Please typeset your answers. If TAs cannot read your handwriting, they will not grade your assignment.

1. (10 pts) Suppose \(T_1(n) = O(g(n)) \) and also \(T_2(n) = O(g(n)) \). Which of the following are true? Explain your answer.
 (a) \(T_1(n) + T_2(n) = O(g(n)) \).
 (b) \(T_1(n) - T_2(n) = o(g(n)) \).
 (c) \(T_1(n)/T_2(n) = O(1) \).
 (d) \(T_1(n) = O(T_2(n)) \).

2. (10 pts) You are given an \(n \times n \) matrix (array) of numbers, already stored in memory. The matrix is monotone in the following sense: in each row, the numbers are increasing from left to right; and in each column, the numbers are increasing from top to bottom. Give a worst-case \(O(n) \) time algorithm to decide if a given number \(X \) is in the matrix.

3. (10 pts) Given an array \(A \) of \(n \) positive numbers, describe an \(O(n) \) time algorithm for each of the following problem. Find the indices \(i \) and \(j \), with \(j \geq i \), such that
 (a) \(A[j] + A[i] \) has the maximum value,
 (b) \(A[j] - A[i] \) has the maximum value,
 (c) \(A[j] \times A[i] \) has the maximum value,
 (d) \(A[j]/A[i] \) has the maximum value.

4. (10 pts) Given the hash function \(h(x) = x \) mod 10, and the following set of numbers as input \{4371, 1323, 6173, 4199, 4344, 9679, 1989\}, show the resulting:
 (a) Separate chaining hash table,
 (b) Open addressing hash table with linear probing.
 (c) Open addressing using quadratic probing.