
SSWiM: A Semantic Service, Wrapper and Invocation Manager∗

Anna Sibirtseva Zhongnan Shen Jianwen Su
Department of Computer Science

University of California at Santa Barbara

Fuliang Weng Baoshi Yan Yao Meng
Research and Technology Center

Robert Bosch Inc.

Abstract

Integrating service description, discovery, and invoca-
tion functionalities presents several fundamental problems
in the management of web services and is a basic problem
for composing web services over a network. In this paper,
we present the design of a system called “Semantic Service,
Wrapper, and Invocation Manager” (SSWiM) which pro-
vides these key functionalities. In particular, SSWiM man-
ages storage of and queries over service descriptions in a
service registry, wraps existing REST services with WSDL
service interfaces, and supports for service invocation at
run time. We describe WSDL services based on two levels
of ontologies: a domain ontology for data sets and a service
ontology for services. The input/output messages (data) and
the functionality of a (WSDL) service are mapped to the do-
main ontology and the service ontology, respectively. We
developed the data mapping methodology and the mapping
algorithm. Service descriptions are registered in our service
registry which supports a set of service discovery queries.
The wrapper builder in SSWiM can generate WSDL ser-
vices automatically from REST services so that services can
be invoked uniformly in WSDL format.

1 Introduction

The development of web service standards and related
emerging technologies have significantly increased the pop-
ularity of the Service Oriented Architecture (SOA). A fun-
damental promise of SOA is the ease and flexibility of
composing web services that are bitesized software sys-
tems easily managed. An increasing number of web ser-
vices is being made available online, which presents an op-
portunity to develop software systems of greater complex-
ity and functionality. One challenge is to develop effec-
tive technology to fully utilize the available services. There
are, however, many obstacles; a main difficulty is the lack
of integrated support for automated service discovery and
∗Supported in part by a research grant from Robert Bosch LLC and

NSF grants ISI-0415195 and CNS-0613998.

composition, although specialized support for only discov-
ery or only composition has been studied in the literature
[12, 6, 7, 15, 5, 14, 24, 13, 4, 9, 3]. In this paper, we for-
mulate a technical platform which is an initial step towards
providing such integrated support, with a goal of supporting
practical applications. We demonstrate a specific telematics
application for the platform.
In the telematics domain, a spoken dialog system pro-

vides a natural way for users to operate devices and ac-
cess services. It allows the driver to perform their primary
task, i.e., driving, with a minimum distraction. One such
example is a conversational dialog system, called CHAT,
that has been developed to enable the driver to interact with
limited but representative applications, such as operating a
MP3 player (entertainment), search for a favorable restau-
rant (POIs), and finding a desirable route with multiple con-
straints (navigation) [19, 20]. It is natural that dialog acces-
sible web services become an important topic in the field
of telematics: using speech to access web services would
make web services accessible everywhere in everyday life.
We now describe a scenario for accessing web services

through a dialog system. A person is traveling from San
Jose to San Francisco in her car, and she wants to visit a
museum in San Francisco. The following is her conversa-
tion with the dialog system, where T is the traveler, and S is
the system.
T: I want to visit some museum in San Francisco.
S: OK. The followings are museums in San Francisco. Museum of
Modern Art (MOMA); Asian Art Museum; San Francisco Railway
Museum.
T: How much is the admission for MOMA?
S: The admission fee is 12.5 dollars.
T: Where can I park my car?
S: You can park at Fifth and mission Parking Garage.
T: Tell me the route to the garage.
S: Keep on freeway 101, then ...
In this conversation, the system needs to access several

web services as well as compose them together, including
finding museums in an area, querying the price of a mu-
seum, searching for parking structures near a place, and cal-
culating a route. These services are discovered, composed

1

In Proc. IEEE Conf. on CEC/EEE, 2008



and invoked on the fly, depending on the user’s requests.
This paper makes three contributions. The first is the de-

velopment of a system called “Semantic Service, Wrapper
and Invocation Manager” (SSWiM). SSWiM integrates the
management of ontologies, semantic service descriptions,
service discoveries, and service invocations including wrap-
pers (automated creation and execution) for services using
different standards. Through integrating these functionali-
ties, SSWiM can serve as a fundamental platform which on
one hand interacts with the web through service invocation,
and on the other hand can be used as the ontology and (se-
mantic) service registry, and as a single invocation mecha-
nism that interacts with networked services of all types. SS-
WiM is developed as a part of a telematics application pro-
totype which also includes “upper level” systems including,
in particular, a service composer and a dialog system inter-
acting with the driver. In the following, we illustrate a typ-
ical example in the telematics application and demonstrate
how SSWiM helps.
SSWiM enables a dialog system to compose and access

web services. It provides a set of functions for a dialog sys-
tem to discover, compose and invoke services. Fig. 1 shows
the framework of the dialog system and SSWiM. The dialog
system is responsible for talking to the user, and the compo-
sition module composes services to fulfil the user’s request.
The dialog system replies on SSWiM to query ontologies,
find web services and invoke services. A clear advantage of
SSWiM is its ability to separate logical level representation
of service functionalities with ontologies from the imple-
mentation details concerning service invocations.

S S W i M

� � � � � � � � � � � 	 � � � 
 � � � � � � � � � � 	 �  � � 	 �

� � � � � � � � � � � �

� � � � � � � � � � � � � � � � �  

Internet

Figure 1. The system framework
We use two levels of ontologies to semantically describe

web services. The domain ontology is a conceptualiza-
tion of a domain into a human understandable, machine-
readable format consisting of concepts, attributes and rela-
tionships. The service ontology is an abstraction of web
service functionalities in a domain and used to annotate real
web services. Service semantics can help to enhance the ac-
curacy of service discovery. On the other hand, the dialog
system itself needs to understand the semantics of users’s

requests. Therefore, these two ontologies are shared be-
tween the dialog system and SSWiM, and are used to under-
stand what the user says, describe available web services,
and exchange data between the dialog system and SSWiM.
The second contribution of the paper is a rule based lan-

guage for defining semantic mappings for WSDL services.
A service is annotated with a conceptual service in the ser-
vice ontology, and its inputs/outputs are mapped to the do-
main ontology. We define the syntax and semantics of map-
ping rules which map XML schemas to the domain ontol-
ogy. A mapping algorithm is used to convert ontology in-
stances to XML messages and vice verse at run time. A
Service Registry in SSWiM stores service descriptions and
provides a set of interfaces for service discovery. Services
in registry can be queried based on their inputs and outputs
as well as their service functionality. Since the dialog sys-
tem and SSWiM share the same ontologies, queries can be
expressed in terms of ontologies. Query results are returned
back as a list of service descriptions.
As the third contribution, we developed an automated

wrapper builder with graphical interface in SSWiM which
can generate WSDL wrappers for REST services automat-
ically. This builder simplifies the task of building WSDL
services (the wrappers) from REST services. With service
wrappers, the dialog system only needs to deal with WSDL
services uniformly. In this paper, we use XPath to define the
mapping between WSDL and REST services and present
an algorithm which generates wrappers by using code tem-
plates. The source code for wrappers can be either in C�
or Java. Wrappers generated are hosted by the Invocation
Engine which is another component of SSWiM.
The Invocation Engine in SSWiM gets invocation re-

quests from the dialog system, transforms ontology in-
stances to XML messages, invokes services and converts
output XML messages to ontology instances before they
are returned back to the dialog system. Based on the type
of services, the invocation engine either invokes wrappers
running on the engine or accesses services on the Internet.
The remainder of the paper is organized as follows. Sec-

tion 2 describes the two types of ontologies. Section 3 de-
fines the syntax and semantics of service descriptions. Sec-
tion 4 presents the automated service wrapper builder. Sec-
tion 5 discusses some implementation issues, and Section 6
concludes this paper.

2 Ontologies

Service ontology has been studied variously (OWL-
S [11], WSDL-S [18], WSMO [22], SWSO [8] and in
[6, 12, 17]). In our framework, we consider two levels of
ontologies: the domain ontology and the service ontology.
The former describes all the concepts and their relationships
in a certain domain. The semantics of these concepts are

2



well defined and have common understanding. The latter is
a collection of abstracted service functionalities which are
commonly used in the domain. The service ontology de-
pends on the domain ontology to describe the inputs/outputs
of service functionalities.
Concepts and attributes are two main entities in a do-

main ontology. A concept can have multiple attributes and
each attribute is a pair of name and type. The type of an at-
tribute can be a certain concept or one of the primitive types.
The relationship between concepts are captured by two rela-
tions: subclass and superclass. The subclass inherits all the
attributes from its superclass and can have its own attributes.
The subclass and superclass relationships construct the con-
cept hierarchy of a domain ontology. Some attributes can
serve the role of identifying a concept. These attributes are
called defining characteristics and are required for the con-
cept. A defining characteristic of a concept can represent
the concept and sometimes can be used in place of the con-
cept.
Fig. 2 shows a portion of a domain ontology.

“POI”(Point of Interest), “Gas Station” and “Museum”
are concepts, furthermore, “Gas Station” and “Museum”
are subclasses of “POI”. The attribute “name” of “POI”
is a string, while the type of “location” is another concept
“Location”. The attributes “name”, ”contactNumber”
and “location” are defining characteristics of the concept
“POI” because each of them can uniquely identify the
corresponding POI. An attribute of a concept may have
multiple values, for example, a museum may have several
exhibits going on in it.

� � �

� � � � � � � 	 
 �

�  � �  �

� 
 � � � 	 
 � � � � � � � � � �


 � � � � � 	 � � � 
  � � � � � �  ! " #  

� 
 � � � � � $  � % � � � & � � �  ' " ( )  *

� + , 	 % 	 � � - * � . / � � ) � � � 0 � 	 � � 	 
 � � & * � �  

� � � � � � � � 	 � �

Figure 2. An example of domain ontology
Formally, a domain ontologyOd is a pair (C, S up), where

C is a set of concepts, and S up is a binary relation on C.
< c1, c2 >∈ S up if c1 is a superclass of c2. A concept c ∈ C
is a four tuple < A, τ,D,M >, where A is a set of attribute
names, τ is a mapping from A toC∪{integer, string, real}, D
and M are boolean functions on A. τ maps each attribute to
its type, D decides if an attribute is defining characteristic,
and M describes if an attribute can have multiple values.
An instance of a concept is an instantiation of the con-

cept with attributes populated with values. An instance of
the “Museum” concept represents and describes a concrete

museum in the real world. In our ontology-based SSWiM
framework, instances are used to exchange data between
the upper level applications, e.g., the dialog system, and the
lower level service invocation. Ontology instances from ap-
plications are transformed to XML messages before web
services are invoked, and messages from web services are
transformed back to instances before they are returned to the
applications. The mapping process will be detailed later.
Based on domain ontology, we can define service ontol-

ogy. Service ontology is a set of abstracted service func-
tionalities in a domain. Each service function in the domain
is called a conceptual service whose inputs and outputs are
concepts in domain ontology. A concrete web service may
realize one or more conceptual services in the service on-
tology. Fig. 3 shows a part of service ontology. “FindPOI”
and “GetRoute” are two conceptual services in a service on-
tology. Their inputs and outputs are concepts in the domain
ontology. “Georeferences”, “Route” and “POI”, for exam-
ples, are concepts in a certain domain ontology. Note that
the input concept “Location” for the “GetRoute” concep-
tual service and the output concept “POI” for the “FindPOI”
conceptual service are connected with big arrows which
means the input or the output could be a list of values in-
stead of a single value. For instance, the “GetRoute” con-
ceptual service may take a source, a destination, and several
intermediate stops as inputs which are all instances of “Lo-
cation”, and generates a route as output.

1 2 3 4 2 5 2 4 2 6 7 2 8 9 2 : ; 3 4 <= > ? @ A B C

D 3 7 E F G 3 6

H I J K L M J I

N 3 O F 2

P Q R

Figure 3. An example of service ontology

A service ontologyOs is a triple (S , I,O), where S is a set
of conceptual service names, and I, O are mappings from S
to 2C×{true, f alse}. I, O maps each conceptual service respec-
tively to its input/output domain concepts and indicates if
the input/output concept can hold multiple values. The in-
put/output concept of a service can have multiple values if
the service consumes a list of instances of that concept.
In our SSWiM framework, we intentionally divide on-

tologies into two levels. This separation provides flexibility
and scalability for possible upper level applications, such
as service composition. Service composition can be done
based on conceptual services, while the result of service
composition is realized at run time by finding concrete web
services in service registry. As services in the registry are
changed dynamically, the upper level composition can be
relatively stable because the realization of the composition
is left to the service discovery at run time. The same thing

3



happens when service requirements are changed by the ap-
plication. The service ontology becomes a “common lan-
guage” between the upper level applications and the lower
level service discovery and invocation.

3 Descriptions for WSDL Services

In this session, we discuss our approach for service
description. Web services are currently described by
WSDL[21] files in which service interfaces are specified
in terms of input/output messages. We extend WSDL ser-
vice descriptions based the domain ontology and the ser-
vice ontology. Service messages and service operations
are mapped to these ontologies, and a mapping algorithm
makes conversions between messages and ontology in-
stances at run time. Instead of using UDDI[16, 10], ser-
vice descriptions are stored in a service registry in SSWiM
which provides a set of query interfaces using ontologies.

3.1 Service Description

Web services in SSWiM are described with domain and
service onotologies in addition to WSDL files. Service de-
scriptions are stored in service registry and can be retrieved
by service queries using ontology. Ontology enabled ser-
vice search can help to eliminate the ambiguities caused by
service discovery solely based on syntax and enhance the
accuracy of service queries.
A service description D is a six tuple

(F, I,O,Mi,Mo,W), where F ∈ S is the conceptual
service that this service realizes, I and O are the concepts
that the service takes as inputs and outputs resp., Mi and Mo
are mappings from input/output message schemas to the
domain ontology resp., and W is the WSDL file associated
with this service.
A web service realizes one conceptual service in a do-

main. The “YahooLocal”[23] web service, for example, re-
alizes the “FindPOI” conceptual service. Although it is pos-
sible that one service realizes several conceptual services,
for example, the conceptual services realized by “ESRI
ArcWeb Services”[1] include “FindPOI”, “GetRoute” and
“FindMap”, we treat them as individual web services. F de-
notes the conceptual service realized by a web service. The
input concepts I for the “YahooLocal” service are “Key-
word” and “Address”, and the output concept O is “POI”.
Note that input/output concepts of the concrete service

and the input/output concepts of the conceptual service that
the concrete service realizes are not necessary to be the
same. Usually, the input/output concepts of the concrete
service could be subclasses of the corresponding concepts
of the conceptual service because conceptual services are
supposed to be more general than concrete web services.
For example, the input concept “StruturedAddress” for the

“YahooLocal” service is a subclass of “Location” which is
the input concept for conceptual service “FindPOI”.
As mentioned before, ontology instances are the data ex-

changed between upper level applications and SSWiM. An
application may invoke several web services and the out-
puts of the former service may become the inputs of the
next one. In this sense, ontology instances provide a uni-
form format for data exchange. On the other hand, the in-
put/output messages of a WSDL web service are defined in
XML schema. Fig. 4 shows part of the schema of the out-
put message of “YahooLocal” service. This schema needs
to be mapped to the output concept “POI” which is shown
in Fig. 2. Therefore, mappings have to be established be-
tween the XML schemas of input/output messages and the
input/output concepts in a domain ontology. Mi and Mo de-
fine these mappings.

<schema>

<element name="ResultSet">

<complexType>

<sequence>

<element name="Result" type="ResultType"/>

</sequence>

</complexType>

<element>

<complexType name="ResultType">

<sequence>

<element name="Title" type="string" />

<element name="City" type="string" />

<element name="Rating" type="RatingType" />

</sequence>

</complexType>

<complexType name="RatingType">

<sequence>

<element name="AverageRating" type="float" />

<element name="TotalRatings" type="integer" />

</sequence>

</complexType>

</schema>

Figure 4. XML schema for yahoo local service
The mapping between XML schemas and concepts in

the domain ontology is defined in terms of rules. The map-
ping rules are simple enough that they do not cause much
overhead at run time when ontology instances are converted
to XML messages and vice verse. The rule syntax can be
defined as follows.

E ( . E)∗ → C ( . A)∗

E is an element name in the XML schema, C is a concept
name, and A is an attribute name.
Consider the mapping rules for the output message of

“YahooLocal” service. The schema is shown in Fig. 4, and
the output concept “POI” is shown in Fig. 2. The set of
mapping rules are summarized below.

ResultSet.Result→POI
ResultSet.Result.Title→POI. name:string
ResultSet.Result.City→POI. location:Georeferences|

Location|Address. city:string
ResultSet.Result.Rating.AverageRating→POI.rating:double

In the third rule above, the left side are elements “Result-
Set”, “Result”and “City” in the XML schema, and “City” is

4



a subelement of “Result” which itself is a subelement of
“ResultSet”. The “.” operator on the left side is used to rep-
resent subelement relationship. On the right side, “POI”
is a concept, and “location”, “city” are attributes. The
“.” operator on the right side is used to represent concept-
attribute relationship. The type of “location” attribute is
“Georeferences|Location|Address”, and the type of “city”
attribute is “string”. “City” is an attribute of “Address”. For
each attribute name, it is followed by its type and separated
by the “:” operator. The “|” operator in the rule represents
the subclass relationship in the domain ontology. For exam-
ple, “Location” is a subclass of “Georeferences” and “Ad-
dress” is a subclass of “Location”. The name of a concept
is always prefixed by its super classes which are separated
by “|”.
Mapping for attributes in XML schema can be handled

in similar rules. Without loss of generality, we only discuss
mapping rules for elements in XML schema in this paper.
It is not necessary that every element in an XML schema

is mapped to the domain ontology. The “TotalRatings” el-
ement, for example, does not have a mapping rule. These
elements without mapping rules are ignored at service invo-
cation.
Sometimes, it is possible that two or more elements in

an XML schema are mapped to the same attribute of a con-
cept or two or more attributes are mapped to the same el-
ement. For example, one element in the input message of
“YahooLocal” service is called “Street”, and this element
is a concatenation of the “StreetNumber” and the “Street-
Name” attributes of the “Address” concept. In this case, the
mapping rule E(.E)∗ → C(.A)∗ is not sufficient. To handle
this situation, the mapping rules for input message schemas
are extended to

E ( . E)∗ → C ( . A)∗(+C ( . A)∗)∗.
All the attributes in the right side of the rule are mapped to
the same element on the left side. The “+” operator stands
for concatenation.
For example, the mapping rule for the “street” element

of “YahooLocal” service can be expressed as
street→Georeferences|Location|Address.StreetNum:string

+Georeferences|Location|Address.StreetName:string.
Similarly, the mapping rules for output message schemas

are extended to
E ( . E)∗(+E ( . E)∗)∗ → C ( . A)∗.

All the elements in the left side of the rule are concatenated
and mapped to the attribute on the right side.
Ontology instances are converted to input XML mes-

sages and output XML messages are converted back to on-
tology instances before and after the service invocation. The
mapping algorithm is straightforward. For an ontology in-
stance, the algorithm first checks if the type of the instance
is one of the input concept in I or a subclass of it. If this

is the case, all the attributes of this instance are traversed
recursively and for each attribute, the algorithm searches
the mapping rules to see if there is one rule for this at-
tribute. After a rule is picked, the corresponding element
is constructed in the XML message. If the attribute needs
to be concatenated with other attributes, the values of these
attributes are extracted from the instance and are concate-
nated to set the value of the XML element. The algorithm
converts output XMLmessages to ontology instances works
in a similarly way except that it starts from the output XML
message and constructs the corresponding instance based
on the elements in the message.
Based on the above discussion, the input message for

“YahooLocal” service is built up as follows. The instance
of concept “Georeferences|Location|Address” has attributes
“StreetNum”, “StreetName” and “City” with correspond-
ing values “151”, “3rd Street” and “San Francisco”. The
set of mapping rules are {YahooPOI.city→Address.City,
YahooPOI.street→Address.StreetNum+Address.StreetName}.
The super classes for “Address” and the type of attributes
are omitted here in the rules. When the “City” at-
tribute is visited, the first rule is applied, and the input
message is constructed as “<YahooPOI><city>San
Francisco</city></YahooPOI>”. When the “StreetNum”
attribute is visited, the second rule is applied. Because
“StreetNum” needs to be concatenated with “StreetName”
in the rule, “151” and “3rd Street” are combined to
set the value of “Street” element. The final message is
“<YahooPOI><city>San Francisco</city><street>151
3rd Street</street></YahooPOI>”.

3.2 Service Registry

The service registry in SSWiM is a repository for ser-
vice descriptions and provides a set of query functions. Up-
per level applications search for web services through the
registry with queries formulated using the domain ontology
and the service ontology. For each query, a list of service
descriptions are returned back to the applications so that
they can select one service from the list and use again SS-
WiM to invoke the service.
In SSWiM, the service registry provides the following

interfaces for service discovery.
• hasInputConcept(a set of Concepts)
• hasOutputConcept(a set of Concepts)
• realizeConceptualService(ConceptualService)

Given a set of concepts in the domain ontology, the hasIn-
putConcept query function returns all the service descrip-
tions which contains the set of concepts as inputs, and
the hasOutputConcept query function returns all the ser-
vice descriptions which contains the set of concepts as out-
puts. The realizeConceptService query function looks for

5



all the service descriptions which realize the conceptual ser-
vice. For example, realizeConceptualService(“FindPOI”)
will return the descriptions of “YahooLocal” and “ESRI
POI” web services because these two services realize the
“FindPOI” conceptual services.

4 Wrapper Builder

Since web services in SSWiM use WSDL format,
whereas many concrete services nowadays use REST for-
mat, we introduce a concept of automatic service wrapper
builder. The wrapper builder generates web service wrap-
pers. A web service wrapper provides an interface between
SSWiM WSDL environment and REST concrete services.
The concept of wrapper builder adds scalability to the SS-
WiM framework, which has to deal with large and growing
set of service wrappers as new concrete services evolve.

4.1 Data mapping

Wrapper itself is a web service. Fig. 5 illustrates the op-
eration of a web service wrapper for our framework.

WSDL

input

WSDL

output

Wrapper

REST

input

REST

output

REST

serviceApplication

Figure 5.Web Service Wrapper Functionality

The wrapper takes input data in WSDL format from the
invoking application and forms a REST request to a con-
crete REST service. Then it gets the reply from this service
in REST format and transforms it into WSDL format re-
turned to the application.
Each wrapper has a set of mapping rules. These mapping

rules specify how the data transformation happens between
REST and WSDL. Each wrapper will have input mapping
rules and output mapping rules. To explain input mapping
rules let’s consider the structure of REST service request.
A standard REST query is constructed of 3 main building
blocks: URL of the web service, delimiters, and input pa-
rameters. For example, Fig. 6 illustrates the components of
a typical REST query. REST service reply is an XML doc-
ument.

��������	�
���	������	��������

http://some.webservice.com?query=museum&state=CA

��������	�
���	������	��������

http://some.webservice.com?query=museum&state=CA

����
���	�

Figure 6. An example of REST query components

To build a REST request, a wrapper program needs data
from user as a triple (U,D, I), where U is the URL of the
REST web service, D is the set of delimiters, and I is the
set of input parameters. The whole REST-request is a sin-
gle string, so no additional data type transformations are
needed, and the REST request is formed by string concate-
nation operations on the user input.
To build a WSDL reply from REST reply, the wrapper

needs a triple (X, T,O), where X are XPath expressions that
specify the location of data desired in REST reply, T are the
data types of WSDL service outputs, and O is the desired
names for WSDL service outputs.
The set X of XPath expressions is necessary for parsing

the REST output which is an XML document. Using XPath
expressions is a design decision motivated by the lack of
common structure in REST services’ XML output. For
instance, Fig. 7 are the XML documents returned by “Ya-
hooLocal” and “Upcoming”[2] REST services. The point
of interest (”Museum of Modern Art”, ”San Francisco”) re-
turned by “YahooLocal” REST service is contained inside
the XML tags <Title> and <City> under <Result> parent
tag, whereas “Upcoming” REST service has this data for-
matted as attributes of the XML tag <event>. Thus, to ex-
tract the string ”Museum ofModernArt”, the XPath expres-
sions for “YahooLocal” and “Upcoming” are ”Result/Title”
and ”event/attribute::venuename” respectively. Therefore,
if set X is provided by the user, wrapper builder has all the
necessary information to build the XML parsing capability
of the wrapper.

YahooLocal

<Result>

<Title>Museum Of Modern Art</Title>

<City>San Francisco</City>

</Result>

Upcoming

<rsp stat="ok" version="1.0">

<event id="389857"

venue_name="Museum of Modern Art"

venue_city="San Francisco">

</event>

</rsp>

Figure 7. XML documents of REST services
The set T of output elements’ data types and O of de-

sired output element names are needed to build the WSDL
output in correspondence with domain ontology concepts.
If the data types of some outputs are complex, the set T
should contain the whole description of the complex type
data structure.

4.2 Templates

Our wrapper builder provides the capability of selecting
the programming language of wrappers. We have currently
implemented the support for C� and Java, which are the
most widely used languages in the field of web services.
The code generated by wrapper builder for a wrapper, can

6



be abstractly categorized into 2 types: invariant code and
dynamic code. Invariant code includes all the lines that
stay the same among all wrappers written in the same lan-
guage. For example, for all wrappers, written in C�, the
code that declares library includes (”Using System”, ”Us-
ing System.Web”, etc) is invariant code. Dynamic code in-
cludes those parts of code that are generated depending on
the information provided by users in the form of 2 triples.
The following list describes all the invariant elements used
in the code generation:
• Library includes.
• HTTP Web Request Initialization.
• XML Parsing Initialization.
The dynamic code includes:
• Composing REST request from (U,D, I).
• Classes generated from (X, T,O) for WSDL outputs.
• Parsing REST replies to construct WSDL outputs.
Thus, we have 2 templates in wrapper builder: all invari-

ant code for C� wrappers constitutes the abstract notion of
C�-template, all invariant code for Java wrappers constitutes
the abstract notion of Java-template.

4.3 The algorithm

To better understand the algorithm of wrapper builder,
let’s consider the execution flow of a wrapper. A REST-to-
WSDL wrapper takes the following steps to execute:
1. Build REST request provided with values of input pa-
rameters given by the user.

2. Send a request and receive response from REST web
service. The response is stored for later XML parsing.

3. Perform XML Parsing of the response, extracting the
necessary data from the XML file. Objects of WSDL
output class are created to hold these data. In case of
the example in Fig. 6, objects for “Museum” class are
created as WSDL output.

4. Return the WSDL output to calling application.
Now let’s consider the algorithm of wrapper builder. The

wrapper builder takes as inputs the 2 three-tuples: (U,D, I)
describing wrapper’s REST input, and (X, T,O) describing
data output format. The wrapper builder produces a wrap-
per for REST service as an output.
Below are the major steps taken by wrapper builder al-

gorithm.
1. Get the user-provided information in the form of 2
triples.

2. Create wrapper project directories. The service wrap-
per produced by wrapper builder is created as a stan-
dard Visual Studio Web Service Project or Java EJB
Module Project.

3. Wrapper code generation. This step generates invari-
ant and dynamic code based on templates and user-
provided information.

5 Implementation

The previous sections discuss several technical aspects
of SSWiM, including ontologies, service description, ser-
vice registry, service invocation and wrapper builder. Put
them together, Fig. 8 shows the architecture of SSWiM. SS-
WiM was implemented and different applications can be
built upon it, such as the dialog system mentioned in sec-
tion 1. This section gives a more detailed descriptions for
the design and implementation of each module in SSWiM.

� � � � � � � �
� 	 � 
 � � � �

 	 � � 
 � 	
� 	 � 
 � � � �

 	 � � 
 � 	
� � � � � 	 �

� � 
 � � 	 �

� � � � � � � 
 � �
� � � 
 � 	

� � � � � � � �

�  ! " # " $ %& ' ( ) %

�  ! " # " $ %* + , - ! (

. ( ) / 0 1 (2 0 3 1 " / ( ) %

. ( ) / 0 1 (4 ( $ 0 3 ! ) - ! 0 "  5 ) - + + ( )6 (  ( ) - ! 0 "  

. ( ) / 0 1 (7  / " 1 - ! 0 "  

Figure 8. The architecture of SSWiM

The ontology registry is the repository for the domain
ontology and the service ontology. It provides two inter-
faces: query the ontologies and update the ontologies. Con-
cepts, attributes and their relationships can be retrieved by
the upper level applications through the query interface.
Although ontologies are relatively stable, they still can be
modified by the update interface. The ontology registry it-
self can be a web service, which makes it convenient to be
accessed through the internet. In our current implementa-
tion, the ontologies are stored in relational databases.
The service registry stores all the service descriptions

presented in section 3. The upper level applications dis-
cover relevant services from the registry through the three
discovery functions. The service registry itself can be a
web service, and new services are registered by invoking
this service. Currently, the service registry is implemented
using a relational database. A relation to store all ser-
vice descriptions has the schema Services(serviceID, re-
alizedConceptService, inputConcepts, outputConcepts, In-
putMapping, OutputMapping, Operation, WSDLURL, Rat-
ing). The fields in sequence are the ID of the service, the
concept service realized, the set of input concepts, the set
of output concepts, the mapping rules for input message,
the mapping rules for output message, the service opera-
tion in WSDL, the URL of the WSDL file, and some rating
of the service. Each service description is one tuple in the
database. A service discovery is translated to an SQL query
which is evaluated upon the database. The three service
discovery functions use the realizedConceptService, input-
Concepts and outputConcepts fields resp. The Rating field
is to help applications select a service from a service list.
The serviceID is used to retrieve detailed information of a

7



service such as inputMapping and outputMapping.
The automated wrapper builder generates WSDL wrap-

pers which resides on the invocation engine from REST ser-
vices. The wrapper builder can be accessed either as a web
service or through a graphical user interface(GUI). Fig. 9
shows the GUI part of the wrapper builder that reads XPath
expressions X and output types T in an output description
tuple (X, T,O).

Figure 9. The GUI of wrapper builder

As shown in Fig. 9, XPath expressions and output types
are separated by a semicolon. If an output type is complex,
the primitive type which comprises it is provided after com-
plex type separated by a semicolon.
The invocation engine gets service invocation requests

from upper level applications and decides to invoke either
a service wrapper hosted on the engine or a WSDL service
through the internet. REST services are wrapped as individ-
ual WSDL services running on the invocation engine and
are transparent to the engine for service invocation.

6 Conclusions

In this paper, we present SSWiM that provides a platform
for upper level applications to manage ontologies, discover
services, wrap REST services with WSDL interfaces and
invoke services of different types. As a part of our current
work, we focus on upper level applications such as the dia-
log systemwith service compositionwhich utilizes SSWiM.
The dialog system talks to the user, and completes the user’s
requests by performing online service composition with the
help of SSWiM.

References

[1] Esri arcweb developer’s guide.
http://www.arcwebservices.com/v2006/help/index.htm.

[2] Upcoming api documentation - version 1.0.
http://upcoming.yahoo.com/services/api/.

[3] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based se-
mantic web services with messaging. In Proc. 31st Int. Conf.
on Very Large Data Bases (VLDB), pages 613–624, 2005.

[4] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-services that export
their behavior. In Proc. 1st Int. Conf. on Service Oriented
Computing, volume 2910 of LNCS, pages 43–58, 2003.

[5] A. Bernstein and M. Klein. Discovering services: Towards
high precision service retrieval. In Proc. of the CaiSE work-
shop on Web Services, e-Business, and the Semantic Web:
Foundations, Models, Architecture, Engineering and Appli-
cations, 2002.

[6] J. Cardoso and A. Sheth. Semantic e-workflow composition.
Journal of Intelligent Information Systems, 21(3):191–225,
2003.

[7] I. Elgedawy, Z. Tari, and M. Winikoff. Exact functional con-
text matching for web services. In Proc. Int. Conf. on Service
Oriented Computing (ICSOC), pages 143–152, 2004.

[8] S. B. et al. Semantic Web Services Ontology (SWSO) Ver-
sion 1.0. http://www.daml.org/services/swsf/1.0/
swso/, May 2005.

[9] C. Gerede, R. Hull, O. Ibarra, and J. Su. Automated compo-
sition of e-services: Lookaheads. In Proc. 2nd Int. Conf. on
Service-Oriented Computing (ICSOC), 2004.

[10] J. Luo, B. Montrose, A. Kim, A. Khashnobish, and M. Kang.
Adding OWL-S support to the existing UDDI infrastructure.
In Proc. 4th IEEE Int. Con. on Web Services (ICWS), 2006.

[11] OWL-S 1.1 Release. http://www.daml.org/services/
owl-s/1.1/, November 2004.

[12] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma.
Meteor-s web service annotation framework. In Proc. Int.
World Wide Web Conf. (WWW), pages 553–562, 2004.

[13] Z. Shen and J. Su. On automated composition for web ser-
vices. InWWW, 2007.

[14] G. Spanoudakis, A. Zisman, and A. Kozlenkov. A service
discovery framework for service centric systems. In Proc.
Int. Conf. on Service Computing (SCC), 2005.

[15] N. Srinivasan, M. Paolucci, and K. Sycara. Adding OWL-
S to UDDI, implementation and throughput. In First Int.
Workshop on SemanticWeb Services and Web Process Com-
position, 2003.

[16] U.T.Committee. Uddi spec technical committee draft 3.0.2,
Oct. 2004. http://uddi.org/pubs/uddi v3.htm.

[17] K. Verma and A. Sheth. Semantically annotating a web ser-
vice. IEEE Internet Computing, 11(2):83–85, 2007.

[18] W3C. Web services semantics - wsdl-s 1.0, Nov. 2005.
http://www.w3.org/Submission/WSDL-S/.

[19] F. Weng, L. Cavedon, B. Raghunathan, and et. al. Devel-
oping a conversational dialogue system for cognitively over-
loaded users. In Proc. of Interspeech, 2004.

[20] F.Weng, B. Yan, Z. Feng, and et. al. Chat to your destination.
In Proc. of ACL Sigdial workshop, 2007.

[21] Web Services Description Language (WSDL) 1.1. http:
//www.w3.org/TR/wsdl, March 2001.

[22] Web Service Modeling Ontology. http://www.wsmo.

org/.
[23] YahooDeveloper. Yahoo! local search apis.

http://developer.yahoo.com/search/local/.
[24] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,

J. Kalagnanam, and H. Chang. Qos-aware middleware for
web services composition. IEEE Transactions on Software
Engineering, 30(5):311–327, 2004.

8


