1 Basic Definitions

- Graphs are useful models for reasoning about relations among objects and combinatorial problems. Many real-life problems can be solved by converting them to graphs. Proper application of graph theory ideas can drastically reduce the solution time for some important problems.
- A graph has a set vertices V, often labeled v_1, v_2, \ldots, and a set of edges E, labeled e_1, e_2, \ldots.
- Each edge (u, v) “joins” two nodes u and v.
- We write $G = (V, E)$ for the graph with vertex set V and edge set E.
- In applications, where pair (u, v) is distinct from pair (v, u), the graph is directed. Otherwise, the graph is undirected. We can convert an undirected graph to a directed one by duplicating edges, and orienting them both ways.
- When (u, v) is an edge, we say v is adjacent to (or, neighbor of) u. A loop is an edge with both endpoints being the same.
- In undirected graphs, the degree of a node equals its number of neighbors. In directed graphs, we have the out-degree and the in-degree.
- In some applications, the edges can be associated with weights or costs.

2 Examples of Graphs

- Transportation Networks. The map of routes served by an airline carrier forms a graph, whose nodes are the airports, and we have an edge (u, v) whenever airline has a non-stop flight from u to v. Typically, airline edges are undirected—flight (u, v) also means a flight (v, u).
Other transportation networks: rail networks, road networks.

- Communication Networks. Internet is essentially a collection of computers connected by communication links. Nodes are computers, and edges are physical links.
 Wireless networks: devices, and wireless connections.

- Information networks. WWW has web pages as nodes, and hyperlinks as edges.

- Social networks.

- Dependency graphs: nodes = courses, and edges = prereqs;

3 Representations of Graphs

- **Adjacency Matrix:** a 2-dim array $V \times V$. For each edge (u, v), set $A[u, v] = 1$, or equal to cost, etc. Use infinity or 0 for non-edges.

 - Pros: easy to check if (u, v) an edge in G.

 - Cons: Takes V^2 space even if graph has very few edges; e.g. street map, which typically has $O(V)$ edges. Infeasible space when V is millions of nodes.

- **Adjacency List:** An array of (header cells for) adjacency lists. The ith cell points to a linked list of all vertices adjacent to vertex v_i.

 - Example:

 | 1 : | 2 4 3 |
 | 2 : | 4 5 |
 | 3 : | 6 |
 | 4 : | 6 7 3 |
 | 5 : | 4 7 |
 | 6 : | |
 | 7 : | 6 |

 - Space is $O(E)$; each directed edge stored just once. Thus, if G is undirected (u, v) appears in lists of both u and v.

 - Pros. Linear space. Easy to list out all vertices adjacent to u.

 - Cons: Checking if (u, v) is an edge can take $O(n)$ time.
4 Paths and Connectivity

• One of the fundamental operations in graphs is that of traversing a sequence of nodes (and edges). Such a traversal could correspond to user browsing web pages by following hyper links, rumor passing by word of mouth, or travel route of an airline passenger, email passing through a chain of routers, etc.

• A path is sequence of vertices \(w_1, w_2, \ldots, w_k \) such that each pair \((w_i, w_{i+1}) \) is an edge of \(G \). The length of a path is the number of edges in it, or total weight if each edge has a weight associated with it.

• A simple path has no repeated vertex, except first and last can be the same; in that case, the path is a cycle.

• An undirected graph is connected if there is a path between any two vertices. A directed graph with this property is strongly connected. A weakly connected graph—underlying graph connected but the directed graph may not have directed path between all pairs.

• Trees: an undirected graph is a tree if it is connected and does not contain a cycle.

• Trees are one of the simplest type of graphs. Any tree on \(n \) nodes has \(n - 1 \) edges, and therefore the deletion of a single node or edge disconnects it.

• Often, it is useful to root the tree at a particular node \(r \), and then orient all edges away from \(r \). EXAMPLE.

• In a rooted tree, each node (except root) has a parent, and if \(u \) is the parent of \(w \), then \(w \) is called a child of \(u \).

• More generally, \(w \) is called a descenedant of \(u \), and \(u \) an ancestor of \(w \), if \(u \) lies on the path from \(w \) to the root.

5 Graph Connectivity and Graph Traversals

• We start with one of the most basic questions regarding graphs. Given a graph \(G = (V, E) \), and two nodes \(s \) and \(t \), is there a path joining \(s \) and \(t \)?

• This is called the \(st \)-connectivity problem. (This is also the classical Maze problem.) In small graphs, one can decide this by visual inspection, but quickly becomes challenging in large graphs.

• More generally, given a start node \(s \), what are all the nodes reachable from \(s \)? This set is called the connected component of \(G \) containing \(s \).
• There are two simply algorithms for st-connectivity

5.1 Breadth First Search

• The simplest algorithm for st-connectivity is the following. We start at s, and explore outward in all possible directions.

• We just have to make sure we don’t get stuck in a loop, so we use markers to keep track of nodes we have already visited.

• Each node will get a layer number (also called level). Initially, we have only s, which is layer 0. The next iteration adds previously unreached nodes that have an edge to an already reached node. More specifically,

• We initialize Layer $L_0 = \{s\}$; i.e. layer 0 containing just s. Layer L_1 consists of all neighbors of s.

• Assuming we have layers L_0, L_1, \ldots, L_i, define

 $$L_{i+1} = \text{nodes not yet encountered who have an edge to some node in layer } L_i$$

• Example with 3 connected components.

• The layer by layer exploration of G produces a tree-like structure, which is called the BFS tree of G.

• For each $j \geq 1$, layer L_j consists of all nodes at distance exactly j from s. There is a path from s to t if and only if s appears in some layer of BSF from s.

• Let T be a BFS tree, and let x and y be nodes in T belonging to different layers L_i and L_j. If (x, y) is an edge of G, then $|i - j| \leq 1$.

• Proof. For contradiction, assume $i < j - 1$. When x is scanned in layer i, the edge (x, y) will add y to layer L_{i+1}, ensuring $j \leq i + 1$.

• BFS can be constructed in $O(m + n)$ time, using Adj List representation of G.

• The set of nodes discovered by the BFS is precisely those reachable from s. We refer to this set R as the connected component of G containing s.

• Once we have R, we can simply check if t belongs to R, and if so we have st connectivity.

• BFS however is only one way to discover R. Another, and a very different, method is depth first search.
6 Depth First Search

- Depth-First-Search (DFS) uses a method similar to the exploration of mazes:
- Starting at \(s \), we take the first edge out of \(s \), and continue recursively until we reach a dead end— a node for which all neighbors have already been explored.
- We then backtrack until we get to a node with at least one explored neighbor.
- This is called DFS search, because it explores \(G \) by going as deeply as possible and only retreating when necessary.

\[
\text{DFS}(u) \\
\quad \text{Mark } u \text{ as Explored and add } u \text{ to } R \\
\quad \text{For each edge } (u, v) \text{ incident to } u \\
\quad \quad \text{if } v \text{ is not marked Explored, then} \\
\quad \quad \quad \text{recursively call } \text{DFS}(v) \\
\quad \quad \text{endif} \\
\quad \text{endfor.}
\]

- We can also implement DFS non-recursively.

Stack Implementation of DFS:

\[
\text{DFS}(s) \\
\quad \text{Init } S \text{ to be a stack with one item } s \\
\quad \text{While } S \text{ not empty} \\
\quad \quad \text{Take a node } u \text{ from } S \\
\quad \quad \quad \text{If } \text{Explored}[u] = \text{False} \text{ then} \\
\quad \quad \quad \quad \text{Set } \text{Explored}[u] = \text{True} \\
\quad \quad \quad \quad \text{For each edge } (u,v) \text{ incident to } u \\
\quad \quad \quad \quad \quad \text{Add } v \text{ to stack } S \\
\quad \quad \quad \text{endfor} \\
\quad \quad \text{endif} \\
\quad \text{endwhile}
\]
• Example from Kleinberg-Tardos.

• DFS also runs in $O(m + n)$ time, where $n = |V|$ and $m = |E|$.

• Although the DFS tree looks very different from the BFS tree of G, we can make strong claims about how non-tree edges connect the nodes of DFS.

• **Fact 1.** For a recursive call $DFS(u)$, all nodes that are marked *explored* between the invocation and the end of the recursive call are descendants of u in T.

• **Fact 2.** Let T be a DFS tree, let x, y be two nodes in T that have an edge between them in G, but (x, y) is not an edge of T. Then, one of x or y is an ancestor of the other.

Suppose not, and assume that x is reached first in DFS. When the edge (x, y) is examined during the execution of $DFS(x)$, it is not added to T because y is marked Explored. Since y was not marked Explored when $DFS(x)$ was first invoked, it must have been discovered during the recursive call. Thus, by Fact 1, y must be a descendant of x.

• **Connected Components Fact.** For any two nodes s and t in G, their connected components are either identical or disjoint.

7 Applications of BFS and DFS

• **Testing Bipartititeness.** A graph G is bipartite if its vertex set V can be partitioned into sets X and Y in such a way that every edge of G has one end in X and the other in Y.

• Often we use colors red and blue (or 0 and 1) to represent X and Y.

• A triangle is not bipartite: any partition will contain two nodes on the same side with an edge between them. The same argument also holds if G is an odd-length cycle.

• Turns out however that odd cycles are the only obstacle for G to be bipartite: that is, G is bipartite if and only if it does not contain an odd cycle.

• In fact, one can use BFS to decide whether G is bipartite, and in the end either discover the sets X and Y, or detect an odd-cycle, thereby showing that G is not bipartite.

• We can easily assume that G is connected. Otherwise, we can apply the algorithm to each connected component separately.
• The algorithm begins by picking any arbitrary vertex \(s \), and color it 0.
• Now all neighbors of \(s \) must be colored 1, and these are precisely the nodes of layer 1.
• We alternate between colors: the nodes at layer \(i \) are colored 0 if \(i \) is even, and colored 1 if \(i \) is odd.
• At the end of the algorithm, we simply go back and check if the endpoints of each edge of \(G \) are colored differently. If not, that edge \((x, y)\) together with the path in the BFS from \(x \) to \(y \) is an odd cycle.
• Therefore, bipartiteness of a graph \(G \) can be decided in \(O(m + n) \) time.

8 Bi-Connectivity

• An undirected graph \(G \) is bi-connected if the deletion of a single node keeps it connected. That is, one must delete at least two nodes (and their incident edges) to disconnect \(G \).
• Another classical application of DFS is a linear-time algorithm (due to Hopcroft and Tarjan) to find bi-connected components of \(G \).
• Articulation point is a node \(v \) whose removal disconnects \(G \). Thus, \(G \) is bi-connected if and only if there is no articulation point.
• The main idea is to run a DFS while maintaining the following information for each vertex \(v \) of the DFS tree \(T \):
 1. the depth of \(v \) (once it gets visited), and
 2. the lowest depth among the neighbors of all descendants of \(v \), called the lowpoint
• More specifically, let \(d(v) \) be the depth (DFS number) of node \(v \). Define

\[
\text{low}(v) = \min\{d(v), \{d(w) : (u, w) \text{ is a back edge for some descendant } u \text{ of } v\}\}
\]

• The low() values of all the nodes can be computed in linear time, by performing a post-order traversal of \(T \).
• Example.
• One we have these computed, detecting articulation points is easy: the root is an articulation point, if it has more than one child; any non-root node \(v \) is an articulation point if it has a child \(w \) with \(\text{low}(w) \geq d(v) \).
• For proof, notice that if v is an articulation point then none of the nodes explored during the recursive call at v have an edge that goes to the other component, and thus the $\text{low}()$ value for all these points is $\geq d(v)$.

9 Topological Sort

• Suppose you have a set of tasks, which are subject to a set of precedence constraints: some jobs cannot be done before others. How shall you schedule the jobs without violating any prec constraint?

• Model as a directed graph where jobs are nodes and precedence relations are edges.

• Clearly, if there is a cycle in the graph, no feasible schedule.

• When there is no cycle, topological sorting is an ordering of vertices such if there is a path from v_i to v_j, then v_i appears before v_j in the schedule.

Algorithm:
Find a vertex v with zero in-degree (must exist!)
Print v, delete v, and its outgoing edges;
Repeat.

Improved Topological Sort

Compute all vertices’ indegs
Enqueue all those with zero indeg
Pick a vertex w from the queue;
put w next in schedule
for each vertex v adj to w
 decrement v’s indeg
 add v to queue if its indeg = 0

• This code only looks at each edge once, so $O(E)$ time.

• Example.

• One can use DFS to also perform topological sorting. How?
10 Strong Bi-Connectivity

- DFS and BFS algorithms work on directed graphs, without any significant change: while visiting a vertex \(v \), we just scan \(v \)'s out neighbors.

- In directed graphs, however, we need a stronger definition of a connected components. We put two vertices \(u \) and \(v \) in the same component only if we have a directed path from \(u \) to \(v \) and a path from \(v \) to \(u \).

- Example.

- We can also find strong connected components of \(G \) also in \(O(|V| + |E|) \) time, by using DFS, but in a more careful way.

- Historically, the first linear time algorithm dates back to 70s by Hopcroft and Tarjan.

- A simpler algorithm is by Koraraju-Sharir. It performs two DFS once on \(G \), and once on \(G^R \), which is \(G \) with all edges reversed.

- Intuition. Perform DFS on \(G \), and list the vertices in the **post-order**.

- Figure 1 shows a directed graph, and its DFS.

![Figure 1: A directed graph and its DFS.](image)

- The post-order numbering of nodes is: \(G, H, J, I, B, F, C, A, D, E \).

- We now perform a DFS on \(G^R \), always starting new DFS at the highest numbered vertex. So, in the example, first DFS starts at node \(G \), numbered 10. This leads nowhere, so \(G \) is a singleton node component.

- See Figure 2.

- Next DFS starts at \(H \), and this call adds \(I \) and \(J \) to the component of \(H \).
• Next starts at B, and adds $\{A, C, F\}$ before finishing.

• DFS at D ends with singleton, as does for E.

![Graph](image)

Figure 2: G^R, with post-order numbering from the first DFS.

• Proof of Correctness. Key idea is that if u, v are in the same SCC, then there are paths from u to v, and from v to u, in both G and G^R.

• Thus, if two nodes are not in the same DFS tree, then they cannot be in one SCC.

• We show that if x is the root of the DFS tree in G^R containing v, then there is a path from x to v, and from v to x. Applying the same logic to w gives a pair of paths between x and w, and thus shows that x, v, w are in the same SCC.

• Since v is a descendant of x in G^R DFS, there is path from x to v in G^R, and thus a path from v to x in G.

• Since x is the root, it has the higher post-order than v. Therefore, during the DFS in G, the recursive call at v finished before the recursive call at x finished. Since a path from v to x exists, it must be that v is a descendant of x in the DFS of G—otherwise, v would finish after x. Therefore, there is a path from x to v, and the proof is complete.