
Online and Minimum-Cost Ad Hoc Delegation in e-Service Composition ∗

Cagdas E. Gerede Oscar H. Ibarra
Dept. of Computer Science

University of California
Santa Barbara, CA, 93106, USA

Bala Ravikumar
Dept. of Computer Science
Sonoma State University

Rohnert Park, CA 94928, USA

Jianwen Su
Dept. of Computer Science

University of California
Santa Barbara, CA, 93106, USA

Abstract

The paradigm of automated e-service composition
through the integration of existing services promises a fast
and efficient development of new services in cooperative
business environments. Although the “why” part of this
paradigm is well understood, many key pieces are missing
to utilize the available opportunities. Recently “e-service
communities” where service providers with similar inter-
ests can register their services are proposed towards re-
alizing this goal. In these communities, requests for ser-
vices posed by users can be processed by delegating them
to already registered services, and orchestrating their ex-
ecutions. We use the service framework of the “Roman”
model and further extend it to integrate activity processing
costs into the “ad hoc” delegation computation. We inves-
tigate the problem of efficient processing of service requests
in service communities and develop polynomial time ad hoc
delegation techniques guaranteeing optimality.

1 Introduction

The framework of web services paints a bright picture for
future software and applications development (see recent
conferences such as [19, 2, 1, 9]). Much of the expected
benefits come from a systematic approach of sharing pro-
gram executions, a.k.a. services, as well as data (Microsoft’s
.NET, Sun’s J2EE, IBM’s WebSphere). Clearly, the ability
of providing services is becoming critical in many business
applications where the integration and performance man-
agement of business processes ultimately determine the suc-
cess [14]. In spite of the demand from applications and
practice, software system design still lacks the fundamen-
tal principles governing rigorous technical analysis in terms
of functional adequacy and/or performance metrics [20]. A
major challenge lies thus in the technical advancement in
the areas of both formalisms for software design and analy-
sis techniques. The goal of the present paper is to develop

∗Work by Gerede, Ibarra, and Su was supported in part by NSF grant
IIS-0101134. Ibarra’s research was also supported by NSF grants CCR-
0208595 and CCF-0430945.

techniques and algorithms for automated composition of e-
services (or equivalently, web services, services).

Service composition has its similarities with information
system integration, workflow system design, and distributed
computing [13, 17]. The main task is to assemble existing
pieces in a way that the autonomous pieces will cooperate
with each other. The goal is to facilitate a fast and efficient
development of new services in cooperative business envi-
ronments [13, 17]. Towards this goal, e-service communi-
ties are proposed [4, 3] where service providers with similar
interests can register their services for the community use.
When a user asks for the execution of some activities, the
community may not have a capable service directly; how-
ever, the activities may be delegated to registered services
so that the user need is satisfied.

Service composition, generally, consists of two main
steps [4]. The first one, sometimes called composition syn-
thesis, describes the process of (manually or automatically)
computing a specification of how to coordinate the compo-
nents to answer a service request. On the other hand, the
second step, often referred to as orchestration, defines the
actual run-time coordination of service executions, consid-
ering also data and control flow among services. This paper
focuses on the synthesis part.

Recently, automated composition synthesis problem was
studied in [4, 5, 11]. Given a set of descriptions of existing
e-services (e.g., from a “UDDI++” repository) and a desired
e-service, the problem is to construct a “delegator” that will
coordinate the activities of those services to achieve the de-
sired e-service. Also, all three studies use a model, often re-
ferred to as the “Roman” model, where e-services are repre-
sented as activity-based FSMs. Compared to these studies,
one important difference in our approach is that we look at
the problem of computing an optimum “on-the-fly” delega-
tion for a given specific sequence of service requests instead
of the problem of offline construction of a delegator achiev-
ing the behavior of a desired nonexisting e-service. Also, in
our case, e-services are modelled as FSMs augmented with
linear counters and we integrate activity processing costs to
the model.

This paper makes the following contributions:

• We extend the “Roman” model in two ways: First,
we model e-services as FSMs augmented with linear
counters (i.e., linear storage) and illustrate the useful-
ness of the extended model. Secondly, We integrate
activity processing costs into the model to capture the
cases where different services process the same activi-
ties with different costs.

• We define the ad hoc delegation problem in e-service
communities. Given a community of e-services, and a
service request (sequence of activities), we study the
problem of how to compute an optimal delegation of
requests as the cheapest way to proces the requests us-
ing the community services in a collaborative manner.

• We show that for FSM only e-services, there is a linear
time algorithm computing an optimal delegation, and
that for linear counter e-services, the optimum ad hoc
delegation problem can be solved in O(log2n) space
and in polynomial time in terms of n, where n is the
length of the service request.

The remainder of the paper is organized as follows. In
Section 2, we define our service model and delegation prob-
lem. In Section 3, we present the linear time delegation
algorithm. In Section 4, we study the complexity of delega-
tion for linear counter e-services and propose a polynomial
time algorithm. Section 5 discusses related work and Sec-
tion 6 concludes the paper.

2 A Model for E-services

We adopt the e-service framework presented in [4] (of-
ten referred to as the “Roman” model), because the model
clearly defines e-services and provides a nice formal set-
ting for a precise characterization of automatic composi-
tion of e-services. In this model, an e-service is a soft-
ware artifact interacting with its clients (humans or other
e-services). An external service schema describes the pub-
lished service behavior represented as sequences of activ-
ities with constraints on their execution order, whereas an
internal schema specifies the internal logic of the service
meaning how the activities are actually executed. An e-
service instance refers to one occurrence of an e-service
among several independently running instances. Each in-
stance conforms to its schema during its execution. We can
informally describe the semantics of a service execution as
follows: When a client first invokes a service instance, an
“enactment” is created for the conversation. Then, the client
interacts with the service instance by sending an activity re-
quest and waiting for the return information. On the basis
of the returned information, she determines her next activ-
ity request. When the client doesn’t have any more requests,
she may explicitly terminate the enactment.

When an e-service is invoked by a client, each requested
task can be performed by either executing certain actions

m,2m,2

n,5

Service A1

m,1

b,2

Service A2

E-Service Community

c,2

g,2

Service A3

i,0c,1

p,2

Service A4

b,1

g,3

i,2

Service A5

m,5m,5

n,1

Service A6

w = m c g n b i p b

b,1

d(w) = 6 4 5 6 5 5 4 5

Figure 1. A Community of Genomics Services

on its own, or interacting with other e-services to dele-
gate the processing to them. A simple e-service processes
all requests from its client on its own, while a composite
e-service invokes other e-services to answer the client re-
quests.

An e-service community consists of an activity alpha-
bet Σ and a set of e-services of similar interests. An e-
service joins a community by registering its external schema
in terms of the alphabet of the community (which can be
done by defining a mapping from the service alphabet to
the community alphabet, e.g., as described in [3]).

So far the model doesn’t refer to any specific form of ser-
vice schemas. As formalized in the next section, this study
focuses on the services whose external service schemas
are represented as nondeterministic FSMs augmented with
counters. We mainly focus on external schemas; therefore,
from now on we use the word “service” to actually mean an
external service schema.

We also extend the model with processing costs. A cost
function of a service describes how much it costs to perform
an activity and these costs can be related, for instance, to the
amount of money charged to a client or the communication
time necessary for the processing.

Before the formal discussion of the service model, let’s
illustrate the described notions with an example.

Example 2.1 Figure 1 illustrates a community of genomics
services. The community alphabet consists of the following
activities: transcription factor binding search (b), cluster
and principal components analysis (c), GenBank sequence
retrieval (g), promoter identification (i), microarray anal-
ysis (m), NCBI BLAST search (n), and promoter model
generator (p). The community has 6 registered services
each with different functionalities and processing costs. For
instance, service A4 can perform c, i and p with costs 1, 0
and 2 respectively. Each service (schema) is represented by
an FSM as illustrated in Figure 1. In each FSM, the state
directed by an arrow head without a tail represents the start
state of the service when the enactment is created. Also,
each double circle represents an accepting state where an
enactment can be terminated successfully.

Suppose that a scientist would like to make an experi-

2

ment on promoter identification by performing the follow-
ing activities in that order: microarray analysis, cluster and
principal components analysis, Genbank sequence retrieval,
NCBI BLAST search, transcription factor binding search,
promoter identification, promoter model generator and tran-
scription factor binding search (which can be described as a
word w = mcgnbipb). Obviously, there is no single ser-
vice that can process w. However, it can be shown that
services can be coordinated so that they can collaboratively
process w. Figure 1 shows the optimum delegation d(w)
where, for instance, micro array analysis and NCBI BLAST
is delegated to service 6.

Note that the delegation of an activity can be affected by
the other activities in the sequence. For instance, in d(w),
the activity c is delegated to A4 instead of A3 since w has
the activity p. In addition, the optimum delegation cannot
simply be computed by selecting the service with the cheap-
est processing cost at each step. For example, the activity m
should be delegated to A6 instead of A1, even though A1’s
cost is much lower. The reason is that the activity n’s lower
cost in A6 compensates the higher cost of m. However, that
wouldn’t be the case if w had more than one m.

One final point we would like to mention with this exam-
ple is about the counters. Suppose that service A4 doesn’t
want to let its users abuse the system by requesting many
i’s for free and would like to put the following constraint on
the executions: the number of i’s executed must be at most
4 times the total number of c’s and p’s. This kind of linear
constraints can be easily checked if FSMs are augmented
with linear bounded counters. For instance, in this case, the
constraint can be checked if A4 is augmented with 5 linear
bounded counters, where 4 of them counts the total number
of c’s and p’s and the last one is for the number of i’s.

Next, we formally define the notion of an e-service, and
the optimal delegation problem.

Let Σ be a finite alphabet of symbols, each of which rep-
resents an activity. A service request (or word) of length
k ∈ N over Σ is a sequence of k activities requested by a
client. λ denotes the word of length 0. Let Σ∗ be the set of
all words over Σ. A language is a subset of Σ∗.

A linear(-bounded) counter machine (or simply, linear
CM) is an FSM augmented with a finite number of counters
(or integer variables). While making a transition from a
state to another state, each counter (which can only have
nonnegative values) can be incremented or decremented by
1 or unchanged, and can be tested for zero. The counters
are restricted in that there is a constant c such that on any
input of length n, the value stored in each counter during the
computation is at most cn; thus, such counters are called
linear bounded counters (Note that our restriction on the
counters being linear can easily be relaxed to counters with
values bounded by cnk for constants c and k).

We will show that for a set of services modeled as linear
CM’s, the (optimal) delegation problem is solvable in poly-
nomial time. To obtain our results, it is convenient to work

with a model equivalent to a linear CM. The following can
easily be verified (see, e.g., [12]):

Theorem 2.2 Every linear CM can be simulated by a 1-
way log n space-bounded TM, and converse is also true.

In view of the theorem above, for convenience, we will
state our results in terms of 1-way log n space-bounded
Turing Machines1, while the same results can also be ob-
tained in terms of linear CM’s.

Next, we define an e-service modeled as a 1-way log n
space-bounded TM.

Definition 2.3 An e-service is a (possibly nondeterminis-
tic) 1-way log n space-bounded TM A where A has a one-
way read-only input tape and a finite number, say k, of two-
way read/write work tapes (i.e., A uses no more than log n
cells on each work tape for any input of length n). More for-
mally, the service A is defined as (S,Σ,Γ, δ, s0, B, F, cost)
where

• S is the finite set of states, s0 in S is the start state, F ⊆
S is the set of accepting states where an enactment can
be terminated successfully,

• Γ is the finite set of tape symbols and B, a symbol in
Γ, is the blank symbol,

• Σ, a subset of Γ not including B, is the set of input
symbols (activity alphabet),

• δ is the next move function, a mapping from S ×
Γk+1 to 2S×Γk×{+1,0}×{+1,−1,0}k

(k is the num-
ber of work tapes). For instance, a transition
(s′, b′, c′, 0,+1,−1) ∈ δ(s, a, b, c) in a service with
2 work tapes represents the move the move: if the ma-
chine is in the state s and the input and work tape heads
are scanning symbols a, b, c respectively, then it can go
to the state s′, and the work tape heads can replace b, c
with b′, c′. In addition, while the input head stays sta-
tionary (0), the work tapes move right and left respec-
tively (+1,−1).

• cost is the cost function where cost(q, a, p) defines the
cost of processing an activity a when A makes a tran-
sition from a state q to a state p (If the transition is not
defined in δ, then the cost is infinite).

A service A defined as above is viewed as an acceptor.
A accepts a word w = a1a2...an if, when started in its start
state with input #a1...an# (#’s are the end markers) and
blank read/write work tapes, it eventually lands in a unique
accepting state with all work tapes blank (From now on we
ignore the end markers and assume that two end markers
are added to the original input).

When a client submits a service request (sequence of ac-
tivities) to a service instance, a new enactment is created

1A 1-way log n space-bounded Turing Machine (TM) is an FSM aug-
mented with a finite number of two-way read-write worktapes which are
log n space-bounded in the sense that on any input of length n, each work-
tape uses no more than log n space.

3

and it is terminated when the processing finishes. Since the
termination of an enactment is correct only when it happens
at one of the accepting states, an accepted word intuitively
represents a service request that can be processed by A suc-
cessfully. Then, the (activity) language of a service A, de-
noted as L(A), is the set of service requests accepted by
A.

Let C denote a service community and A1, ...,Ar be
the registered services in C where |C| = r. Informally, a
delegation of a word w = a1a2...an over C is a mapping
that specifies which service in the community should pro-
cess each activity. Intuitively, it defines a subsequence for
each service and each service processing a non-empty sub-
sequence should end up in an accepting state.

Now, we can formalize the notion of an optimal delega-
tion as follows:

Definition 2.4 For a word w, a predelegation over C is a
one-to-one function d : [1..|w|] → [1..|C|] and imaged

j (w)
is the subsequence of w obtained by concatenating the sym-
bols assigned to the service j. Then, d is a delegation if it is
a predelegation and imaged

j (w) is either λ or in L(Aj) for
every service Aj in C . Finally, a delegation d of w over C
is an optimal delegation of w if there is no other delegation
of w such that its cost is lower than the cost of d.

In the next section we give an analysis for a special case
of this model where each service is an FSM (i.e., no coun-
ters). Then, we extend the results to the general model,
namely FSMs with linear counters.

3 Delegation for FSM e-Services

In this section, we study a special case of the model in-
troduced in the previous section such that each service is an
FSM. Before we describe the linear time delegation algo-
rithm, we first introduce the notion of product machine that
is used in the explanation of the proposed algorithm.

A1

a
0 21

b

A2

a
0 21

c

C1(0,a,1) = 3

C1(1,a,1) = 4

C1(1,b,2) = 5

a

a
C2(0,a,1) = 4

C2(1,a,1) = 5

C2(1,b,2) = 4

a) b)

Figure 2. a) FSMs A1, A2 used in the product con-
struction, and b) their cost functions, C1 and C2.

Example 3.1 Fig. 2.a shows two services, A1 and A2.
Each has three states numbered as 0, 1 and 2. Fig. 2.b
shows the cost functions of A1 and A2. For example,
C2(0, a, 1) = 4 means the cost of making an a transition
from 0 to 1 costs 4 in A2. The product machine of A1 and
A2 is shown in Fig. 3. Each state of this machine represents
a configuration of the system, i.e., it refers to a state for each
service. For instance, the configuration 21 says that under
this configuration, A1 is in its state 2 and A2 is in its state 1.

00

10

21

01

11

12

22

20 02

a / 2a / 1

a / 2 a / 1
b / 1 c / 2

b / 1 c / 2

c / 2 b / 1

a / 2 a / 1

a / 2 a / 1

Figure 3. The product machine of the FSMs shown
in Fig. 2

Transitions show how the system proceeds when an activity
is processed. For example, the a/1 transition from 00 to 10
shows that if A1 processes the activity a, then A1 goes to its
state 1, while A2 stays at the state 0. In general, a transition
x/i denotes the fact that x is delegated to service i.

Next we formally define the product machine of a set of
services.

Definition 3.2 Given a set {A1, ..., Ar} of services where
Ai = (Si,Σ, δi, s

0
i , Fi), the product machine PROD =

(SP ,Σin, Σout, δP , s0
P , FP) is a Mealy FSM2 where

• Input and output alphabets: Σin = Σ, and Σout =
{1, 2, ..., r},

• States: SP ⊆ (S1 × ... × Sr),
• Starting state: s0

P = [s0
1, ..., s

0
r],

• Accepting states:
FP = {[q1, ..., qr] | ∀i (qi ∈ Fi ∨ qi = s0

i) ∧ ∃j qj ∈
Fj where i, j ∈ [1, r]},

• The transition mapping δ : SP × Σin → SP × Σout

is defined as follows: Let [q1, ..., qr] be a state in
PROD. For each activity a ∈ Σ and for each i ∈
[1, r], if δi(qi, a) is defined, then, there exists a transi-
tion δ([q1, ..., qr], a) in the product machine such that
δ([q1, ..., qr], a) = { ([p1, ..., pr], i) | pi = δi(qi, a)
∧ pj = qj if j 	= i where 1 � j � r}.

Note that the transition above represents the fact that
a is assigned to the service i and therefore, the sys-
tem moves to a new configuration where each machine
stays in the same state except Ai.

We note that the product machine is not only an accep-
tor, but an acceptor with outputs, i.e., a transducer. Also, in
the description of accepting states, for the simplicity of the
discussion, we assume that once a service processes an ac-
tivity, it cannot return back to its initial state. In fact, every
FSM can be converted to an equivalent FSM satisfying this
property.

Note that since a configuration consists of the state infor-
mation of each service, the number of states in the product

2Each transition produces an output.

4

of r services can be at most cr where c is the number of
states of the biggest service among r services.

We are now ready to move on to the algorithm we pro-
pose for the delegation problem and its analysis.

3.1 A Linear Time Delegation Algorithm

In this section, we informally describe the algorithm we
propose that solves the delegation problem in linear time.

Let PROD denote the product of a set of services
{A1, ..., Ar}. Given a word w = a1...an, we build a graph
that simulates PROD on w and adds costs to the nodes to in-
dicate the cost of every path. The goal is to find the shortest
path in this graph.

More precisely, the graph is built by unfolding the PROD

on the input string a1a2...an as follows. Starting from the
initial state of PROD, we build the computation tree, in
which at level i, we will have all states of PROD that are
reachable from the initial state on the prefix a1...ai and we
keep track of the total cost of each path from the initial state
to the level i. For instance, Fig. 4.a shows the computation
tree generated for the word w = aaabc using the services
in 2. This tree shows all possible paths that can be taken
with aaabc in the product machine shown in Fig. 3. The
underlined numbers next to each node shows the cost of the
path from the root to that node. For instance, the 00-10-11
path costs 7.

It is important to realize that if the structure is built
as described, the number of nodes can be exponential in
the length of w, because the tree shows all possible paths.
Instead of building structure as a tree, we construct it as
a DAG (directed acyclic graph) by merging the identical
states at the same level. For example, in Fig. 4, when the
second level of the tree is constructed, two copies of the
state 11 appear. In this case, we merge them. Since we
look for the shortest path, when we merge the states, we
only keep the path which is the shortest one from the root.
For instance, when the 11’s in the second level are merged,
there are two paths, 00-10-11 and 00-01-11. The path 00-
10-11 is kept and the transition from 01 to 11 is ignored,
which means we ignore the path 00-01-11. Similarly, in the
next level, two copies of the state 11 appear and when they
are merged, the path with a/1 transition is kept and the path
with a/2 is ignored by removing the transition a/2 since the
first path costs 11 while the second costs 12. The final DAG
is shown in Fig. 4.b.

At each level of the DAG construction, we merge the
identical states; therefore, there are at most cr states at each
level (where c = maximum number of states in the Ai’s)
which is the maximum number of states in PROD as ex-
plained in the previous section. Merging the states means
merging some paths. When a merge happens, only the
shortest path among those paths is kept and the others are
ignored. Therefore, in each level, the number of paths arriv-
ing to a node is 1 (the shortest one) and because of that, the
number of paths in the final DAG equals to the number of
states in the final level which is at most cr. Since the length

00

10 01

11 11

11 11 11 11

21 21 21 21

22 22 22 22

00

10 01

11

11

21

22

a / 1 a / 2

a / 2 a / 1

0

3 4

7 7

1211

16

20

17

21

11 12

16 17

20 21

Level

0

1

2

3

4

5

a / 1 a / 2 a / 2a / 1

b / 1

c / 2

b / 1

c / 2

b / 1 b / 1

c / 2 c / 2

0

3 4

7

11

16

20

a / 1 a / 2

a / 2

a / 1

b / 1

c / 2

a) b)

Figure 4. a) The full computation tree for w =
aaabc generated by unfolding the product machine in
Fig. 3, and b) the computation graph considering only
the shortest paths.

of the string w is n, there are cr paths of length n. There-
fore, the construction of the DAG takes O(ncr) time. When
the final level is reached, by backtracking from the leaf level
to the root level, the shortest path with the delegations can
be extracted which takes O(n) since there are n levels. As a
result, the algorithm3 takes O(n) time since c and r are con-
stants independent of w (since the set of services is fixed).
Therefore, an optimal delegation can be computed in time
linear in the length n of w.

It can be shown that the algorithm above can be im-
plemented on a deterministic linear-time two-way Turing
Machine (TM) transducer T (i.e., T has a two-way read-
only input tape with endmarkers to contain the input string
a1a2...an to be processed, read-write work tapes, and a one-
way write-only output tape to write the assignments). The
TM essentially makes two passes on the input. On the first
pass, it carries out the computation of the costs of the paths.
After it has found a shortest path, the TM makes another
pass on the input to output the delegation for each symbol
in the input string.

Theorem 3.3 An optimal delegation of a word w of length
n over a community of services of FSMs can be computed
in O(n) time.

One natural question regarding the improvement of the
above algorithm is to whether there is an algorithm of time
complexity O(p(c, r) × n) where p is a polynomial, c is
max{|Ai|} and r is the number of services. Such an algo-
rithm would be preferable. The following result, however,
shows that this is unlikely since such an algorithm would
imply P = NP .

Theorem 3.4 If there is an algorithm of time complexity
O(p(c, r)×n) for the optimal delegation problem described
above, then P = NP .

Proof: Suppose such an algorithm A exists. Consider the
following problem: Given a finite collection of r+1 strings

3This algorithm has an exponential constant factor. Thm 3.4 proves that
this factor cannot be reduced to a polynomial

5

x, y1, ..., yr (over a fixed alphabet of length at least 3), de-
termine if x can be written as a shuffle of strings y1, ..., yr.
[23] shows that this problem is NP-complete. We can now
use algorithm A to solve this problem as follows: Let Ai be
a deterministic FSM (DFSM) that accepts the string yi for
all i and assign cost 0 for all the edges for all DFSMs. Ap-
ply algorithm A and output “yes” if and only if the optimal
cost is 0. Note that |Ai| = |yi|. This gives an algorithm of
polynomial time complexity for the shuffle problem from
which it follows that P = NP .

4 Delegation for Linear Counter e-Services
In this section, we generalize Theorem 3.3 to FSMs with

storage. More specifically, each service is modeled as an
FSM augmented with linear counters (i.e., an FSM having
a finite number of counters, each of which can have value
at most linear in the length of the input). We show that
the (optimal) delegation problem is solvable in polynomial
time.

Recall that for convenience we obtain the results using
log n space bounded TMs (see section 2).
Definition 4.1 Let A be log n space bounded TM with k
work tapes. A (partial) configuration of A is a tuple ID =
(q, y1, j1, ..., yk, jk), where q is the current state, yi is the
content of the worktape i, and ji is the position of the read-
write head within the worktape i.

Let {A1, ..., Ar} be a community of services, where each
Ai is a log n space bounded TM (recall that the input is 1-
way). The product machine PROD is defined in the same
was as for FSMs. Rather than define it formally, we just
give a brief informal description. Like in the FSMs case,
PROD simulates the computations of the Ai’s faithfully by
keeping track of the state changes and the changes in the
worktapes (PROD, thus, will have as many worktapes as
the Ai’s). When a new input symbol has to be processed,
PROD nondeterministically simulates the move of exactly
one of the Ai’s that requests (i.e., reads a new symbol). Note
that the Ai’s are not operating in real-time (i.e., their input
heads do not move right at every step) and, hence, their in-
put heads are not synchronized. So, e.g., A1 might be re-
questing to read a symbol at time t1 while A2 might request
to read the (same) symbol at a later time t2. PROD may
then delegate the symbol to A1 at time t1 (hence simulating
the move of A1 on the input symbol) or guess that A2 will
read at a later time and delegates the symbol to A2 at time
t2.

Next, we analyze the space complexity and time com-
plexity of computing an optimal delegation.

4.1 Space Complexity

Let’s first define a recursive algorithm which is used later
for our delegation algorithm.

Let A be log n space-bounded TM. Given two config-
urations ID1, ID2 of A and an input w = a1a2...an, Al-
gorithm 1 checks whether ID2 is reachable from ID1 with
the word ai...aj .

Algorithm 1 CHECK(i, j, ID1, ID2)
1: if i = j
2: if ID1 can reach ID2 in nk steps by processing symbol ai

3: return true
4: else
5: return false
6: else
7: for each configuration ID3 do
8: if CHECK(i, (i + j)/2, ID1, ID3) and

CHECK((i + j)/2 + 1, j, ID3, ID2)
9: return true

10: return false

The check in line 2 of Algorithm 1 can be done by calling
Algorithm 2 due to Savitch[12]. Algorithm 2 checks if the

Algorithm 2 TEST (ID1, ID2,m)
1: if m = 1
2: if (ID1 = ID2) or ID2 is reachable from ID1 in one

step
3: return true
4: else
5: return false
6: else
7: for each ID3 do
8: if (TEST (ID1, ID3, �m

2
�)) and

(TEST (ID3, ID2, �m
2
�))

9: return true
10: return false

machine can change its configuration from ID1 to ID2 in
m steps while processing an input symbol. Since the size
of a configuration in this case is log n, the number of all
possible configurations is at most at most nk for some fixed
k. Therefore, for any ID1 and ID2, if ID1 can reach ID2

by processing a single input symbol, say a, then this will
happens in no more than nk steps. In fact, for convenience,
we can assume, that the number of steps is always exactly
nk (by repeating ID2). Therefore, Algorithm 1 can check
the reachability from ID1 to ID2 in nk steps (m = nk).

Lemma 4.2 CHECK(i, j, ID1, ID2) takes O(log2 n)
space where ID1,ID2 are two configurations of a log n
space-bounded TM and j − i � n.

Now we are ready to define our delegation algorithm. Let
PROD be the product machine of a set of services. Let ID0

be the initial configuration of PROD. Without loss of gener-
ality, assume that PROD has only one (i.e., unique) accepting
ID, say IDf . Algorithm 3 describes how to determine the
delegation of symbols to the Ai’s of a string w = a1a2...an.

This algorithm can be implemented on a log2 n TM
space transducer. For each input symbol, Algorithm 1 is
executed which requires log2 n space by Lemma 4.2. Each
substring position and configurations require log n space.
As a result, the total space complexity of Algorithm 3 is
log2 n.

6

Algorithm 3 DELEGATE(a1, a2, ..., an)
1: if CHECK(1, n, ID0, IDf) is false
2: output(error);
3: else
4: current = ID0;
5: for each i from 1 to n do
6: N = {ID | CHECK(i, i, current, ID)}; /∗ set of

next configurations from current configuration with ai

∗/
7: Find a configuration, say IDp, in N such that

CHECK(i + 1, n, IDp, IDf) is true;
8: Output index of machine, say j, that corresponds to the

transition from current configuration to IDp (thus ai is
assigned to Aj).

9: current = IDp;

Theorem 4.3 For a set of services modeled as log n space-
bounded TMs where n is the input length, the delegation of
a word w, can be done in O(log2 n) space.

4.2 Time Complexity

Let PROD denote the product of a set of services and ID0

be the initial configuration of PROD. For every possible con-
figuration ID, PRODID represents the same machine with
PROD except the initial configuration of PRODID is ID in-
stead of ID0. Algorithm 4 computes a delegation in poly-
nomial time.

Algorithm 4 DELEGATE(a1, a2, ..., an)
1: if a1a2...an is not accepted by PRODID0

2: output error;
3: else
4: current = ID0

5: for each i from 1 to n do
6: N = {ID | CHECK(i, i, current, ID)}; /∗ set of

next configurations from current configuration with ai

∗/
7: Find a configuration, say IDp, in N such that ai+1...an

is accepted by PRODIDp

8: Output the index of machine, say j, that corresponds
to the transition(s) from current configuration to IDp

(thus ai is assigned to Aj).
9: current = IDp;

Since a log n space-bounded nondeterministic TM can
be simulated by a polynomial time-bounded deterministic
TM [12], Line 1 can be implemented in polynomial time
doing a breadth first search and marking reached configura-
tions. Since there is a polynomial number of configurations,
at each step, marking takes polynomial time. The process
continues n times, therefore, the total complexity of Line 1
is polynomial. Line 6 takes a polynomial number of steps,
because, there is a polynomial number of configurations
and for each configuration, Algorithm 1 calls Algorithm 2
which also takes polynomial time. Line 7 is similar to Line

1. It follows that the entire algorithm can be implemented
on a deterministic polynomial time-bounded two-way TM
transducer. Therefore, we have the following:

Theorem 4.4 For a set of services of log n space-bounded
TMs where n is the input length, a delegation of an input
word w, can be done in polynomial time in the length of w.

Clearly, the technique above can be changed to take pro-
cessing costs into consideration with the DAG idea used in
the FSM case. In FSM case, the nodes of the DAG are
the states of FSMs. In this case, they are configurations of
space-bounded TMs. Since the number of configurations in
a log n space-bounded TMs is polynomial, there is a poly-
nomial number of paths in the DAG. Therefore, we get the
following result:

Corollary 4.5 For a set of services of log n space-bounded
TMs where n is the input length, an optimal delegation of
an input word w can be computed in polynomial time in the
length of w.

5 Related Work

This paper is most relevant to the work [4, 5, 11, 8, 3, 8].
[4] defines an e-service framework and study the problem
of automated composition synthesis. One input is a set of
descriptions of e-services, each given as an automaton. The
second input is a desired global behavior, also specified as
an automaton, which describes the possible sequences of
activities. The output is a subset of the atomic web ser-
vices, and a delegator that will coordinate the activities of
those services, through a form of delegation. Finding a del-
egator, if it exists, can be done in EXPTIME. [8] studies
generalizations to automata with unbounded storage where
decidability and undecidability of the composability prob-
lem are shown. [5] extends the framework to allow interac-
tions among existing services, which provides more flexi-
bility to the services to achieve the desired service behavior.
In [11], the notion of delegator was extended to have “look
ahead”, i.e., the delegation of an activity is determined by
looking at the future activities. In all three approaches, a de-
sired service is specified and a composite service is created
through composition of existing services. The construction
happens before run time. In this study, instead of a desired
service, an instance of an execution is given and we are only
interested in performing the given instance at run time. In
addition, the earlier work in [4, 5, 11] were based only on
standard finite state machines and did not have cost func-
tions associated with the activities.

The idea of service communities is similar to the ones
studied in [4] and [3]. Our notion of service communities
is closer to the one of [4]. An important difference between
[3] and [4] is that in [3], service communities define services
they would like to have, and service providers register their
services if they think they can provide the desired service.

7

In [4], service providers export their services with respect to
a community alphabet and the community figures out what
services it can provide using the registered services.

Service composition is also closely related to planning
[16], where existing tasks are put together for a given goal.
An approach to automated composition [18] has been de-
veloped for the OWL-S model [7]. The basic question in
that work is whether a given collection of atomic services
can be combined, using the OWL-S constructors, to form
a composite service that accomplishes a stated goal. The
approach taken is to encode the underlying situation calcu-
lus world view, the desired goal, the individual services (or
more specifically, their pre-conditions and effects), and the
OWL-S constructors into a Petri net model. This reduces
the problem of composability to the problem of reachability
in the Petri net. The main difference in our approach is that
we use finite state machines to represent services and the
desired goal is represented as a sequence of activities.

The problem was also considered in the context of work-
flows. In [22], the global dependencies are given as a tree,
with “optional” and “choices” on some dependencies, re-
sembling the event algebra [21]. An algorithm was given to
map to a Petri net that generates the root of the tree without
violating the dependencies. In a simpler model, [15] starts
from a pair of pre- and post-conditions and assembles the
workflow by selecting tasks from a library.

Another approach on the automated composition prob-
lem is considered in [6, 10] where the desired global behav-
ior described as a conversation (a family of permitted mes-
sage sequences) specified as a finite state automaton. These
studies use message-based models whereas we focus on an
activity-based model.

6 Conclusion
In conclusion, this paper focused on the optimal ad

hoc delegation problem in dynamic e-service communities
where services are modeled as FSMs augmented with lin-
ear counters. We formally analyzed the problem and give
complexity bounds. In future, we plan to build software
implementations inspired from the techniques presented in
this paper.

References

[1] Proceedings of the IEEE International Conference on Ser-
vices Computing (SCC’04), September 15-18, 2004, Shang-
hai, China. IEEE Computer Society, 2004.

[2] Proceedings of the IEEE International Conference on Web
Services (ICWS’04), June 6-9, 2004, San Diego, California,
USA. IEEE Computer Society, 2004.

[3] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu. Declara-
tive composition and peer-to-peer provisioning of dynamic
web services. In Proceedings of the 18th International Con-
ference on Data Engineering (ICDE), 2002.

[4] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-services that ex-
port their behavior. In Proc. 1st Int. Conf. on Service Ori-

ented Computing (ICSOC), volume 2910 of LNCS, pages
43–58, 2003.

[5] D. Berardi, G. D. Giacomo, M. Lenzerini, M. Mecella, and
D. Calvanese. Synthesis of underspecified composite e-
services based on automated reasoning. In Proc. Int. Conf.
on Service Oriented Computing (ICSOC), 2004.

[6] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specifi-
cation: A new approach to design and analysis of e-service
composition. In Proc. Int. World Wide Web Conf. (WWW),
May 2003.

[7] O. S. Coalition. OWL-S: Semantic markup for web services,
November 2003.

[8] Z. Dang, O. Ibarra, and J. Su. Composability of infinite-
state activity automata. In Proc. 15th Annual Int. Symp. on
Algorithms and Computation, Hong Kong, 2004.

[9] S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills, ed-
itors. Proceedings of the 13th international conference on
World Wide Web, (WWW), New York, NY, USA, May 17-20,
2004. ACM, 2004.

[10] X. Fu, T. Bultan, and J. Su. Conversation protocols: A
formalism for specification and verification of reactive elec-
tronic services. In Proc. Int. Conf. on Implementation and
Application of Automata (CIAA), 2003.

[11] C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated
composition of e-services: Lookaheads. In Proc. of 2nd Int.
Conf. on Service Oriented Computing (ICSOC), pages 252
– 262, New York, NY, November 2004.

[12] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979.

[13] R. Hull and J. Su. Tools for design of composite web ser-
vices. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 958–961, 2004.

[14] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, (1):41–50, Jan. 2003.

[15] S. Lu. Semantic Correctness of Transactions and Workflows.
PhD thesis, SUNY at Stony Brook, 2002.

[16] S. A. McIlraith and T. C. Son. Adapting golog for com-
position of semantic web services. In Proceedings of the
Eights International Conference on Principles and Knowl-
edge Representation and Reasoning (KR-02), Toulouse,
France, April 22-25, pages 482–496, 2002.

[17] M. Mecella and G. D. Giacomo. Service composition: Tech-
nologies, methods and tools for synthesis and orchestration
of composite services and processes. In Proc. Int. Conf. on
Service Oriented Computing (ICSOC), 2004.

[18] S. Narayanan and S. McIlraith. Simulation, verification and
automated composition of web services. In Proc. Int. World
Wide Web Conf. (WWW), 2002.

[19] M. E. Orlowska, S. Weerawarana, M. P. Papazoglou, and
J. Yang, editors. Service-Oriented Computing - ICSOC
2003, First International Conference, Trento, Italy, Decem-
ber 15-18, 2003, Proceedings, volume 2910 of Lecture
Notes in Computer Science. Springer, 2003.

[20] R. Ramakrishnan et al. Science of design for information
systems. ACM SIGMOD Record, 33(1):133–137, Mar. 2004.

[21] M. Singh. Semantical considerations on workflows: An
algebra for intertask dependencies. In Proc. Workshop on
Database Programming Languages (DBPL), 1995.

[22] W. M. P. van der Aalst. On the automatic generation of
workflow processes based on product structures. Computer
in Industry, 39(2):97–111, 1999.

[23] M. K. Warmuth and D. Haussler. On the complexity of iter-
ated shuffle. J. Comput. Syst. Sci., 28(3):345–358, 1984.

8

