaps between internal nodes. So
a range query on the R-tree may have multiple search paths from
the root to the leaf level. R-tree has many variants, such as R*-tree
[5], R -tree [26], TPR-tree [25], TPR*-tree [30]. The techniques
presented in this paper can be easily applied to most of them.

Three operations to modify an R-tree (TPR-tree, etc.) are:

e [nsertion : adding a new object
e Deletion : removing an existing object
e Update : update an existing object’s information

In moving objects applications, the frequency of updates is much
higher than that of insertions and deletions, because moving objects
keep changing their location information. In this paper we thus
focus on the “update” operation.

TPR-tree [25] is an extension of R*-tree [5]. In the TPR-tree
shown in Fig.2, A is a bounding rectangle containing three 2-D
moving objects a, b, c. The boundaries of A are also moving to
ensure that a, b, ¢ will always reside in the bounding rectangle, their
velocities have to be determined by the maximum (or minimum for
negative values) velocities of a, b, c. Initially (¢ = 0), the bounding
rectangle is the minimum bounding rectangle (MBR) of a, b, c. As
the time progresses, the bounding rectangle is no longer minimum
(it will be tightened to MBR when next update touches it). TPR*-
tree [30] is a variant of TPR-tree with query-parameterized cost
model and new insertion/deletion algorithms.

t=0
A
-
GIele) [T =, ™

1mux speed

Figure 2: An example of TPR-tree

An update is issued when a moving object’s velocity (direction
or speed) changes, which is less frequent than its location changing.
Suppose a two dimensional moving object o’s location information
is given by (z1 + vz,1t,y1 + vy,1t). After the update at time to,
the new location information is (x2 + vz,2t, Y2 + vy 2t), where
T2 = T1 + Vg,1to and Y2 = y1 + vy 1to.

Since TPR-tree performs much better than other R-tree variants
in indexing moving objects’ current and near future locations [25,
30], we choose TPR-tree to describe our algorithm. Our techniques
can be easily applied to most R-tree variants.

Definition. The update (query, or overall) throughput of an index
structure is the maximum number of updates (queries, query and
update operations, resp.) it can process in a unit time.

In the cell phone example discussed in §2, the update throughput
for TPR-tree is roughly 15 while the incoming update rate is 280
updates per second. Obviously this is a big gap. The aim of this



paper is to eliminate (or at least reduce) the gap between the high
update request rate and the relative low update throughput.

In R-tree updates are executed as deletions followed by inser-
tions. A top-down search is first issued to locate the entry of the
object and delete it from the leaf node. Then another separate top-
down search is used to find the best location for the new entry and
insert it. This process is obviously costly. In addition, node splits
and reinsertions of index entries may occur and cost even more.

Similar to other R-tree variants, TPR-tree performs updates us-
ing deletions and insertions. The insertion and deletion algorithms
are based on the following four basic functions:

e ChooseSubTree(v, 0): given a TPR-tree node v and a moving

object o, choose a subtree (according to some heuristics) for o.

e Split(v): split a given TPR-tree node v into two new nodes vy
and vz, and update the parent of v accordingly.

Since the number of children in v’s parent is increased, this func-
tion may be propagated to upper levels.

e Search(v,0): given a TPR-tree node v and a moving object o,
returns the leaf node containing the object o.

e Rebalance(v): delete the TPR-tree node v and re-insert all its
entries and update the parent of v. Since the number of children
of the parent is decreased, the change may be propagated.

To avoid the expensive search process, an immediate solution
is to maintain an in-memory lookup table in the form of (oid, p),
where oid is the object id and p indicates which page this object
locates (TPRK) [24]. By using the lookup table the entry to be
deleted can be directly located and removed. This method achieves
better update performance but requires more memory occupation
due to the existence of the lookup table.

4. LAZY GROUP UPDATE (LGU)

In this section we illustrate the ideas of the LGU algorithm with
an example (§4.1), present insertion and the I-Buffer technique
(84.2) and deletion and the D-Table method (§4.3), discuss query
evaluation (§4.4), and compare LGU with buffer-tree [3] (§4.5).

4.1 Algorithm Overview
LGU uses three key techniques to improve update throughput:

o It uses disk-based buffers (I-Buffers) to utilize memory wisely.
One I-Buffer is associated with each internal node; insertions
are “pushed” from root to leaf in group through the I-Buffers.
A global memory-based buffer (D-Table) is utilized to perform
group deletion in the bottom up manner.

e It performs insertions and deletions in different ways: insertions
are performed lazily in a top-down way while deletions are per-
formed lazily bottom-up.

e A hash lookup table similar to TPRK is used to enable direct
access to the leaf level when performing deletions bottom-up.

Before describing the details of LGU, we first present a simple
example. As shown in Fig. 3, I-Buffers are attached to internal
nodes and a global D-Table is maintained for incoming deletions.
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Figure 3: An illustration of LGU algorithm

I-Buffers are organized in the same way as leaf nodes, containing
the inserted entries. D-Table records the object’s ID and its located
page. In Fig. 3, e4’s current located page is B.

If we insert an entry ez into the tree, it first goes to the I-Buffer of
the root, which is the I; operation in the example. Then after some
time, as shown in the I operation, ez is pushed down with other
entries to lower levels. Push down operations may repeat until e
reaches the leaf level.

The operations for a deletion are illustrated as Dy and D2. D;
shows the first step: incoming deletions (e.g. delete(es)) are put in
the D-Table. At the second step D2, e4 is performed together with
other deletions who have the same target page as e4.

The I-Buffer technique in LGU is a variant of Arge’s “buffer tree
technique” [1] and its R-tree version [3]. A comparison between
LGU and Arge’s algorithm is presented in §4.5. But the D-Table
and the bottom-up group deletion are new techniques, and it is the
first time for them to be applied on external tree updates.

4.2 Insertions

An I-Buffer (on disk) is attached to each internal node of a TPR-
tree. With [-Buffers, all incoming insertions are performed in a lazy
batch fashion: they are put in the I-Buffer of the root. When an I-
Buffer becomes full, an algorithm Pushdown is invoked: it chooses
some or all entries in the I-Buffer (according to some heuristics)
and pushes them down to its child nodes (if its child nodes are
leaves) or their I-Buffers.

An immediate question is how to choose the entries to push
down. The naive solution is to push all entries in the I-Buffer, which
is not good if the distribution of entries is not even.

| Strategy | Metric |
Push-All none
Push-L. | popularity
Push-Mp age

Description |

push all groups
push the largest group
push the youngest group

Figure 4: Pushdown Strategies

Fig. 4 shows three different strategies. In addition to “push all”,
LGU considers two other metrics. In both cases we divided the
entries into groups according to their destinations. In Push-L strat-
egy, we only push the largest group, which ensure us not to waste
I/Os on small groups. In Push-Mp (Most Promising) strategy, we
only push the group whose average age is the lowest (i.e. whose
average update time is the latest). This strategy put high priority
on “younger” entries because their life time are longer. The “old”
entries may become obsolete very soon and will be removed from
the [-Buffer directly, which is the cheapest operation for deletions.

Algorithm 1 PushDownOne(v)

: Get v’s buffer b
: NodeClean(b)
: Divide entries in b into groups according to their destinations
: Compute the score for each group according to pushdown strategy
: Choose the group g with the highest score, whose destination is d
: Adjust d’s bounding rectangle if necessary
: Update the lookup table for all entries in g
: if d is an internal node then
Insert all entries in g into d’s buffer
if d’s buffer is full then
PushDownOne(d)
end if
13: else
14:  Insert all entries in g into d
15:  if dis full then
16: Split(d)
17:  endif
18: end if

O W —
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Algorithm 1 shows the process of Push-L (and Push-Mp): divid-



ing entries into groups and only pushing down one group at a time.
During the Pushdown process, LGU first calls a Node Clean pro-
cess to clean all obsolete entries in the buffer (Line 2). The reason
for this will be shown in Fig. 6. LGU then groups entries in the
I-Buffer according to their destinations (the grouping processes are
different for different strategies in Fig. 4) and chooses one group
according to some metrics in Fig. 4 (Lines 3-5). After adjusting the
destination node’s bounding rectangles (Line 6) and updating the
lookup table for all entries in the group (Line 7), LGU pushes these
entries down. If the destination node is an internal node, the entries
pushed down go to its buffer; if its buffer becomes full, Pushdown
is invoked again (Lines 8-12). If the destination node is a leaf node,
the entries go to itself; if it becomes full, Split is called to divide
the full leaf into two leaves. The split process can be propagated
to upper levels (Lines 13-17). Split behaves similar to TPR-tree’s
except that if the split node is an internal node, its I-Buffer is split
as well. Split also has to update entries’ page number information
in the lookup table.
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Figure 5: Illustrating push down strategies

Consider Fig. 5 where the buffer of S is full and needs to be
pushed down. Three of the seven entries are going to child A
(e1, €2, e3), and one each to B (eg), C' (es), D (es), resp. Entry
e7 can go to A, B, or D. If we choose to push all entries, there
are 1 I/0O to read S’s buffer, and 2 I/Os for reading and writing the
buffers of A, B, C, D. The total cost is 9 I/Os for pushing down 7
entries. So it is averagely 1.3 I/Os per entry, not very efficient.

If we choose to push the largest group, we can push e, e2, e3, e
into A’s buffer, which incurs 1 I/O to read S’s buffer, and 2 I/Os
for reading and writing the buffer of A. So the average I/O cost for
each entry is 0.75, which is much better than the Push-All strategy.

If we choose the Push-Mp strategy and the update time for each
entry is: e1(5), €2(100), e3(8), e4(50), e5(34), es(150), e7(200).
Then LGU can find that the group (e2, eg, e7) has the largest (latest)
update time (150). So all the three entries are pushed down to B’s
buffer, which incurs 1 I/O to read S’s buffer, and 2 1/Os for reading
and writing the buffer of B. And the average I/O cost for each
entry is 1. If e; and es3 are deleted directly from the buffer some
time later (this is very possible since they are very “old” entries),
that means we get “free” processes for 2 more entries due to the
Push-Mp strategy. In this case, we pay 3 I/Os for 5 entries and
retrieve 0.6 average /O cost per entry.

Both Push-L and Push-Mp seem to perform better than Push-All.

4.3 Deletions

For deletions, LGU does not perform batch deletion in the same
way as insertion, which is the strategy used in buffer-tree. This
is because when you push down a deletion, you need to push it
into all child nodes whose bounding rectangles contain the target
entry. The case is worse when overlapping between bounding rect-
angles is high, which is a prominent phenomena in a TPR-tree since
bounding rectangles in a TPR-tree are expanding over time.

LGU maintains a global in-memory deletion table (D-Table) for
unprocessed deletions. The D-Table maintains each deletion’s ob-
ject ID (oid) and its location in the tree (page number). Incom-

ing deletions are stored in the D-Table. A key-based direct access
method is also employed to avoid search during deletions. LGU
has to maintain an in-memory lookup table recording each existing
object’s located page in the TPR-tree. Note that in deletions of a
TPR-tree, it may traverse the tree bottom up to tighten bounding
rectangles. But in our algorithm, we choose not to traverse up to
save process time and storage space of the look up table.

Deletions are performed based on the lookup table. LGU locates
the destination page first and then remove the page number infor-
mation of the entry from the lookup table. After that, an entry (e, p)
is put into the D-Table. When the D-Table gets full, a Buffer Clean
process is called to apply some deletions in the D-Table. First all
deletions are grouped based on their target page, and then the group
with the most deletions is applied. LGU chooses to perform the
largest group because this makes the lowest average 1/O cost for
each deletion. If the target page is a buffer page, then the deletion
process is over. Otherwise the target page must be a leaf node page.
If it becomes underflow after the deletions, a Rebalance process is
called. This process is the same as the one used in TPR-tree. LGU
does not adjust the target node’s parent node’s bounding rectangle
because this will introduce the expensive Search process. This
strategy may result in larger intermediate bounding rectangles, but
they will be tightened when some entries are inserted into them.

Due to the delay of deletions, there may be multiple entries of
the same object in the tree. Among these entries, only the latest
one is valid. The problem is if an obsolete (invalid) entry moves to
other nodes, it can no longer be found. Fig. 6 displays this problem.
Suppose there are 2 deletions in the D-Table for the same entry e
and neither has been processed. So there are 2 copies of e resident
in the tree at this time. We call the earlier one e; and the other es.
In the D-Table the located pages of both entries are recorded, which
belong to two buffers By and Ba, respectively. And in the lookup
table the corresponding located page is the same as ez’s. If at this
time a push down process for B is called and e; is pushed down
to B3, LGU faces a dilemma: if it does not update the entries of e
in the lookup table, e; will be lost; if it does so e2 will be lost.

D-Table

Lookup Table B, B,

S L0 O Ll Jie ™
B,y

l:} B, e |B

Figure 6: A problem of deletions

To avoid these obsolete entries moving around the tree, a Node
Clean process should be called for both the source buffer and the
target buffer whenever some entries’ are moving from one page to
another (e.g. push down, split). This process will eliminate obso-
lete entries from the buffer. Since during the entries’ moving we
need to access both the source and target buffers anyway, no extra
disk I/Os are introduced.

4.4 Query Evaluation

In LGU queries are executed in a similar way to that in TPR-tree.
Since we keep inserted entries into I-Buffers, it is necessary to
check I-Buffers for complete answers. Due to the fact that D-Table
may be contain obsolete entries, LGU also needs to check the D-
Table to eliminate the obsolete answers.

For example, to answer a time stamp range query (other queries
such as time interval queries, moving queries can be answered in
the same way), LGU starts from the root and computes the inter-
sections between the sub-trees’ bounding rectangles and the query
window. If a sub-tree’s bounding rectangle is disjoint from the
query window, the sub-tree is eliminated from further considera-
tion. If a sub-tree’s bounding rectangle is contained by the query
window, all entries in the sub-tree are included into the candidate



answers. If a sub-tree’s bounding rectangle intersects but is not
contained in the query window, LGU recursively searches the sub-
trees. For each intermediate node searched, its I-Buffer is searched
for candidate answers as well. After collecting all candidate an-
swers, LGU looks up the D-Table to eliminate obsoleted answers.

4.5 Comparisons with Buffer Tree

Our I-Buffer technique is extended from the buffer tree algorithm
[3] with three important differences. 1. LGU queries are allowed
on I-Buffers and the D-Table, so queries can be processed imme-
diately after their arrival. In buffer trees, the processing of queries
cannot be completed before they are pushed to the bottom the tree.
Moreover, to guarantee the correctness of the answers, queries can-
not be finished before all the insertions and deletions issued earlier
than them are pushed to the bottom. So that means long response
time for queries [2]. This is not favorable because information in
the tree is changing quickly and queries need to be answered as
soon as possible. 2. Buffer tree performs deletions top down lazily
(not good for TPR-trees). LGU combines both key-based direct ac-
cess and D-Table techniques to achieve group deletion in a bottom-
up way (see §4.3). 3. The buffer tree algorithm just chooses the
naive push all strategy in the push down process. This is not good
because some groups pushed down are of very small sizes. LGU
allows two more push-down strategies Push-L. and Push-Mp; the
latter two provide better push down performance than Push-All.

5. ANALYTICAL MODEL

In this section we analyze the LGU algorithm. We focus on the
overall throughput of the TPR-tree (Eq. 1 and 5). Since the D-
Table is memory resident, it is obvious that bigger size will ensure
better performance (in terms of disk accesses). We also focus on
computing the optimal I-Buffer size (Eq. 6).

Since updates are performed as deletions and insertions, the over-
all I/O cost C' of a TPR-tree over time interval [ts, te] is Chotal =
C1+Cp+Cq, where C1, Cp, and Cj, are the I/O cost of insertions,
deletions and queries, respectively.

Suppose during [ts, te], the numbers of incoming updates and
queries are N,, and Ny, respectively, and each disk I/O takes ¢;o
time, we can retrieve the overall throughput 7" by:

T = (Nu 4+ N)/(C X ti0) (1)

In our analysis, we make three simplifying assumptions.

1. Data distributions are uniform, in spatial/velocity dimensions.

2. The tree is perfectly organized so that all moving objects are dis-
tributed evenly in the tree and there is no overflow and underflow
during the running time.

3. All entries are deleted in the leaf level.

Assumptions (1-2) are standard for analysis of R-tree variants. As-

sumption (3) simplifies the analysis. Actually there are entries di-

rectly deleted from I-Buffers before they can reach the leaf level.

The percentage of such entries is proportional to the size of I-

Buffers. So our analysis provides an upper bound of the I/O cost.

Since there is no underflow and the deletions are performed in
groups, and for each group we need to perform two I/Os (one for
reading and one for writing), we obtain Cp = 2N, /g4, where g4
is the average group size for deletions.

For insertions, we focus on the Push-L strategy. (Other strategies
can be done in a similar way.) Since all the entries are deleted
in the leaf level, each inserted entry must be pushed down A — 1
times when it moves from the root to the leaf level, where h is the
height of the tree. We assume that the root’s I-Buffer is always in
memory. And the I/O cost for each push down between internal
levels is 2B;/f + 2 (f is the fan-out factor and B; is the I-Buffer

size), where we pay 2B;/ f 1/Os for reading and writing the target
buffer (notice that the source buffer must be in memory already),
and 2 I/Os for reading and writing the parent node. So the overall
cost for one insertion Cs; can be computed with Eq. 2, where the
extra 2 I/Os are for pushing down to the leaf level.
Csi:(QBi/f—‘r2)(h—2)+2 2)
Then C7 can be computed with Eq. 3, where g; is the average
group size pushed down. For Push-L strategy, each time we push
the largest group. Since how to determine the expected size of the
largest group remains a partially open question [20], we approx-
imate g; by experiments. In the experiments we observes that if
2B;/f > 1, g; converges to 2B;/f + 1 when f increases to un-
limited. So we approximate g; with 2B;/f + 1.
Cr = N.Cs; _ Nu((2B; +2f)(h — 2) + 2f) 3)

. gi . 2B; + f

For queries our analysis is extended from [32]. We assume the
entire (2 dimensional) workspace is a unit square. We focus on time
instant queries in this analysis. Given a query ¢ = {¢,q1, ..., qn },
where n is the number of dimension, ¢ the query time, and g;
(i =1, ..., n) the size of the query window on i*® dimension. The
probability of the query window intersecting a bounding rectangle
inlevel j is IT7_, (s;,:+q: ), where s; ; is the average extent in level
J, dimension ¢. Since LGU algorithm searches I-Buffers, we can
compute C'q with Eq. 4 [32] where IV is the dataset size. In Eq.
4 (N/f)I}Z1(s1,: + ¢i) I/Os are paid for searching the leaf level,
and the rest part are for intermediate levels (the root and its buffer
are assumed always in memory).

N n h—1 B, N n
CQ:NQ(7 [Gsvita)+ Z(Tl‘*‘l)ﬁ [Giita)) @
Since we a;sulrne that the treze is organizeé éerfectly, there is
no overlaps between adjacent bounding rectangles at the begin-
ning and later overlaps are caused only by movement of objects.
In the TPR-tree once an update touches a bounding rectangle, it
will make it minimum bounded. After that, the bounding rectangle
will expand with time until the next update comes in. Due to the
uniformity and perfect tree assumptions, the size of the bounding
rectangle right after an update touch is the same as its initial size.
Suppose AVj represents the velocity difference on dimension 4,
and 7%, is the average update interval for each object. Then we can
compute s;; with s;5; = 85,40 + AVjiTui,j/2, where 550 =
(D; f7/N)*™ [32] is the initial size of a bounding rectangle in
level 7 dimension 4, in which n is the number of dimensions and
Dj is the data density in level 7. And T';,; = 1;;;7? is the average
update interval of bounding rectangle in level j.
We can now compute the overall I/O cost Cota1=C1+Cq+Cp=

N.((2Bi+2f)(h—2) + 2f) Bi 2N,
Bt ] + Na(( 7 +DA+E) + == (5)

where A= 27;21 fﬂ] w1 (sj,i+q:) and E:% [T, (s1,i4as).
To minimize C'(B;), we let the derivative of C'(B;) be 0. So

Bi = /Nu/Ng\/1f]4A = [/2 (©)
where I = 2f(h — 2) + 4.

The optimal I-Buffer size B; is proportional to the square root
of Nu /Ny, which confirms the intuition that I-Buffer improves up-
date performance and slows down queries. In §6 we will compute
the optimal I[-Buffer size according to our experiment setup and
compare the expected costs of updates and queries with our results.

6. EXPERIMENTAL RESULTS

In this section we evaluate the LGU algorithm by doing two sets
of experiments. The first set compares LGU performance in a TPR-
tree with the original update algorithm (TPR) [25] and a key-based
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direct access version (TPRK) [24]. TPRK maintains a look-up ta-

ble similar to LGU to enable key-based direct access to the leaf

level. The second set compares a LGU-based R-tree, an original

R-tree (R*-tree more precisely [5]), and a FUR-tree [15]. FUR-

tree is the most recent technique for frequent updates in R-tree. All

comparisons are measured with disk I/O cost, which is the major
concern for disk-based index structures.
The main findings from the experimental study are:

e LGU-based TPR-tree significantly outperforms TPR and TPRK
in update throughput (up to 100 times). And so does LGU over
R-tree and FUR-tree.

e LGU’s query throughput is comparable to TPR and TPRK.

e Push-L and Push-Mp strategies perform better than Push-All.

e Improvement of LGU over TPR, TPRK, R-tree, and FUR-tree
increases when dataset size increases.

In all head-to-head comparisons, index structures all get the same
amount of main memory, i.e., the comparisons are fair.

6.1 Experiments Setup and Parameter Settings

We use three different datasets in our evaluations:

e Uniform: All points’ initial locations are uniformly distributed
in the workspace, so are their speeds in the speed range.

e Skewed: All points’ initial locations and speeds have higher
probability to locate close to the center and to have slow speed
using a Zipfian distribution generator in GSTD [33].

e Network: A dataset generated by Brinkhoff’s generator [6]. With
this generator, we simulate a cell phone tracking application in
the city of San Francisco.

For the uniform and skewed datasets, moving points are gener-
ated in a workspace of 100 x 100 square kilometers. The speeds
of moving points range from 75 meters per minute (pedestrians) to
300 meters per minute (vehicles). For the network dataset, moving
points are moving along the streets in San Francisco.

The number of moving points is 1 million for most experiments.
After the tree is built, a workload composed of both queries and
updates is executed over the tree. In all experiments, we evaluate
the tree’s performance for 60 time units (minutes) after the tree
building. The incoming query rate is 20 queries per time unit for
most experiments.

For all experiments, the disk page size is set to 4K bytes. Unless
explicitly mentioned, LGU uses Push-L strategy in dealing with

push down. The size of I-Buffers is 16 pages and size of the D-
Table is set to 4 times the number of leaf nodes (about 320 KBytes
for 1 million objects in TPR-tree and 160 KBytes in R-tree). The
look-up table in LGU and TPRK takes 8M bytes memory for 1 mil-
lion objects. The system buffer size is 20 pages for LGU. To com-
pensate the memory occupied by the D-Table in LGU, the system
buffer size of TPRK is set to 30, 60, and 100 pages for the datasets
of size 100K, 400K, and 1M, respectively. For TPR, R-tree, and
FUR, the system buffer size is 200, 800, and 2000 pages for the
datasets of size 100K, 400K, and 1M, respectively. The extra buffer
pages for them are to compensate for the memory occupied by the
D-Table and the look-up table in LGU.

For R-tree we only execute range queries. TPR-tree supports
three types of queries: time instant range queries, time interval
range queries, and moving range queries. A moving range query is
a time interval query whose query window may change over time.
A parameter QWS is used to described the size (area) of query win-
dows in terms of a fraction of the total workspace. For most ex-
periments we set QWS = 0.25%. The compositions of the three
types of queries are 60%, 20%, and 20%, the same as in [25]. For
time interval queries (the latter two types), the query time inter-
val is randomly picked from [0, 20]. For time instant/interval range
queries, query windows are randomly scattered over the workspace;
for moving range queries, the centers of query windows are always
some moving points in the tree.

In computing update throughput, assume each 1/O is a random
disk access, which takes 10 milliseconds [18]. So the throughput
T= 11\,%_2, where N, is the average I/Os per operation.

6.2 Scalability

We observe that the update throughput is significantly improved by
LGU in all three different datasets over TPR-tree and R-tree. The
improvements are similar in different datasets.

Fig. 7 and 8 show the overall results of TPR-trees and, resp., R-
trees. For the case of 1 million objects, LGU improves the update
throughput by about 30 times over TPR and TPRK, about 18 times
over R-tree, and about 10 times over FUR-tree. Also, the update
throughput of LGU is less sensitive to dataset size, while TPR’s
update throughput drops a lot when the size increases. Since the
performance comparisons in the uniform dataset and the skewed
dataset are similar, we only present experimental results of the uni-
form dataset and the network dataset in the rest of this section.
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Fig. 9 (left) provides average I/Os per update for the network
dataset. It is clear that the average I/Os per update of LGU is much
less than 1. This is hard to achieve without grouping updates since
usually an individual update takes at least 2 I/Os (one for read-
ing and one for writing). Fig. 10 (left) shows a similar picture for
LGU’s performance in R-trees.

Fig. 9 (right) and 10 (right) represent the number of objects in the
dataset and the largest update frequency an algorithm can handle.
The three points labelled “100K”, “400K”, and “1M” are the appli-
cation scenarios described in §2. It is obvious that LGU can easily
satisfy the demands of the applications with all three sizes, while
other algorithms can only meet the requirement of the “100K” case.

Finally, TPRK and TPR perform similarly and the improvement
of FUR-tree over R-tree is not very significant. The reasons are (1)
TPR is compensated with a large system buffer for the lookup table
used in TPRK, and (2) both R-tree and FUR-tree have large sys-
tem buffers, which weakens the effectiveness of the main memory
summary structure used in FUR-tree.

6.3 Push Down Strategies

We find that Push-L always has the best performance among all the
strategies, Push-Mp is slightly worse than Push-L, and Push-All is
always the worst one.

Fig. 11 and 12 show the performance of different push down
strategies on the network dataset (the results of two other datasets
are very similar). Among the three strategies, Push-L achieves the
best performance. Push-MP has similar performance (85%-90%
of Push-L) as Push-L and the naive Push-All strategy is the worst
(50%-60% of Push-L). Note that all three strategies achieve much
better update performance than other algorithms.

6.4 Impact of I-Buffer Size

We observe that the update performance increases with I-Buffer
size, while query performance decreases slightly.

We only present results for TPR-trees, results for R-trees are
similar. We show both update and query throughput. The analy-
sis result of §5 indicates that larger I-Buffers will increase update
throughput and decrease query throughput. From Equation 6 and
the experimental parameters provided in §6.1 we can compute the
optimal I-Buffer size of the TPR-tree is 42.

The results in Fig. 13 and 14 confirm this prediction from the an-
alytical model. Since I-Buffers are only attached to internal nodes,
which are a small fraction of the tree nodes, query throughput does
not decrease much when the I-Buffer size increases.
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LGU with different I-Buffer size outperforms TPR/TPRK sig-
nificantly in update throughput. The maximum improvement is
observed for 100-page I-Buffers, at about 100 times faster than
TPR/TPRK. We observe that the query performance in the network
dataset is much better than that in the uniform dataset, due to re-
strictions on point locations.

We also compute the expected update (query) I/Os and compare
them with the experiment results (Fig. 15 and 16). The expected
query I/Os are close to the experiment results. But there is a gap
between expected update I/Os and the experiment results. The rea-
sons of this difference include: (1) The theoretical analysis assumes
all entries go to the leaf level, which is an over-estimate since some
entries are deleted directly from I-Buffers and some just stay in I-
Buffers. (2) In the analysis, it is assumed that each time an I-Buffer
is accessed, all pages in the I-Buffer are accessed. But this is not
always true, especially for larger I-Buffers. (3) System buffers are
not taken into consideration in the analysis, which reduces the up-
date I/Os. (4) The average group size observed in experiments is
greater than the approximation in the analysis.

6.5 Combined Update and Query Throughput

When the incoming query rate increases, we observe the overall
throughput of LGU decreases mildly. But in all cases studied, LGU
still out performs all other algorithms.

In this set of experiments, the incoming update rate is invariant
while the incoming query rate is increased from 20 per time unit to
400 per time unit. Fig. 17 and 18 show that when the frequency of
queries increases, the improvement of overall throughput achieved
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by LGU decreases. But in most cases studied, LGU still outper-
forms TPR and TPRK. And the overall improvement of LGU is
higher in the network dataset.

7. CONCLUSIONS AND FUTURE WORK

In this paper we study the problem caused by frequent updates
in disk-based index structures and introduce the LGU algorithm.
LGU focuses on utilizing memory wisely by performing group in-
sertions and deletions to reduce the I/O cost of a disk-based index.
(Although LGU increase CPU cost, preliminary analysis indicates
that the I/O cost remains dominant.) Future work may lead to bet-
ter analytical model (e.g. with a more accurate assumption about
entry deletion). It is clear that the group update technique will have
its limitations; when the incoming update rate is extremely high,
one has to consider other approaches such as main memory based
algorithms.
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