From Data-Centric Business Processes to Enterprise Process Frameworks

Jianwen Su
UC Santa Barbara
A Traveler’s Experience

friendly sky...

got a phone...

tax refund...

Immigration & Border Protection

return the phone

back home

Santa Barbara Airport

upgrade

tax refund of a new phone
Business Services via an Example

- Subscription of broadband internet connection
- A collection of processes: order, shipping, installation, invoice, cancel, update order, ...
 - Usually well specified and (formally) modeled
- Relationships between processes: order triggers shipping and installation, installation triggers invoice, cancel triggers invoice, ...
 - Usually in biz rules, documents, and manual
- Properties of relationships:
 - Often data-centered
 - Broader than choreography
- Modeling processes + relationships is beneficial
Plan for the Talk

- The Need for Process-Process Relationships
- Process Design and Modeling with Data
- Runtime Management
- Towards Process-Relationship (PR) Modeling
- Further Challenges
Life Cycle of Guest Check Artifact

CREATE GUEST CHECK
- Service Request
 - External agent
 - Customer

ADD ITEMS TO GUEST CHECK
- Manu
- Daily Special
- Active Guest Check
- Complete Guest Check
- Kitchen Order
- Waiter

TENDER GUEST CHECK
- Complete Guest Check
- Paid Guest Check
- Cash Balance
- Account

PREPARE ITEMS
- Kitchen Order
- Complete Kitchen Order

○ Triggers task when artifact or content is received
☑️ Emits artifact or content when task is finished

Human-initiated task
- Artifact is requested, updated, and returned to the source repository
- Requests and receives artifact content
- Requests and receives artifact

Repository
- Task

[Nigam-Caswell 03]
Discovery and Design of Artifacts

- ER diagrams or other suitable modeling approaches

![ER Diagram]

Schedule and Vendor Lifecycles

■ Schedule

Planning

Schedule Planning (&refinement) → Schedule Approvals → Execution (minor revision) → Archived

Execution

Execution (minor revision) → Re-approval → Major Revision → Archived

Vendor

Planning

Task Planning (&refinement) → Task Approvals → Execution (minor revision) → Archived
BOM Service: IOPEs of *Create_schedule*

Inputs
- An *Offered DES Service* artifact \(o \), and specifically the listing of used *Generic Tasks*, along with whether they are optional, and information about the Precedence relationships between them
- A *Customer* artifact \(c \), ...
- A *Site* artifact \(si \) for \(c \), ...

Outputs
- A new *Schedule* artifact \(sch \). The data written will include attributes *schedule_ID*, *stage*, *planned_start_date*, and the *Generic Task* portion of the *includes* relationship
- The *Site* artifact \(si \) is updated ...

Pre-condition/Effect
- *Offered DES Service* artifact \(o \) must be compatible with the infrastructure and needs of site \(si \)
- If true, then \(sch \) is in stage *Schedule_planning*
- If true, then \(sch \) holds a schedule skeleton (i.e., appropriate portions of the relationship *includes* are filled in)
- If true, ...

EDOC 2017
R₁: initiate schedule

event request by performer p to create a schedule instance for Offered DES Service artifact o, Customer artifact c, and Site artifact si

condition the appropriate non-disclosure agreements (NDAs) are in place for c

action invoke Create_schedule(o, c, si)

by performer p where offer_manager in role(p) and qualification(p, o, region: si.region) ≥ 5

Alternative models can also be used
Artifact-Centric Biz Process Modeling

Informal model [Nigam-Caswell 03]

Systems: BELA (IBM 2005), Siena (IBM 2007), ArtiFlow, EZ-Flow (Fudan-UCSB 2010), GSM/Barcelona (IBM 2010)

Formal models

- State machines [Gerede-Bhattacharya-S. SOCA07][Gerede-S. ICSOC07]
Workflow verification problem:

An important problem [Hull-S. DCW09 report]

More in SIGMOD tutorial [Hull-S.-Vaculin SIGMOD13]
Plan for the Talk

- The Need for Process-Process Relationships
- Process Design and Modeling with Data
- Runtime Management
- Towards Process-Relationship (PR) Modeling
- Further Challenges
Artifact-centricity, EZ-Flow model

- Each biz process has a **core** artifact (class)
 - Business data (object) + enactment
 - Similar notion in recent GSM model from IBM
Execution Semantics and Process Changes

- Formal semantics for task execution based on Petri nets

- Represents data (input/output) requirements and carries enactments

- Declarative change specification
 - Four execution altering operators
 - Rules for applying the operators based on conditions

[Xu.-S.-Yan-Yang-Zhang CoopIS11]
New Fee Schedule for Low Income Housing

AffordablePaymentProcessing

start → fetch → ready → invoke → done → store → end

event_s → started → ready → done → stored → event_e

begin-replace

PaymentProcessing

start → fetch → invoke → store → end

event_s → started → ready → done → stored → event_e

end-replace

Affordable-Fee: MUST REPLACE PaymentProcessing BY AffordablePaymentProcessing ON PAF WHERE SELF.projectType="affordable"

[Xu.-S.-Yan-Yang-Zhang CoopIS11]
Jointfounder Challenge

- Housing Management Bureau (HMB房管局) manages titles, licenses, permits, ... for a region

- Sells housing management workflow systems to HMBs
 - 20-30 HMBs as clients, including

- Maintenance contracts for clients
 - Each service call costs 4 - 6 person-days
 - Common types of issues: failures, changes caused by e.g. policy change, (tools for) analytics, ...

- Scalability problem:
 More clients means more service technicians and associated management costs
Can Cloud be a Solution?

- Ideal:

 ![Diagram](image.png)

 - But only naïve approach: Run one WfM system for each client HMB due to disparate local data for each HMB’s workflow instances

 - Shifts but does not reduce effort/cost in addressing clients technical problems: failures, changes, analytics, ...

EDOC 2017
Data Management in Workflow Systems

- Typical architecture:

 ![Diagram of workflow system architecture](attachment:diagram.png)

 WfMS

 - **Execution Engine**
 - Local data store
 - Enterprise database
 - Task wrapper
 - Task wrapper
 - Task wrapper

 Includes all data required for control flow decisions, correlations, ...

- During execution, data can be held in each of the shaded boxes (shapes)

 - Problems? Plenty!
Example Scenario: Failures

- Enterprise database fails
 - DBMS does recovery, but data may not be consistent with data in the local store, engine, and wrappers

- Similar: Local data store fails
 - Again, recovery at store, but data may not be consistent with data in EDb, engine, and wrappers
Independence of Data Management and Execution Management

- **Execution Independence**
 - the freedom of changing the process execution system while leaving conceptual BP models unchanged and vice versa

- **Clean separation of responsibilities**
 - WfMS: Execution
 - DBMS: Data

- **Allows Divide-and-Conquer** for management functions
 - Helps in many aspects

[Sun-S.-Yang BPM14]
[Sun-S.-Wu-Yang ICDE14]
Five Types of Data in Biz Processes

1. Specification of biz process models
2. Business data essential for business logic
 - e.g., items, shipping addresses, ...
3. Enactment status: the current execution snapshot
 - e.g., order sent, shipping request made, ...
4. Resource usage and state needed for BP execution
 - e.g., cargo space reserved, truck schedule is to be determined, ...
5. Correlation between processes instances
 - e.g., 3 warehouse fulfillment process instances for Jane’s order (instance), ...

Traditional biz process models are weak in modeling data (types 2-5)
Universal Artifacts (UA)

- A traditional business artifact:

 \textit{(Entity information model, Entity lifecycle model)}

- A universal artifact contains everything an engine would need:

 \textit{(BP specification, Entity, States, Dependencies, L)}

A document with the specification of the \textit{entity lifecycle} model

- actual business data
- current states
- correlations
- resources

ID of modeling language

A universal artifact contains everything an engine needs

[Sun-S.-Yang BPM14][Sun-S.-Yang TMIS16]
The SeGA Framework

- **Key idea:** a process wrapper to supply all data (i.e., “universal” artifact) when the engine needs to run.

- Both Barcelona and EZ-Flow are integrated with SeGA.

- Prototype: (RMB1.2M, 2014-16)

![Diagram of SeGA Framework]

1. **Incoming event**
2. **Fetch the self-guided artifact (sga)**
3. **Send the sga to the mediator**
4. **Decompose sga and put them into the right places**
5. **Engine performs a step and possibly sending outgoing event**
6. **Fetch all data and assemble into an sga**
7. **Store sga back into the repository**

[Sun-S.-Yang BPM14]

EDOC 2017

2017/10/12

23
Plan for the Talk

- The Need for Process-Process Relationships
- Process Design and Modeling with Data
- Runtime Management
- Towards Process-Relationship (PR) Modeling
- Further Challenges
(Modeling) Process Relationships

Desirable: upper-right region

Data contents

(Atomic) objects/messages

No data, no objects

+ activities

Orchestrated Choreography Coincidental Accidental

runtime prescribed

What

Decl Choreo 4 Artifacts subscription tax refund

BPEL+

Conversation Protocols [Bultan-Fu-Hull-S. WWW'03]

DecSerFlow (DECLARE) [van derAalstPesic WS-FM06]

BPEL+ [Sun-Xu-S. ICSOC’12]

How

[Sun-S. WS-FM13]
Three Types of Process Relationships

- Consider binary relationships
- Occurrences: how their instances should be related
 - e.g., adding a driver to an auto policy causes new insurance cards to be sent
- Cardinality: How many instances should be related
 - e.g., if a posted charge reaches 80% of the credit limit, at most 3 warning messages should be sent at a 3-day interval
- Data: the relationship depends on the data content
 - e.g., if the reimbursement total exceeds CA$5000, dean’s approval is necessary
(Modeling) Process Relationships

Data contents
(Atomic) objects/messages
No data, no objects
+ activities

What

Orchestrated
Choreography
Coincidental
Accidental
runtime
prescribed

DecSerFlow (DECLARE)
[van derAalst-Pesic WS-FM06]

Decl Choreo 4 Artifacts
[Sun-Xu-S. ICSOC’12]

Desirable: upper-right region
DecSerFlow (DECLARE)

- Modeling language constraining behaviors (executions) through occurrences of activity instances
- Unary: number of executions of an activity
- Binary: (co-)existence, response, precedence, etc.
 - Alternative, succession
- N-ary constraints are possible, negation is also allowed
- Example: Every A is followed by a B (response)
DecSerFlow (DECLARE)

- Modeling language constraining behaviors (executions) through occurrences of activity instances
- Unary: number of executions of an activity
- Binary: (co-)existence, response, precedence, etc.
 - Alternative, succession
- N-ary constraints are possible, negation is also allowed
- Example: Every A is followed by a distinct B (alt. resp.)

Needed: cardinality, data
Processes as rectangles
Correlation as edges
 Direction: initiation/invocation
Cardinality constraints on instances
Choreography constraints on messages
Examples:

∀ x ∈ Order OR(μ, ext, x) ∧ μ.amount > 10 (succ) → CP[μ](x, Purchase[μ])

∀ x ∈ Fulfillment ∀ y ∈ Purchase⟨x⟩PC(μ, y, x) ∧ y.cart.price > 100 (succ) → RS[μ](Order⟨x⟩, x)

Needed: occurrences, cardinality
Modeling Relationships (Early Thinking)

- $\text{Order}(\text{ID}, \ldots, | \text{Cost}, \ldots)$
- $\text{Shipping}(\ldots | \ldots)$
- Cancel (|), Invoice (|)

\[O = \text{Order}(\text{ID}:x |) \rightarrow O < \exists \text{Shipping}(\text{OrderID}:x |) \]

\[\text{Order}(\text{ID}:x |) \leftarrow \exists \text{Shipping}(\text{OrderID}:x |) \]

\[\text{Cancel}(\text{OrderID}:x | \text{Credit}:y) \leftarrow \exists \text{Invoice}(\text{OrderID}:x, \text{Credit}:y |) \]

- Under development [S.-Wen-Yang ’17]
Enterprise Process Framework

Aiming to model biz services, 4 components:

- **A data model**
 - For data access by at least the biz service

- **A set of processes**
 - Accessing data instances of the data model

- **A set of relationships** between processes
 - Constraining instances of process instances

- **A set of KPIs / QoSs**
 - Measuring aspects of interest
Plan for the Talk

- The Need for Process-Process Relationships
- Process Design and Modeling with Data
- Runtime Management
- Towards Process-Relationship (PR) Modeling
- Further Challenges
Modeling Process Relationships

- Choice of data model: ER or XML
 - What should be included?
- Choice of process model: data is essential
 - IOPE seems natural
- Relationships:
Axiom of Anticipation for Proc. Modeling

- Combining all processes in a biz service into a single one
 - Modeling languages usually allow such
 - But not a good idea:
 -- long lasting processes
 -- harder to maintain the workflow system
- What is the right size?
- Except for the initial event, all other events/activities should be known to happen
Modeling Process Relationships

- Choice of data model: ER or XML
 - What should be included?
- Choice of process model: data is essential
 - IOPE seems natural
- Relationships:
 - Occurrences & cardinality
 - Data: data flow, other factors?
 - Temporal constraints
- QoSs/KPIs: realistic indicators
- Goals: enabling reasoning/analytics, and (next slides)
Optimization and Automation

- Measuring QoSs/KPIs
 - Effectiveness?
- Optimizing EPFs based on QoSs/KPIs
 - Move activities from one process to another
 - Remove redundant activities
 - Replace activities by “cheaper” version
 - Batch executions
- Automation
 - Specification of EPF to technical model?
 - Data (documents, logs, emails, …) to technical models----cognitive computing
Changes and Change Impact Analysis

- Example: add services for low income housing
 - Seems benign for existing services but could impact property tax (reduction)

- Add luxury tax:
 - Could be a fraud to avoid

- Intra-EPF impact analysis
- Inter-EPF impact analysis

- Previous work focus on individual processes
Anomaly Detection and Incident Mining

- Anomaly: a potentially undesired incident
- Tax refund example:
 - Detectable if EPFs of biz accessible
 - Algorithms to analyze EPFs of vendor with tax refund
 EPF of customs & border control
- Double reimbursement: similar
 - Adjunct appointments routine
 - Same reimbursement from two different institutions?

- Mining logs to discover possible anomalies?
 ISC mining may help [Winter-Rinderle-Ma EDOC17]
Conclusions

- A new approach to modeling business services
 - Cumbersome to put all in one process
 - Axiom of anticipation

- Process relationships – a key element in gluing together processes
 - Similar to modularity, hierarchies, yet fundamentally distinct

- Fairly green field, not much has been done
 - Techniques from data modeling might be useful