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Abstract. We give an AC0 upper bound on the complexity of �rst-oder
queries over (in�nite) databases de�ned by restricted linear constraints.
This result enables us to deduce the non-expressibility of various usual
queries, such as the parity of the cardinality of a set or the connectivity
of a graph in �rst-order logic with linear constraints.

1 Introduction

Since its inception in the early 70's, Codd's relational model of data [Cod70] has
been the standard framework of much work on relational databases and query
languages. The almost contemporary renewal of \�nite model theory" (which
dates back to the Ph.D. dissertation of Ron Fagin in 1973) has o�ered a logical
counterpart to this development. So far, Finite Model Theory has been chiey
concerned with the study of extensions of �rst-order theory and has greatly
contributed to a better understanding of the expressibility and the complexity
of relational query languages. In short, Finite Model Theory and Codd's rela-
tional model have proven to be quite appropriate to the study and design of
languages for systems manipulating �nite relational data. But, since they com-
pel all relations to be e�ectively represented, they are no longer adequate to new
applications in databases, such as spatial (geographic) or temporal databases,
which obviously require the use of in�nite sets. Of course, it is unreasonable, from
a mere computational point of view, to jump directly from the class of all �nite
structures to the class of all countable structures. For example, a straightforward
extension of the relational model would require in�nite representation(s) of in-
�nite data. One must consider more subtle (and more e�cient) generalizations,
where the data are handled by \�nite means".
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Such generalizations have been the subject of various attempts in recent
years; the most promising ones draw their inspiration from already established
research areas either in logic (the study of recursive structures in classical model
theory and e�ective algebra) or in computer science (the constraint programming
paradigm).

Recursive structures (i.e. relational structures over a countable domain, say
the set of natural numbers, where every relation is a recursive set of tuples)
have been presented by Hirst and Harel [HH93] as a good alternative to �nite
structures. They have come up with an important trade-o� between the class of
structures taken as semantics and the class of admissible queries, which poses
the challenging problem of exhibiting interesting classes that lie between the
recursive and the highly symmetric ones.

The constraint database model, introduced by Kanellakis, Kuper and Revesz
in their seminal paper [KKR90] and convincingly advocated in [KG94], is an-
other powerful generalization of Codd's relational model. In this new paradigm,
instead of tuples, queries act on \generalized tuples" expressed as quanti�er-free
�rst-order constraints in a decidable theory adequate to de�nite purposes. A gen-
eralized (or �nitely representable in our terminology) relation is a conjunction
of such constraints, interpreted in the domain of a given model of the decidable
theory. Interesting (and hopefully powerful enough) constraint query languages
are therefore obtained by coupling the relational calculus or some version of
Datalog with the theory of dense linear orders or the theory of real closed �elds.

The expressive power and the complexity of �rst-order logic over �nitely
representable databases is still far from being clearly understood. Nonethe-
less, a series of complexity and/or expressibility bounds have been exhibited in
[KKR90, KG94, GS94, GS95]. In particular, Kanellakis and Goldin have thor-
oughly investigated the class of constraints expressed in L = f=;6g over a
dense order and shown that every �rst-order query (in L) over such constraint
databases can be computed in constant parallel time (uniform AC0) with re-
spect to the size of the database. The latter result, combined with lower bounds
on the complexity of queries like Parity and Connectivity immediately yields
non-expressibility corollaries [GS94]. It seems highly probable that similar non-
expressibility results still hold when the language of constraints is enriched with
addition and even multiplication. In the present paper, we aim to make one step
forward in this direction by considering linear constraint (expressed in f=;6;+g)
instead of dense-order ones. We shall not be able to produce a similar complex-
ity upper bound for the full case (linear �rst-order queries over linear constraint
databases). Fortunately enough, we exhibit a restricted class of linear constraint
databases to which Kanellakis and Goldin's AC0 upper bound can be extended.
The main results can be summed up as follows (Z is the set of integers and Q
the set of rationals, other notions will be de�ned in the following sections):

Theorem 5.2 Every �rst-order query in f=;6;+g [ Q over structures �nitely
representable in f=;6;+g [ Z with the number of occurrences of + in every
constraint uniformly bounded, can be evaluated in AC0.



The previous theorem is proved assuming a binary encoding of the integers.
It does not carry over in the general case with no uniform bound on the number
of occurrences of + in every constraint in the inputs. We can therefore conclude
that the data complexity of �rst-order queries over linear constraint databases
is not in AC0 in general. Kanellakis and Goldin [KG95] suggested to study
the data complexity of �rst-order queries over linear constraint databases in
the case where integers are encoded in unary. We prove that under the latter
encoding assumption, the AC0 upper-bound holds in the general case. We think
that the theorem proven here constitutes a signi�cant improvement since linear
constraints are far more expressive than the dense-order ones. As a consequence,
we get the following corollary.

Theorem 6.1 Parity, graph connectivity, and region connectivity are not �rst-
order de�nable with linear constraints.

Note that the �rst-order unde�nability of parity and graph connectivity has
been obtained independently by Paredaens, Van den Bussche and Van Gucht
[PVV95]. The main theorem (Theorem 5.2) does not carry over in presence
of multiplication. Nevertheless, we conjecture that its corollary (Theorem 6.1)
holds for polynomial constraints. Proofs in this paper are made in the case of
the rational numbers. The unde�nability results carry over in the case of linear
constraints over other domains such as the natural numbers, the integers, or the
reals for instance.

The paper is structured as follows. In Section 2, we review and discuss some
results aiming at initiating an elementary model theory for di�erent classes of
countable structures. Section 3 is devoted to basic de�nitions and examples of
�nitely representable databases. Section 4 exhibits an algebraic language that is
a procedural equivalent of �rst-order logic over �nitely representable databases.
The algebra is used in Section 5 to prove the main theorem, from which we
infer the non-expressibility results of Section 6. Throughout the paper, we as-
sume familiarity with complexity classes de�ned by families of boolean circuits,
especially NC (functions computable in polylogarithmic time with a polynomial
amount of hardware) and AC0 (functions computable in constant time with a
polynomial amount of hardware). For more details on complexity classes, we
refer to [Joh90].

2 Restricted Classes of Models

In this section, we emphasize some logical consequences of the decision to work
with subclasses of countable models. In particular, we investigate conditions un-
der which the compactness or the completeness theorem do not hold. It has
been known for long that restricting oneself to �nite structures ruins compact-
ness and completeness. On the contrary, extending the semantics to all countable
structures ensures compactness (a direct consequence of the L�owenheim-Skolem
Theorem). In this section, we �x a purely relational signature � = fR1; : : : ; Rng



(sometimes, one needs that at least one of the Ri's is of arity > 2). All struc-
tures will be of the form A = hA;R1; : : : ; Rni, with A some countable set (say a
subset of natural numbers). If A is �nite, one recovers the usual notion of a �nite
structure. If A and all Ri's are recursively enumerable (respectively recursive,
primitive recursive), then A is said to be recursively enumerable (respectively
recursive, primitive recursive). Let Strfin (respectively Strr:e:, Strrec, Strp:r:)
denote the set of all �nite (respectively recursively enumerable, recursive, prim-
itive recursive) structures, and Vfin (respectively Vr:e:, Vrec, Vp:r:) denote the
set of all �-sentences true in all structures of Strfin (respectively Strr:e:, Strrec,
Strp:r:). The following theorem, due to Mostowski [Mos57] and Vaught [Vau60],
establishes that, for any reasonable class of \constructive structures", the com-
pleteness theorem fails:

Theorem 2.1 (Mostowski [Mos57] and Vaught [Vau60]) Let V be a set of �-
sentences. If Vr:e: � V � Vfin, then V is not recursively enumerable. Moreover,
if Vr:e: � V � Vp:r:, then V is not arithmetical.

Let us now consider with more details the class Strrec. For � = fEg, where
E is binary, it has already been the focus of some attention in the past, par-
ticularly from combinatorists. Indeed, it has been proved that switching from
�nite graphs to recursive ones can tremendously increase the data complexity
of usual problems. For instance, the existence of a Euler path (which can be
decided in polynomial time in the �nite case) becomes �0

3 -complete, thus un-
decidable [Bea76], while Hamiltonicity (a well-known NP-complete problem for
�nite graphs) becomes �1

1 -complete, thus even not in the arithmetical hierarchy
[Har91].

More recently, Hirst and Harel [HH93] studied the recursive structures from
a database point of view. Some of their results are worth mentioning. It is
known that very primitive relational operators, e.g. projections, do not pre-
serve the recursiveness of relations: if T (x; y; z) � !3 is the primitive recursive
relation expressing that \the yth Turing machine halts on input z in x steps",
then 9xT (x; y; z) � !2 expresses the halting problem. As a consequence, if
one wants queries to be computable, even the relational calculus (i.e. �rst-order
logic) is too expressive a language. Hirst and Harel show that, over the class
of all recursive countable databases, quanti�er-free �rst-order logic is complete
with respect to the class of computable and generic (a consistency criterion ex-
pressing commutation with isomorphisms) queries. Consequently, they de�ne a
drastically restricted subclass of recursive databases, called \highly symmetric",
whose behavior with respect to completeness (a version of Chandra and Harel's
QL [CH80]) and BP-completeness [Ban78, Par78] (�rst-order logic) resemble the
class of �nite databases. Thus, they have come up with an important trade-o�
between the class of structures taken as semantics and the class of admissible
queries, which poses the challenging problem of exhibiting interesting classes
that lie between the recursive and the highly symmetric ones. Seemingly, the
constraint database model o�ers a framework for the de�nition of such classes.

In their notes on recursive model theory [HH94], Hirst and Harel prove that
the compactness theorem fails for the class of all countable recursive structures.



Their argument does not lend itself naturally to arbitrary subclasses of countable
structures. J. V�a�an�anen [Va94] suggested that the compactness theorem should
fail for any subclass of countable structures containing all �nite structures and
no in�nite countable structure elementary equivalent to a �xed (in�nite) locally
�nite structure (a structure is locally �nite if every sentence of its theory has a
�nite model).

3 Linear Constraint Databases

Constraint databases may be de�ned over various sorts of constraints, such as
dense-order constraints, polynomial constraints over the reals, etc. Here we in-
troduce a general paradigm independent of the choice of the constraints. Let L
be a �rst-order language with equality and D some non empty set. We consider
an L-structure, D, with universe D. D is called the domain-structure. Finally,
let T be the �rst-order theory of D.

Consider for instance, L = f6;+g[ Q . The structure we shall be concerned
with in the present paper is D = hQ;6;+; (q)q2Qi, the structure of the linearly
ordered set of the rational numbers with addition and all rational constants, and
T is the theory of dense orders without endpoints and with addition. [Another
traditional example is L = f6;+;�; 0; 1g, D = hR;6;+;�; 0; 1i (the �eld of
reals) and T is the theory of the ordered real closed �elds.]

Let � = fR1; :::; Rng be a signature (or a database schema) such that L \
� = ?, where R1; :::; Rn are relation symbols. We distinguish between logical
predicates (e.g., =;6) in L and relations in �. We next introduce a restricted
de�nition of �nitely representable structures [GS94]. We consider expansions of
D to �. Intuitively, the relations in � constitute a database in the context of D.

De�nition 3.1 Let S � Dk be some k-ary relation. The relation S is �nitely
representable in L over D (L-representable for short) if there exists a quanti�er
free formula '(x1; :::; xk) in L with k distinct free variables x1; :::; xk such that:

8a1; :::; ak 2 D; (a1; :::; ak) 2 S () D j= '(a1; :::; ak)

Let A be an expansion of D to �. The structure A is �nitely representable (over
D) if for every relation symbol R in �, RA is L-representable (over D).

Kanellakis, Kuper, and Revesz [KKR90] introduced the concept of a k-ary
generalized tuple, which is a constraint expressed as a conjunction of atomic
formulas in L over k variables. A k-ary �nitely representable relation (or gen-
eralized relation in [KKR90]) is then a �nite set of k-ary generalized tuples. In
the remainder of the paper, we focus on the language L = f6;+g [ Q and the
L-structure D = hQ;6;+; (q)q2Qi. Therefore, constraints will be composed of
linear equations or inequalities of the form:

pX
i=1

ai xi = a0;

pX
i=1

ai xi 6 a0



where the xi's denote variables and the ai's are integer constants (note that
rational constants can always be avoided in linear equations and inequalities).

A (database) instance (of �) is a mapping which associates with each k-ary re-
lation symbol R in � a quanti�er-free formula in disjunctive normal form (DNF)
with k distinct variables. Clearly, each instance of � corresponds to the restric-
tion of a �nitely representable structure to �. In practice, we assume that the
databases contain the formula de�ning their relations. Instances will be denoted
by I; J , etc.

Note that the classK of �-instances is e�ectively enumerable if the cardinality
of the language L is countable. Moreover, if D is recursive, then instances are
recursive. K has interesting closure properties. It is closed under �nite union
and intersection and moreover under complementation. This di�ers from �nite
model theory (the complement of a �nite model is not �nite). Our main goal
is to investigate the expressive power of �rst-order logic over the class of linear
constraint databases. We consider partial recursive classes of L-representable
databases and ask whether they can be captured by a �rst-order sentence in L.

In the main theorem, we restrict our attention to a family of database in-
stances, called \k-bounded" instances. Intuitively, k-bounded linear instances
are de�ned with equations and inequalities with bounded variable factors. We
shall prove that �rst order queries over k-bounded instances can be evaluated
in AC0 in terms of the database size (data complexity). Following is a formal
de�nition of k-boundedness.

De�nition 3.2 Let k > 0 be an integer. An atomic formula is k-bounded if it is
in f6;+g[Z (no rationals) and contains at most k occurrences of the (function)
symbol \+". A quanti�er-free formula is k-bounded if each atomic formula in it
is k-bounded. Finally, an instance of signature � is k-bounded if for each relation
symbol R, the associated quanti�er-free formula is k-bounded. We denote by
Kk(�), or simply Kk, the family of all k-bounded instances over �.

A k-bounded constraint has the following form: 
pX
i=1

ai xi

!
� a0

where � is a predicate, the ai's are integers, and
Pp

i=1 jaij+ a0 6 k + 2 (where
jaij denotes the absolute value of ai, and a0 = 1 if a0 6= 0, and a0 = 0 otherwise).

Note that when k = 0, K0 is exactly the set of dense order constraints which
were studied in [KKR90, KG94, GS94]. For this class of constraints, an upper
bound on the complexity of the �rst-order queries expressed in the language
f6g [ Q is known:

Theorem 3.1 [KG94] The data complexity of �rst order logic in the language
f6g [ Q over the family K0 of dense order instances is in AC0.

The proof of this result is based on a canonical encoding of dense order in-
stances into �nite instances. This is possible since dense order instances admit



very simple geometrical decompositions in terms of atomic \cells" [Col75] of sim-
ple shapes. Note that the encoding itself is not in AC0. A speci�c algebra working
on �nite structures is introduced in [KG94], which simulates the manipulation
of dense order instances.

4 First-order Query Languages

We de�ne FOL as �rst-order logic with linear constraints, i.e. over the language
L = f6;+g[Q . We introduce in this section an algebra ALGL for �nitely repre-
sentable databases, and prove its equivalence with FOL. This algebra is similar
to Codd's algebra for �nite relations [Cod70], but the operators apply to �nite
representations of possibly in�nite sets. The algebra consists of the following
operations: cartesian product, �, selections (�=, �<, and �+), projection, �, set
operations (union, [, intersection, \, and set di�erence, �), and rename, �.

The algebra operations are performed on sets of generalized tuples, i.e. on
quanti�er-free formulas in DNF. But unlike Kanellakis and Goldin [KG94], we
do not assume special encoding for relations and generalized tuples. On the other
hand, our algebra can also be viewed as a simpli�ed sublanguage of the algebra
of Paredaens, Van den Bussche and Van Gucht [PVV94] (which also includes
multiplication).

The algebra will serve as a mere technical tool for the proof of the main
theorem. We should note that it has no important preservation property with
respect to the size of (the representation of) a database or k-boundedness. How-
ever, such properties are not necessary for our purpose. We shall instead use
upper bounds on the parameters (size and degree of boundedness) of a database
generated by the application of an operation of the algebra (see Section 5 for an
in-depth study).

We now de�ne the algebra operators. Suppose R is an n-ary relation repre-
sented by a quanti�er-free formula, ', of the form:

' �
_k_
i=1

^̀̂
j=1

'i;j

where the 'i;j 's are atomic formulas. Then, we also denote the representation '
as a collection of generalized tuples ti in the set notation:8<

:ti
������ 1 6 i 6 k; ti =

^̀̂
j=1

'i;j

9=
;

Furthermore, if I is an instance over signature � and R 2 �, we consider the
relation I(R) as a set of generalized tuples as above. We also assume that at-
tributes (columns) of relations have names and for each attribute name A, there
is a distinct variable xA associated with it. Attribute names are usually denoted
by A;B;C; : : : (and possibly with subscripts). When the context is clear, we may
blur the distinction between variables and attribute names.



De�nition 4.1 Let � be a signature. The family of algebraic expressions (over
�) is de�ned inductively as follows:

1. (R) and (A : Q) are atomic expressions, where R 2 � is a relation symbol,
and A is an attribute name. The set of attributes is the set of attributes of
R or fAg, respectively.

Suppose now that e1 and e2 are two algebraic expressions.

2. (Cartesian product) If e1 and e2 have disjoint sets of attribute names, then
(e1 � e2) is also an expression.

3. (Selection) If F is a selection formula (de�ned below) involving only attribute
names of e1, then (�F e1) is an expression. A selection formula is an atomic
formula of one of the following three forms:

t1 = t2; t1 6 t2; t1 + t2 = t3;

where t1; t2; t3 are attribute names or constants (in Q).

4. (Projection) If e1 has attributes fA1; : : : ; Ang, and moreover fB1; : : : ; Bkg �
fA1; : : : ; Ang, then (�B1;:::;Bk

e1) [or (�?e1) if k = 0] is an expression.

5. (Set operations) If e1; e2 have exactly the same set of attributes, then (e1 �
e2), (e1 \ e2), and (e1 [ e2) are expressions.

6. (Rename) If A;B are two attribute names and A is an attribute of e1 but B
is not, then (�A!B e1) is also an expression.

We now describe the semantics of the algebra. (Note that the operators
work directly on generalized tuples, so the semantics is given with respect to
generalized tuples.) Suppose that I is an instance of �, and e is an expression
over �. The result of e on I , denoted by e(I), is de�ned inductively as follows:

1. (a) If e = (R), e(I) = I(R) (a set of generalized tuples).

(b) If e = (A : Q), e(I) = fxA = xAg, where xA is the variable corresponding
to the attribute A.

2. If e = (e1 � e2), then e(I) = ft1 ^ t2 j t1 2 e1(I); t2 2 e2(I)g:

3. If e = (�F e1), e(I) = ft^F j t 2 e1(I)g; where each attribute name A in F
is replaced with the corresponding variable xA.

4. If e = �B1;:::;Bk
e1, then e(I) is obtained from e1(I) by \eliminating" the

variables which do not correspond to attributes B1 throughBk. One proceeds
as follows. Suppose e1(I) = ft1; : : : ; tmg and has attributes A1; : : : ; An and
fC1; : : : ; Cn�kg = fA1; : : : ; Ang � fB1; : : : ; Bkg. We apply the well-known
Fourier-Motzkin Elimination method [Sch86] (see below) to eliminate one
by one all existentially quanti�ed variables xC1

; � � � ; xCn�k
in each of the

formulas 9xC1
� � � 9xCn�k

ti. Each tuple ti then results in t0i. Finally, e(I) =
ft01; : : : ; t

0
mg.

5. (a) If e = (e1 [ e2), then e(I) = e1(I) [ e2(I).

(b) If e = (e1 \ e2), then e(I) = ft1 ^ t2 j t1 2 e1(I); t2 2 e2(I)g:



(c) If e = (e1�e2), then e(I) = ft1^ t2 j t1 2 e1(I); t2 2 (e2(I))
cg, where Rc

is the complement of R obtained as follows. Suppose R = ft1; : : : ; tng is
a set of generalized tuples and for each i, ti =

VV
j 'i;j . Then Rc is the

formula9 in DNF which is equivalent to
VV

i

WW
j :'i;j .

6. If e = �A!B e1, then e(I) = e1(I)[xA=xB ] (all occurrences of xA are replaced
by xB).

The Fourier-Motzkin elimination method (see for instance [Sch86], pp. 155{
157) works as follows. Consider a generalized tuple t which de�nes a polyhedron
P (x; y) � Qn+1 described by the inequalities (once the coe�cients of y have
been normalized):

8><
>:
a`x+ y 6 a`0 for ` = 1; : : : ; L

bkx� y 6 bk0 for k = 1; : : : ;K

cix 6 ci0 for i = 1; : : : ; I

where x 2 Qn , y 2 Q. One can show that after the \elimination" of y (i.e. after
P has been projected on its �rst n coordinates), the relation over x is exactly:

�
x 2 Qn j bkx� bk0 6 a`0 � a`x for all ` and k; cix 6 ci0 for all i

	
:

Therefore:

�x t =
^

16k6L;16`6L

^
bkx� bk0 6 a`0 � a`xcix 6 ci0:

It is easy to verify that the algebra, denoted by ALGL, is equivalent to �rst-
order logic over the class of structures we consider. The proof (which is omitted)
is quite similar to that of the equivalence of the classical relational algebra and
calculus over �nite structures (see [AHV94]).

Theorem 4.1 FOL = ALGL.

We illustrate the above result with the following example.

Example 4.1 Consider the following query over a binary relation R with at-
tributes A;B: �

z j 9x9y (R(x; y) ^ y = 2x+ z)
	
:

The equivalent algebra query is:

�A2
�B=A1+A2

�A1=A+A

�
R� (A1 : Q) � (A2 : Q)

�
: �

9 Note that the formula may a priori have exponential length in the size of the original
formula

VVWW
:'i;j . We prove in the next section that it can be done in polynomial

length for the families of databases considered here.



Remark. The combination of selections and cartesian products can yield com-
plicated forms of selections. For instance, �B=kA+c(e) (e is an expression with
attributes A;B) can be expressed as:

�A;B �B=Ak�1+c�Ak�1=Ak�2+A � � ��A1=A+A

�
e� (A1 : Q) � � � � � (Ak�1 : Q)

�
:

Finally, we discuss the complement operation used in de�ning the seman-
tics for the set di�erence operation. Computing the complement of a relation
R is generally a costly operation. The naive approach to converting a formulaVVWW

:'i;j of size n into DNF might generate a formula whose length is expo-
nential in n. However, there are special cases where e�cient algorithms exist.

Example 4.2 Suppose R is a set of binary generalized tuples consisting of linear
constraints with a �xed set of k distinct (rational) slopes �1; : : : ; �k. We can view
the constraints in R as dividing Q2 into many \cells" and R as a collection of
these cells. Since each cell is a convex polygon, every cell can be de�ned using
at most 2k constraints. It can then be veri�ed that there exists a representation
of the complement of R, where each tuple involves at most 2k constraints. Let
S be the set of all possible constraints (involving n variables) in R or obtained
from constraints in R by changing the logical predicates and de�ne:

U =
�
t1 ^ � � � ^ t2k j for each 1 6 i 6 2k; ti 2 S

	
:

Then, the complement of R can be de�ned as:

Rc =
�
t 2 U j 8x t(x)) :R(x)

	
:

Therefore, the complement can be computed in polynomial time for each �xed
k. �

5 Complexity

In this section, we analyze the data complexity of �rst-order queries. We present
two results: (i) a known NC bound [KKR90] in the general case, and (ii) a new
AC0 bound for a restricted class of inputs, namely k-bounded instances for a
�xed k. The proof of this last result relies on the algebra introduced in the
previous section.

The time (or space) data complexity of a query is the time (resp. space)
needed in evaluating the query in terms of the \size" of the representation of
the input instances. Formally, we have:

De�nition 5.1 Let R be a relation, and �R its representation over the language
f=;6;+g [ Z. The formula �R is of size j�Rj 6 n if �R contains at most n
disjuncts (tuples) and at most n distinct constraints, and the absolute values of
the integers occurring in �R are bounded by 2n (i.e. the absolute values can be
represented in binary notation with n bits).



It was shown in [KKR90] that �rst-order queries with polynomial constraints
(over the real numbers) have NC data complexity. This result follows from tech-
niques, �rst introduced in [BKR86], showing that the theory of real closed �elds
of �xed dimension (number of variables) can be decided in NC. The same upper
bound of course holds in the case of linear constraints.

Theorem 5.1 [BKR86, KKR90] FOL is in NC over the class of linear constraint
inputs.

We next present the main theorem of this section which applies to a restricted
class of inputs that is of practical interest, namely, k-bounded linear constraint
inputs. Recall that a k-bounded linear constraint input is a relation that is
�nitely representable by a quanti�er free formula in DNF, such that in each
atomic formula occurring in it there are at most k occurrences of the addition
symbol, and all constants are integers.

Theorem 5.2 For each (�xed) integer k > 0, FOL is in uniform AC0 over the
class of k-bounded linear constraint inputs.

First observe that Theorem 5.2 doesn't carry over for the general case of not
k-bounded linear constraint inputs (with binary encoding of natural numbers).
Consider a monadic relation containing a single tuple: R = f[ax = b ^ x = b0]g
for arbitrary values of a; b and b0 in N. The boolean query �[](R) 6= ? is true i�
a� b0 = b. The size of relation R is essentially the size of the three numbers a; b,
and b0. Multiplication of numbers in binary notation is not in AC0 [FSS84]. We
can therefore conclude that �rst-order logic over linear constraint databases is
not in AC0.

Theorem 5.2 extends the now classical result that the relational algebra has
AC0 data complexity over �nite structures. Before presenting the proof of The-
orem 5.2, we briey review the proof in the case of the relational algebra over
�nite structures as it is sketched in [AHV94]. In the case of �nite relations, the
circuits are constructed uniformly as follows. The gates of the circuit represent
pairs of the form [R; t], where R is a relation name (or any algebraic expression,
such as R0 �R00), and t is a tuple of the same arity as R. The semantics is that
the value of a gate [R; t] is 1 i� R(t) holds.

Consider an algebraic query Q. There is a gate of the form [R; t] for each R,
either an input relation or an algebraic expression that is a sub-expression of the
query Q, and each tuple t which has the proper arity and is built with atomic
constants from the input relations. That gives rise to a polynomial number of
gates.

The circuit computes the value of [Q; s], for each tuple s of the corresponding
arity, starting from the values of the [R; t], where R is an input relation. Most
operations are very simple to simulate. For instance, the value of [R0�R00; [t0; t00]]
is 1 i� both [R0; t0] and [R00; t00] have the value 1. The only operation that is
slightly more complex is the projection, which requires unbounded fan-in of the
OR gates.



In the case of constraint databases, the number of tuples (of atomic values)
is in�nite. Instead of the tuples, the generalized tuples need to be encoded. We
next explain how the encoding is done using gates in a circuit.

Without loss of generality, we make a few assumptions to simplify the presen-
tation. Speci�cally, we assume that Q is a �rst-order boolean query whose input
consists of a single binary relation R. For each natural number n, we exhibit a
boolean circuit Cn, of constant depth (depending only upon the query Q and the
degree k of boundedness of the inputs) with polynomially many gates in terms
of n. The circuit Cn has the property that for each k-bounded input R with a
representation �R of size smaller than n, the circuit Cn, starting on an encod-
ing enc(�R) of �R, computes an encoding of Q(R). The proof easily extends to
inputs with several relations, of arbitrary arities, and to queries with outputs of
arity > 1. The circuits then have many output gates, giving an encoding of (a
representation of) the output.

The input (under the previous assumptions) is encoded as follows. We �rst
describe how to encode with 3n3 + 4n2 bits any (quanti�er free) formula of
f=; <;+g[Zwith two free variables of size n. (i) Integers are encoded in binary
notation with n bits. (ii) Constraints of the form �x + �y�, where �; �, and
 are integers whose absolute values are smaller than 2n, and � is = or <, are
encoded on 3n+ 4 bits as follows:

� � j�j � j�j  jj ,

where the bit � = 0 (resp. 1) if � is = (resp. <); the bit � = 1 (resp. 0) if � is a
positive (resp. negative) integer; j�j is the binary representation of the absolute
value of � in n bits; and similarly for � and .

Since there are at most n constraints in each tuple and at most n tuples in
the binary relation R, the whole encoding of a formula for R of size n requires
a sequence of n� n� (3n+ 4) = 3n3 + 4n2 bits.

During the computation, the syntactic objects encoded in the circuits can
grow in size. For instance, bigger integers may result from adding integers of size
n. Similarly, constraints over more than two variables are sometimes needed, as
a result of an application of the cartesian product, for instance. The cartesian
product, along with other operations, also trigger an increase of the number of
constraints in each tuple. Therefore, the number of bits allocated to the encod-
ing of integers, constraints, and tuples varies at the di�erent strata (depths) of
the circuit. The encoding of bigger integers, constraints over more variables, and
tuples containing more constraints, is done in the same manner as above, by
adding the required amount of space. Since each �rst order query can be eval-
uated using a �xed number of (algebraic) operations, the required additional
space can always be �gured out once a particular query is given.

In the following we �rst discuss the projection and set di�erence operations
in the algebra, prove two key lemmas concerning the AC0 data complexity bound
of these two operations, and then present the proof of Theorem 5.2.



The projection operation requires the computation of addition, and repeated
addition (bounded multiplication). We �rst prove that (i) the addition of two
integers, and thus (ii) the multiplication of an integer by a given constant can
be done in uniform AC0 with respect to the size of the binary representation of
the integers.

Lemma 5.3 The addition of two binary integers of size 6 n, anan�1 � � � a1a0,
and bnbn�1 � � � b1b0, can be done by constant-depth circuits with n + 1 output
gates and at most P(n) gates, where P is a polynomial.

Proof: Assume that:

anan�1 � � � a1a0 + bnbn�1 � � � b1b0 = cn+1cn � � � c1c0

The boolean circuit is constructed uniformly with the following formulas:

c0 = :(a0 , b0)

ck = (ak , bk),
_i=k�1_
i=0

0
@
0
@ ^j=k�1^

j=i+1

(aj _ bj)

1
A ^ (ai ^ bi)

1
A

for each 1 6 k 6 n, and

cn+1 =
_i=n_
i=0

0
@
0
@^j=n^

j=i+1

(aj _ bj)

1
A ^ (ai ^ bi)

1
A

where \," is an abbreviation for a circuit of depth 3 using only :, ^, and _
nodes: x, y � (x^y)_(:x^:y). The depth of the circuit is 7, and the number
of nodes is O(n3). �

Remark. On the other hand, addition of rational numbers (encoded as pairs
of natural numbers) is not in AC0. Indeed, this would imply that multiplica-

tion of natural numbers is also in AC0. Indeed, consider
1

x
+

1

y
=

y + x

y � x
. As

a consequence, our proof does not carry over to the case where databases are
de�ned with rational numbers as parameters. This follows from the fact that ad-
dition of parameters coming from the input constraints is required to compute
an application of projection.

We next prove that the projection can be done in AC0. More precisely, we
prove that for each tuple, there is a circuit of �xed depth, with a polynomial
number of gates, that computes the projected tuple.

Lemma 5.4 Let S be a k-bounded set of linear constraints over n variables
x1; :::; xn for some k, and i a positive integer 6 n. The projection �(S) of S on
variables fx1; :::; xng � fxig is computable in AC0.



In Lemma 5.4, the set S denotes a single k-bounded tuple, i.e. the total
number of occurrences of the addition symbol in each constraint in S is bounded
by k. It follows easily that the projection of an entire k-bounded relation can be
done in AC0. The circuit contains essentially copies of the circuit that computes
the projection individually for each tuple.

Proof of Lemma 5.4: The AC0 upper bound for the projection of a tuple
relies on the following simple technical claim, which shows how addition and
multiplication are used in the computation of the resulting constraints after a
set of constraints has been projected onto some components.

Claim: Let S be a k-bounded set of linear constraints over n variables x1; :::; xn

of the form:

nX
`=1

�` x`��0 ; and let C(S) be the set of variable coe�cients

(namely, �` for each ` > 1), and C0(S) the set of constant coe�cients (namely,
�0), in the constraints of S. Let � be the projection on variables fx1; :::; xng �
fxig for some i. Then the following holds:

{ The variable coe�cients of �(S) are obtained by additions and multiplica-
tions of variable coe�cients in C(S), and

{ The constant coe�cients of �(S) are obtained by multiplications of a con-
stant coe�cient in C0(S) with a variable coe�cient in C(S), and additions.

The proof of the claim is rather straightforward. Consider the following two
constraints in S:

nX
`=1

�` x` 6 �0 and

nX
`=1

�0` x` > �00

where �i > 0 and �0i > 0. The resulting constraint using the Fourier-Motzkin
method is:

nX
`=1

(�`�
0
i � �i�

0
`)x` 6 (�0�

0
i � �i�

0
0):

Note that in the above constraint the coe�cient for xi is 0 (hence xi is elimi-
nated). The new constraint veri�es the statement of the claim. It is easy to see
that for any type of linear constraints the claim holds.

We now see that the projection of S can be done in AC0. Since S is a k-
bounded set of linear constraints, the variable coe�cients are not larger than the
constant k. Therefore, the resulting constraints are obtained by multiplication
with a constant (integer) not larger than k, and by addition. These two opera-
tions can be done in AC0 (it follows from Lemma 5.3). Moreover, the number
of resulting new constraints is at most quadratic in the number of initial con-
straints, using the Fourier-Motzkin method. �

The only other operation that requires some care is the set di�erence. The
next lemma is devoted to the complement operation, that can be used to de�ne
set di�erence.



Lemma 5.5 Let k be a (�xed) positive integer and Kk be the class of k-bounded
linear constraint relations. There is a polynomial function P , such that for each
relation R in Kk of size n, the following conditions hold for the complement, Rc,
of R: (i) jRcj 6 P(n), and (ii) Rc is computable in AC0 in the size of R.

Proof: Assume that R is an r-ary relation of size n. Since R is a k-bounded linear
constraint relation, it follows that the number of di�erent slopes of hyperplanes
in R is the number of nonnegative integer solutions to the equations z1 + z2 +

::: + zr = j where 1 6 j 6 k + 2. In particular, k0 =
k+2X
j=1

�
r � 1 + j

j

�
: (When

r < k, k0 6 O(kr).) Therefore each cell (in the sense of [Col75]) can be de�ned
by a tuple with no more than 2k0 constraints. Assume that R is de�ned with
` 6 n di�erent constraints. It can be seen that the constraints needed to de�ne
the cells in the complement Rc are the existing constraints, and their variants
obtained by replacing the predicate in each constraint with one of \=", \<", or
\>". This generates at most 3` constraints. Since no other constraint is required,
every cell in the plane is therefore de�nable with at most 2k0 constraints. There
are 3` possibilities for each constraint, thus it leads to at most (3`)2k

0

possible
cells. The number of cells is therefore bounded by a polynomial function in n
(see also [Col75]), and the complement can easily be computed in AC0 (using
only operations in ALGL as shown in Example 4.2). �

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2: The proof is by induction on the structure of the for-
mula expressing the query. We can always assume that the boolean query is of
the form �?e, where e is some algebraic expression (i.e. a test of emptiness).

Basis: Assume e = R. To verify that �?R is false, it su�ces to check that each
tuple in R de�nes an empty set. This can be done by applying the Fourier-
Motzkin method. It follows from Lemma 5.4, that this can be done in AC0.

In the sequel, we prove by induction that we can compute in AC0, an encoding
of e(R) starting from an encoding of R for each subexpression e.

Induction: The induction step depends on the last algebraic operations per-
formed. We �rst consider the gates of the circuit, and then illustrate how it is
wired. We next establish upper bounds on (i) the number of constraints in each
tuple, and (ii) the number of tuples in the new relations, resulting from the
application of algebraic operations. Let ei be a k-bounded relation of ni tuples,
each tuple consisting of ki constraints (i = 1; 2). Note that both the number ni
of tuples and the number ki of constraints may not be exact. However they are
upper bounds. Physically, the circuits contain the space to encode ni tuples of
ki constraints.

1. If e = (e1 � e2), then e is a k-bounded relation containing n1 � n2 tuples,
each of which is represented with k1 + k2 constraints.



2. If e = (�F e1), then e is a k-bounded relation containing n1 tuples, each of
which is represented with k1 + 1 constraints.

3. If e = � e1, where � just eliminates a single variable, then e is a k2-bounded
relation containing n1 tuples, each of which is represented with at most k21
constraints.

4. If e = (e1 [ e2), then e is a k-bounded relation containing n1 + n2 tuples,
each of which is represented with max(k1; k2) constraints.

5. If e = (e1 \ e2), then e is a k-bounded relation containing n1 � n2 tuples,
each of which is represented with k1 + k2 constraints.

6. If e = (e1 � e2), then e is a k-bounded relation containing P(n1; n2; k1; k2)
tuples, each of which is represented with at most P 0(k1; k2) constraints.

In the binary case (e1 and e2 binary), P(n1; n2; k1; k2) = n1 � (3n2k2)
2k02

and P 0(k1; k2) = max(k1; 2k
02), where k0 =

(k + 3)(k + 4)

2
� 1. For larger

arities, both the number of tuples and the number of constraints per tuple
are bounded by similar polynomials.

The above follows from the de�nition of the algebraic operations in Section 4,
from Lemma 5.4 for the case of the projection, and from Lemma 5.5 for the
case of the set di�erence. In this last case, (e1 � e2) = (e1 \ ec2), where e

c
2 is

a k-bounded relation containing, in the binary case, a maximum of (3n2k2)
2k02

tuples, each having at most k02 constraints.
It follows that the number of tuples and the number of constraints in each

tuple are bounded by some polynomial function. Note that the integers occurring
in the constraints during the computation, come either from the input, from the
query, or result from a projection. One projection generates quadratic numbers,
and so their binary representation has twice the initial space. Therefore, the size
of integers is linear in n. For each algebraic sub-expression of the query Q, and
each tuple t of the adequate form obtained as described above, we associate a
series of gates encoding the pair Q; t in the circuit. Other gates are also required
in computing the additions of constants for the new constraints resulting from the
projection operator. As shown in Lemma 5.4, there are only a polynomial amount
of these. The selection also requires built-in gates to encode the constraint in
the selection itself. This is easily done with a number of gates bounded by a
constant in the size of the query. Essentially, no more gates are needed to encode
the whole circuit. It follows that the number of gates needed to encode the whole
computation is also polynomially bounded.

We now see how the wires between the gates previously presented, can be
uniformly de�ned.

The algebraic operations have various e�ects on their inputs. They can mod-
ify (or rearrange) the initial tuples and/or the constraints. (i) The union opera-
tion changes only at the relation level and the initial tuples remain unchanged.
(ii) Cartesian product, selection, and intersection create new tuples from old
tuples, by using the initial constraints which are not changed. (iii) Set di�er-
ence creates new constraints obtained from old constraints, by just changing the
predicates in the constraints. (iv) Projection creates new constraints, with new



parameters as shown in Lemma 5.4.
In the case of [;\;�, and �F , it is clear that the new tuples can be computed

easily in AC0. More precisely, these operations result only in a reorganization
of existing constraints inside the tuples, and of tuples inside the new relations.
The wires are essentially used to copy values (with no computation). They do
not have to be materialized.

Two operators, projection and set di�erence, deserve a more thorough ex-
amination. Indeed, they result in the de�nition of new constraints, with new
parameters obtained from old parameters by addition, or iterated addition. It
follows from Lemmas 5.4 and 5.5, that the two operations can be computed in
uniform AC0. �

Kanellakis and Goldin [KG95] suggested to study the data complexity of
�rst-order queries over linear constraint databases in the case where integers are
encoded in unary. In the remainder of the section, we briey discuss the data
complexity of FOL for arbitrary linear constraint databases, i.e. without the
restriction of being k-bounded. We show that under the unary representation of
integers, the data complexity remains in AC0.

Let m be the circuit input size. The unary representation of an integer n 6 m
is a string amam�1 � � � a2a1 where ai = 1 for each 1 6 i 6 n and ai = 0 for
n < i 6 m. We now show that the addition and the multiplication of two
integers encoded in unary representation can be done by boolean circuits of
constant depth (i.e. in AC0).

Theorem 5.6 Let m 2 N. The addition (and multiplication) of two (positive)
integers Ia; Ib such that Ia+ Ib 6 m (resp. Ia� Ib 6 m) in unary representation,
amam�1 � � � a2a1 and bmbm�1 � � � b2b1, can be done by constant-depth circuits
with m output gates and polynomially (in m) many gates.

Proof: We �rst consider addition. Let Ic = Ia + Ib and cmcm�1 � � � c2c1 be the
unary representation of Ic. It is observed that Ic can be computed by counting
all gates from amam�1 � � � a2a1 and bmbm�1 � � � b2b1 that are true. Indeed, for
each 1 6 i 6 m, ci can be de�ned by the following boolean function fi (note
that aj = 1) a` = 1 for each ` 6 j):

fi = ai _

0
@_i�1_

j=1

(ai�j ^ bj)

1
A _ bi

It is easy to see that fi can be realized by a circuit of depth no more than 2 and
of no more than (2m� 1) gates.

Now let Ic = Ia � Ib be the product and we assume again cmcm�1 � � � c2c1
is the unary representation of Ic. Then, the multiplication can be viewed as the
following sum of integers in unary representation:X

16i6m;bi=1

amam�1 � � � a2a1



Thus, it is easy to see that for each 1 6 i 6 m, ci is de�ned by the following
boolean function gi:

gi =
__
�(j;k)

(aj ^ bk)

where the condition �(j; k) states that 1 6 j; k 6 m, j�k > i, and both (j�1)�k
and j � (k � 1) are < i. Hence, the circuit realizing gi has depth 2 and number
of gates linear in m. Note that for each m 2 N, the circuits f1; :::; fm; g1; :::; gm
can be uniformly constructed. Therefore, addition and multiplication of integers
in unary representation are in AC0. �

Since both addition and multiplication of integers in unary representation
can be computed by circuits of constant depth, it can be veri�ed that the data
complexity of FOL over linear constraint databases remains in AC0 under the
unary encoding assumption. The size of the numbers that are derived by a query
from the numbers in the input is de�ned by a polynomial which depends only
upon the query itself, and enough space is devoted to them in the circuit. The
proof follows the same lines as the proof of Theorem 5.2. The assumption of
k-boundedness was needed in Theorem 5.2 to prove that projection involved
only multiplication by a constant. This assumption is not needed here since
multiplication of unary numbers can be done in AC0. For the set di�erence
operation, using multiplications it is possible to \triangulate" the plane (when
the arity is 2) or hyperplane (when the arity is higher) using the constraints in the
input. Thus to compute the complement, one needs to consider only tuples with
up to a �xed number (depending only on the arity) of constraints (3 constraints
when the arity is 2). We can use an approach for computing the complement
and set di�erence similar to the one described in the proof of Lemma 5.5 and
the k-boundedness assumption is not necessary.

In the next section, we examine consequences of the complexity upper bound
on the expressive power of linear constraints.

6 Expressive Power

In this section, we study the expressive power of �rst order query languages
for linear constraint databases. In particular we consider queries from relational
database theory (parity), graph theory (graph connectivity), and geometry (re-
gion connectivity) and show that these queries are not �rst order expressible.
The proof of these results uses the AC0 upper bound on data complexity (Theo-
rem 5.2) and �rst order reductions from boolean functions, such as parity which
is known to be outside AC0 [FSS84].

Let � = fRg be a signature where R is a unary relation symbol. For a
database instance I of �, the parity query answers \yes" if I(R) is �nite and
has an even cardinality. The graph connectivity query is de�ned over a signature
consisting of a single binary relation G. The query answers \yes" on an instance
I if I(G) is a connected �nite graph. For the third example, we consider the



k-dimensional region connectivity query over possibly in�nite input instances,
where k > 1. The query is also a boolean query and answers \yes" on an instance
I if every pair of points in I(R) can be linked by a continuous curve lying entirely
in I(R). Note that for k = 1, the query can be easily expressed.

Theorem 6.1 The following queries are not de�nable in f=;6;+g [ Q:

1. Parity of cardinality,
2. Graph connectivity,
3. k-dimensional region connectivity for each k > 2.

Proof: By Theorem 5.2, it is su�cient to show that these queries are not in AC0.
We �rst consider the parity query and describe a straightforward reduction from
the boolean function parity. The parity function takes n boolean inputs and
returns \true" if the number of inputs equal to 1 is even. Now let x1; : : : ; xn be
the n inputs for parity. We construct a database I over the signature with one
unary relation symbol R as follows: I(R) = fi j xi = 1g. Clearly the database is
de�nable using only equality constraints, without the addition symbol. In other
words, I is in K0 (0-bounded). Obviously, the construction can be done in �rst
order and parity(x1; :::; xn) = 1 i� the parity query on I answers \yes". For
graph connectivity, we use the classical reduction from the parity query. Let I
be an input instance of the parity query and G be a binary relation symbol.
Suppose I(R) = fa1; :::; ang, and, without loss of generality, a1 < a2 < � � � < an.
We de�ne an instance J over G as follows. Let J(G) be the symmetric closure
of the set f(a1; an)g [ f(ai; ai+2) j 1 6 i 6 n � 2g. It is easy to verify that
parity on I answers \yes" i� J(G) is connected. Finally, for region connectivity
in dimension k > 2, it is shown in [GS95] that it is not in AC0, by a reduction
from the boolean function majority. �

The previous result can be generalized to various contexts.

Corollary 6.2 The queries of Theorem 6.1 are not de�nable with linear con-
straints over the following domains: the natural numbers, N, the integers, Z, the
rationals, Q, and the reals, R.
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