1 Basic Definitions

- Graphs are useful models for reasoning about relations among objects and combinatorial problems. Many real-life problems can be solved by converting them to graphs. Proper application of graph theory ideas can drastically reduce the solution time for some important problems.

- A graph has a set vertices V, often labeled v_1, v_2, \ldots, and a set of edges E, labeled e_1, e_2, \ldots.

- Each edge (u, v) “joins” two nodes u and v.

- We write $G = (V, E)$ for the graph with vertex set V and edge set E.

- In applications, where pair (u, v) is distinct from pair (v, u), the graph is directed. Otherwise, the graph is undirected. We can convert an undirected graph to a directed one by duplicating edges, and orienting them both ways.

- When (u, v) is an edge, we say v is adjacent to (or, neighbor of) u. A loop is an edge with both endpoints being the same.

- In undirected graphs, the degree of a node equals its number of neighbors. In directed graphs, we have the out-degree and the in-degree.

- In some applications, the edges can be associated with weights or costs.

2 Examples of Graphs

- Transportation Networks. The map of routes served by an airline carrier forms a graph, whose nodes are the airports, and we have an edge (u, v) whenever airline has a non-stop flight from u to v. Typically, airline edges are undirected—flight (u, v) also means a flight (v, u).
Other transportation networks: rail networks, road networks.

- Communication Networks. Internet is essentially a collection of computers connected by communication links. Nodes are computers, and edges are physical links.
 Wireless networks: devices, and wireless connections.

- Information networks. WWW has web pages as nodes, and hyperlinks as edges.

- Social networks.

- Dependency graphs: nodes = courses, and edges = prereqs;

3 Representations of Graphs

- **Adjacency Matrix**: a 2-dim array \(V \times V \). For each edge \((u, v)\), set \(A[u, v] = 1 \), or equal to cost, etc. Use infinity or 0 for non-edges.

 - Pros: easy to check if \((u, v)\) an edge in \(G \).

 - Cons: Takes \(V^2 \) space even if graph has very few edges; e.g. street map, which typically has \(O(V) \) edges. Infeasible space when \(V \) is millions of nodes.

- **Adjacency List**: An array of (header cells for) adjacency lists. The \(i \)th cell points to a linked list of all vertices adjacent to vertex \(v_i \).

 - Example:

1	2 4 3
2	4 5
3	6
4	6 7 3
5	4 7
6	
7	6

 - Space is \(O(E) \); each directed edge stored just once. Thus, if \(G \) is undirected \((u, v)\) appears in lists of both \(u \) and \(v \).

 - Pros. Linear space. Easy to list out all vertices adjacent to \(u \).

 - Cons: Checking if \((u, v)\) is an edge can take \(O(n) \) time.
4 Paths and Connectivity

- One of the fundamental operations in graphs is that of traversing a sequence of nodes (and edges). Such a traversal could correspond to user browsing web pages by following hyper links, rumor passing by word of mouth, or travel route of an airline passenger, email passing through a chain of routers, etc.

- A path is sequence of vertices w_1, w_2, \ldots, w_k such that each pair (w_i, w_{i+1}) is an edge of G. The length of a path is the number of edges in it, or total weight if each edge has a weight associated with it.

- A simple path has no repeated vertex, except first and last can be the same; in that case, the path is a cycle.

- An undirected graph is connected if there is a path between any two vertices. A directed graph with this property is strongly connected. A weakly connected graph—underlying graph connected but the directed graph may not have directed path between all pairs.

- Trees: an undirected graph is a tree if it is connected and does not contain a cycle.

- Trees are one of the simplest type of graphs. Any tree on n nodes has $n - 1$ edges, and therefore the deletion of a single node or edge disconnects it.

- Often, it is useful to root the tree at a particular node r, and then orient all edges away from r. EXAMPLE.

- In a rooted tree, each node (except root) has a parent, and if u is the parent of w, then w is called a child of u.

- More generally, w is called a descendant of u, and u an ancestor of w, if u lies on the path from w to the root.
5 Graph Connectivity and Graph Traversals

- We start with one of the most basic questions regarding graphs. Given a graph \(G = (V, E) \), and two nodes \(s \) and \(t \), is there a path joining \(s \) and \(t \)?

- This is called the \(st \)-connectivity problem. (This is also the classical Maze problem.) In small graphs, one can decide this by visual inspection, but quickly becomes challenging in large graphs.

- More generally, given a start node \(s \), what are all the nodes reachable from \(s \)? This set is called the connected component of \(G \) containing \(s \).

- In program control-flow analysis, e.g., unreachable nodes are dead-code, which can be eliminated. Similarly, if there is a node from which exit is unreachable, then program contains an infinite loop.

- In garbage collection, reachability finds memory objects accessible by the program.

- There are two simple algorithms for \(st \)-connectivity

5.1 Breadth First Search

- The simplest algorithm for \(st \)-connectivity is the following. We start at \(s \), and explore outward in all possible directions.

- We just have to make sure we don’t get stuck in a loop, so we use markers to keep track of nodes we have already visited.
- Each node will get a \textit{layer number} (also called level). Initially, we have only s, which is layer 0. The next iteration adds previously unreached nodes that have an edge to an already reached node. More specifically,

- We initialize Layer $L_0 = \{s\}$; i.e. layer 0 containing just s. Layer L_1 consists of all neighbors of s.

- Assuming we have layers L_0, L_1, \ldots, L_i, define
 \[L_{i+1} = \text{nodes not yet encountered who have an edge to some node in layer } L_i \]

- Example with 3 connected components.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{bfs_tree.png}
\caption{The construction of a breadth-first search tree T for the graph in Figure 3.2, with (a), (b), and (c) depicting the successive layers that are added. The solid edges are the edges of T; the dotted edges are in the connected component of G containing node 1, but do not belong to T.}
\end{figure}

- The layer by layer exploration of G produces a tree-like structure, which is called the BFS tree of G.

- For each $j \geq 1$, layer L_j consists of all nodes at distance exactly j from s. There is a path from s to t if and only if s appears in some layer of BSF from s.
• Let T be a BFS tree, and let x and y be nodes in T belonging to different layers L_i and L_j. If (x, y) is an edge of G, then $|i - j| \leq 1$.

• Proof. For contradiction, assume $i < j - 1$. When x is scanned in layer i, the edge (x, y) will add y to layer L_{i+1}, ensuring $j \leq i + 1$.

• BFS can be constructed in $O(m + n)$ time, using Adj List representation of G.

• The set of nodes discovered by the BFS is precisely those reachable from s. We refer to this set R as the connected component of G containing s.

• Once we have R, we can simply check if t belongs to R, and if so we have st connectivity.

• BFS however is only one way to discover R. Another, and a very different, method is depth first search.

6 Depth First Search

• Depth-First-Search (DFS) uses a method similar to the exploration of mazes:

• Starting at s, we take the first edge out of s, and continue recursively until we reach a dead end—a node for which all neighbors have already been explored.

• We then backtrack until we get to a node with at least one explored neighbor.

• This is called DFS search, because it explores G by going as deeply as possible and only retreating when necessary.

DFS(u)
 Mark u as Explored and add u to R
 For each edge (u, v) incident to u
 if v is not marked Explored, then
 recursively call DFS(v)
 endif
 endfor.

• We can also implement DFS non-recursively.
Stack Implementation of DFS:

DFS(s)

Init S to be a stack with one item s
While S not empty
 Take a node u from S
 If Explored[u] = False then
 Set Explored[u] = True
 For each edge (u,v) incident to u
 Add v to stack S
 endfor
 endif
endwhile

• Example from Kleinberg-Tardos.
DFS also runs in $O(m + n)$ time, where $n = |V|$ and $m = |E|$.

Figure 3.5 The construction of a depth-first search tree T for the graph in Figure 3.2, with (a) through (g) depicting the nodes as they are discovered in sequence. The solid edges are the edges of T; the dotted edges are edges of G that do not belong to T.
• Although the DFS tree looks very different from the BFS tree of G, we can make strong claims about how non-tree edges connect the nodes of DFS.

• **Fact 1.** For a recursive call $DFS(u)$, all nodes that are marked *explored* between the invocation and the end of the recursive call are descendants of u in T.

• **Fact 2.** Let T be a DFS tree, let x, y be two nodes in T that have an edge between them in G, but (x, y) is not an edge of T. Then, one of x or y is an ancestor of the other.

• Suppose not, and assume that x is reached first in DFS. When the edge (x, y) is examined during the execution of $DFS(x)$, it is not added to T because y is marked Explored. Since y was not marked Explored when $DFS(x)$ was first invoked, it must have been discovered during the recursive call. Thus, by Fact 1, y must be a descendant of x.

• **Connected Components Fact.** For any two nodes s and t in G, their connected components are either identical or disjoint.

7 **Applications of BFS and DFS**

• **Testing Bipartiteness.** A graph G is bipartite if its vertex set V can be partitioned into sets X and Y in such a way that every edge of G has one end in X and the other in Y.

• Often we use colors red and blue (or 0 and 1) to represent X and Y.

• A triangle is not bipartite: any partition will contain two nodes on the same side with an edge between them. The same argument also holds if G is an odd-length cycle.

• Turns out however that odd cycles are the only obstacle for G to be bipartite: that is, G is bipartite if and only if it does not contain an odd cycle.

• In fact, one can use BFS to decide whether G is bipartite, and in the end either discover the sets X and Y, or detect an odd-cycle, thereby showing that G is not bipartite.

• We can easily assume that G is connected. Otherwise, we can apply the algorithm to each connected component separately.

• The algorithm begins by picking any arbitrary vertex s, and color it 0.

• Now all neighbors of s must be colored 1, and these are precisely the nodes of layer 1.
• We alternate between colors: the nodes at layer i are colored 0 if i is even, and colored 1 if i is odd.

• At the end of the algorithm, we simply go back and check if the endpoints of each edge of G are colored differently. If not, that edge (x, y) together with the path in the BFS from x to y is an odd cycle.

• Therefore, bipartiteness of a graph G can be decided in $O(m + n)$ time.

8 Bi-Connectivity

• An undirected graph G is bi-connected if the deletion of a single node keeps it connected. That is, one must delete at least two nodes (and their incident edges) to disconnect G.

• Another classical application of DFS is a linear-time algorithm (due to Hopcroft and Tarjan) to find bi-connected components of G.

• Articulation point is a node v whose removal disconnects G. Thus, G is bi-connected if and only if there is no articulation point.

• The main idea is to run a DFS while maintaining the following information for each vertex v of the DFS tree T:

 1. the depth of v (once it gets visited), and
 2. the lowest depth among the neighbors of all descendants of v, called the lowpoint

• More specifically, let $d(v)$ be the depth (DFS number) of node v. Define

$$\text{low}(v) = \min\{d(v), \{d(w) : (u, w) \text{ is a back edge for some descendant } u \text{ of } v\}\}$$

• The low() values of all the nodes can be computed in linear time, by performing a post-order traversal of T.

• Example.

• One we have these computed, detecting articulation points is easy: the root is an articulation point, if it has more than one child; any non-root node v is an articulation point if it has a child w with $\text{low}(w) \geq d(v)$.

• For proof, notice that if v is an articulation point then none of the nodes explored during the recursive call at v have an edge that goes to the other component, and thus the low() value for all these points is $\geq d(v)$.
9 Topological Sort

- Suppose you have a set of tasks, which are subject to a set of precedence constraints: some jobs cannot be done before others. How shall you schedule the jobs without violating any prec constraint?
- Model as a directed graph where jobs are nodes and precedence relations are edges.
- Clearly, if there is a cycle in the graph, no feasible schedule.
- When there is no cycle, topological sorting is an ordering of vertices such if there is a path from v_i to v_j, then v_i appears before v_j in the schedule.

Algorithm:
Find a vertex v with zero in-degree (must exist!)
Print v, delete v, and its outgoing edges;
Repeat.

Improved Topological Sort

Compute all vertices’ indegs
Enqueue all those with zero indeg
Pick a vertex w from the queue;
put w next in schedule
for each vertex v adj to w
decrement v’s indeg
add v to queue if its indeg = 0

- This code only looks at each edge once, so O(E) time.
- Example.
- One can use DFS to also perform topological sorting. How?

10 Strong Bi-Connectivity

- DFS and BFS algorithms work on directed graphs, without any significant change: while visiting a vertex v, we just scan v’s out neighbors.
• In directed graphs, however, we need a stronger definition of a connected components. We put two vertices \(u \) and \(v \) in the same component only if we have a directed path from \(u \) to \(v \) and a path from \(v \) to \(u \).

• Example.

• We can also find strong connected components of \(G \) also in \(O(|V| + |E|) \) time, by using DFS, but in a more careful way.

• Historically, the first linear time algorithm dates back to 70s by Hopcroft and Tarjan.

• A simpler algorithm is by Koraraju-Sharir. It performs two DFS once on \(G \), and once on \(G^R \), which is \(G \) with all edges reversed.

• Intuition. Perform DFS on \(G \), and list the vertices in the post-order.

• Figure 1 shows a directed graph, and its DFS.

![Figure 1: A directed graph and its DFS.](image)

• The post-order numbering of nodes is: \(G, H, J, I, B, F, C, A, D, E \).

• We now perform a DFS on \(G^R \), always starting new DFS at the highest numbered vertex. So, in the example, first DFS starts at node \(G \), numbered 10. This leads nowhere, so \(G \) is a singleton node component.

• See Figure 2.

• Next DFS starts at \(H \), and this call adds \(I \) and \(J \) to the component of \(H \).

• Next starts at \(B \), and adds \(\{A, C, F\} \) before finishing.

• DFS at \(D \) ends with singleton, as does for \(E \).

• Proof of Correctness. Key idea is that if \(u, v \) are in the same SCC, then there are paths from \(u \) to \(v \), and from \(v \) to \(u \), in both \(G \) and \(G^R \).
Thus, if two nodes are not in the same DFS tree, then they cannot be in one SCC.

We show that if x is the root of the DFS tree in G^R containing v, then there is a path from x to v, and from v to x. Applying the same logic to w gives a pair of paths between x and w, and thus shows that x, v, w are in the same SCC.

Since v is a descendant of x in G^R DFS, there is path from x to v in G^R, and thus a path from v to x in G.

Since x is the root, it has the higher post-order than v. Therefore, during the DFS in G, the recursive call at v finished before the recursive call at x finished. Since a path from v to x exists, it must be that v is a descendant of x in the DFS of G—otherwise, v would finish after x. Therefore, there is a path from x to v, and the proof is complete.