
Subhash Suri UC Santa Barbara

Divide and Conquer

• A general paradigm for algorithm design; inspired
by emperors and colonizers.

• Three-step process:

1. Divide the problem into smaller problems.
2. Conquer by solving these problems.
3. Combine these results together.

• Examples: Binary Search, Merge sort, Quicksort
etc. Matrix multiplication, Selection, Convex
Hulls.

Subhash Suri UC Santa Barbara

Binary Search

• Search for x in a sorted array A.

Binary-Search (A, p, q, x)

1. if p > q return -1;
2. r = b (p + q)/2 c
3. if x = A[r] return r

4. else if x < A[r] Binary-Search(A, p, r, x)
5. else Binary-Search(A, r + 1, q, x)

• The initial call is Binary-Search(A, 1, n, x).

Subhash Suri UC Santa Barbara

Binary Search

• Let T (n) denote the worst-case time to binary
search in an array of length n.

• Recurrence is T (n) = T (n/2) + O(1).

• T (n) = O(log n).

Subhash Suri UC Santa Barbara

Merge Sort

• Sort an unordered array of numbers A.

Merge-Sort (A, p, q)

1. if p ≥ q return A;
2. r = b (p + q)/2 c
3. Merge-Sort (A, p, r)
4. Merge-Sort (A, r + 1, q)
5. MERGE (A, p, q, r)

• The initial call is Merge-Sort (A, 1, n).

Subhash Suri UC Santa Barbara

Merge Sort

• Let T (n) denote the worst-case time to merge sort
an array of length n.

• Recurrence is T (n) = 2T (n/2) + O(n).

• T (n) = O(n log n).

Subhash Suri UC Santa Barbara

Merge Sort: Illustration

2 5 4 6 1 3 2 6

63216542

1 2 2 3 4 65 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

62316425

Merge

Divide

Subhash Suri UC Santa Barbara

Multiplying Numbers

• We want to multiply two n-bit numbers. Cost is
number of elementary bit steps.

• Grade school method has Θ(n2) cost.:
xxxxxxxx
xxxxxxxx

xxxxxxxxx
xxxxxxxxx

xxxxxxxxx

xxxxxxxxxxxxxxxx

...

• n2 multiplies, n2/2 additions, plus some carries.

Subhash Suri UC Santa Barbara

Why Bother?

• Doesn’t hardware provide multiply? It is fast,
optimized, and free. So, why bother?

• True for numbers that fit in one computer word.
But what if numbers are very large.

• Cryptography (encryption, digital signatures)
uses big number “keys.” Typically 256 to 1024
bits long!

• n2 multiplication too slow for such large numbers.

• Karatsuba’s (1962) divide-and-conquer scheme
multiplies two n bit numbers in O(n1.59) steps.

Subhash Suri UC Santa Barbara

Karatsuba’s Algorithm

• Let X and Y be two n-bit numbers. Write

X = a b

Y = c d

• a, b, c, d are n/2 bit numbers. (Assume n = 2k.)

XY = (a2n/2 + b)(c2n/2 + d)

= ac2n + (ad + bc)2n/2 + bd

Subhash Suri UC Santa Barbara

An Example

• X = 4729 Y = 1326.

• a = 47; b = 29 c = 13; d = 26.

• ac = 47 ∗ 13 = 611

• ad = 47 ∗ 26 = 1222

• bc = 29 ∗ 13 = 377

• bd = 29 ∗ 26 = 754

• XY = 6110000 + 159900 + 754

• XY = 6270654

Subhash Suri UC Santa Barbara

Karatsuba’s Algorithm

• This is D&C: Solve 4 problems, each of size n/2;
then perform O(n) shifts to multiply the terms by
2n and 2n/2.

• We can write the recurrence as

T (n) = 4T (n/2) + O(n)

• But this solves to T (n) = O(n2)!

Subhash Suri UC Santa Barbara

Karatsuba’s Algorithm

• XY = ac2n + (ad + bc)2n/2 + bd.

• Note that (a− b)(c− d) = (ac + bd)− (ad + bc).

• Solve 3 subproblems: ac, bd, (a− b)(c− d).

• We can get all the terms needed for XY by
addition and subtraction!

• The recurrence for this algorithm is

T (n) = 3T (n/2) + O(n) = O(nlog2 3).

• The complexity is O(nlog2 3) ≈ O(n1.59).

Subhash Suri UC Santa Barbara

Recurrence Solving: Review

• T (n) = 2T (n/2) + cn, with T (1) = 1.

• By term expansion.

T (n) = 2T (n/2) + cn

= 2
(
2T (n/22) + cn/2

)
+ cn = 22T (n/22) + 2cn

= 22
(
2T (n/23) + cn/22

)
+ 2cn = 23T (n/23) + 3cn

...

= 2iT (n/2i) + icn

• Set i = log2 n. Use T (1) = 1.

• We get T (n) = n + cn(log n) = O(n log n).

Subhash Suri UC Santa Barbara

The Tree View

• T (n) = 2T (n/2) + cn, with T (1) = 1.

T(n/4) T(n/4)

cn/8 cn/8cn/8

cn/4 cn/4

T(n/8)

cn/2 cn/2
T(n/2)T(n/2)

T(n)
cn

T(n/4)
cn/4

T(n/4)
cn/4

cn/8cn/8cn/8cn/8cn/8 cn

Total Cost

cn

2(cn/2) = cn

4(cn/4) = cn

8(cn/8) =

• # leaves = n; # levels = log n.

• Work per level is O(n), so total is O(n log n).

Subhash Suri UC Santa Barbara

Solving By Induction

• Recurrence: T (n) = 2T (n/2) + cn.

• Base case: T (1) = 1.

• Claim: T (n) = cn log n + cn.

T (n) = 2T (n/2) + cn

= 2 (c(n/2) log(n/2) + cn/2) + cn

= cn (log n− 1 + 1) + cn

= cn log n + cn

Subhash Suri UC Santa Barbara

More Examples

• T (n) = 4T (n/2) + cn, T (1) = 1.

Level Work

0

1

2

3

i

cn

4 cn /
i i2

= 2 cni

4cn/2 = 2cn

16cn/4 = 4cnn/4

n/2

n

n/8

Subhash Suri UC Santa Barbara

More Examples

Level Work

0

1

2

3

i

cn

4 cn /
i i2

= 2 cni

4cn/2 = 2cn

16cn/4 = 4cnn/4

n/2

n

n/8

• Stops when n/2i = 1, and i = log n.

• Recurrence solves to T (n) = O(n2).

Subhash Suri UC Santa Barbara

By Term Expansion

T (n) = 4T (n/2) + cn

= 42T (n/22) + 2cn + cn

= 43T (n/23) + 22cn + 2cn + cn

...

= 4iT (n/2i) + cn
(
2i−1 + 2i−2 + . . . + 2 + 1

)

= 4iT (n/2i) + 2icn

• Terminates when 2i = n, or i = log n.

• 4i = 2i × 2i = n× n = n2.

• T (n) = n2 + cn2 = O(n2).

Subhash Suri UC Santa Barbara

More Examples

T (n) = 2T (n/4) +
√

n, T (1) = 1.

T (n) = 2T (n/4) +
√

n

= 2
(
2T (n/42) +

√
n/4

)
+
√

n

= 22T (n/42) + 2
√

n

= 22
(
2T (n/43) +

√
n/42

)
+ 2

√
n

= 23T (n/43) + 3
√

n

...

= 2iT (n/4i) + i
√

n

Subhash Suri UC Santa Barbara

More Examples

• Terminates when 4i = n, or when
i = log4 n = log2 n

log2 4 = 1
2 log n.

T (n) = 2
1
2 log n +

√
n log4 n

=
√

n(log4 n + 1)

= O(
√

n log n)

Subhash Suri UC Santa Barbara

Master Method

T (n) = aT
(n

b

)
+ f(n)

n

n/b

n/b
2

a children

a

a a

a

a a

a f(n/b)2 2

a f(n/b)

af(n/b)

i i

f(n)

Total Cost

Subhash Suri UC Santa Barbara

Master Method

n

n/b

n/b
2

a children

a

a a

a

a a

a f(n/b)2 2

a f(n/b)

af(n/b)

i i

f(n)

Total Cost

• # children multiply by factor a at each level.

• Number of leaves is alogb n = nlogb a. Verify by
taking logarithm on both sides.

Subhash Suri UC Santa Barbara

Master Method

• By recursion tree, we get

T (n) = Θ(nlogb a) +
logb n−1∑

i=0

aif
(n

bi

)

• Let f(n) = Θ(np logk n), where p, k ≥ 0.

• Important: a ≥ 1 and b > 1 are constants.

• Case I: p < logb a.

nlogb a grows faster than f(n).

T (n) = Θ(nlogb a)

Subhash Suri UC Santa Barbara

Master Method

• By recursion tree, we get

T (n) = Θ(nlogb a) +
logb n−1∑

i=0

aif
(n

bi

)

• Let f(n) = Θ(np logk n), where p, k ≥ 0.

• Case II: p = logb a.

Both terms have same growth rates.

T (n) = Θ(nlogb a logk+1 n)

Subhash Suri UC Santa Barbara

Master Method

• By recursion tree, we get

T (n) = Θ(nlogb a) +
logb n−1∑

i=0

aif
(n

bi

)

• Let f(n) = Θ(np logk n), where p, k ≥ 0.

• Case III: p > logb a.

nlogb a is slower than f(n).

T (n) = Θ (f(n))

Subhash Suri UC Santa Barbara

Applying Master Method

• Merge Sort: T (n) = 2T (n/2) + Θ(n).

a = b = 2, p = 1, and k = 0. So logb a = 1, and
p = logb a. Case II applies, giving us

T (n) = Θ(n log n)

• Binary Search: T (n) = T (n/2) + Θ(1).

a = 1, b = 2, p = 0, and k = 0. So logb a = 0, and
p = logb a. Case II applies, giving us

T (n) = Θ(log n)

Subhash Suri UC Santa Barbara

Applying Master Method

• T (n) = 2T (n/2) + Θ(n log n).

a = b = 2, p = 1, and k = 1. p = 1 = logb a, and Case
II applies.

T (n) = Θ(n log2 n)

• T (n) = 7T (n/2) + Θ(n2).

a = 7, b = 2, p = 2, and logb 2 = log 7 > 2. Case I
applied, and we get

T (n) = Θ(nlog 7)

Subhash Suri UC Santa Barbara

Applying Master Method

• T (n) = 4T (n/2) + Θ(n2
√

n).

a = 4, b = 2, p = 2.5, and k = 0. So logb a = 2, and
p > logb a. Case III applies, giving us

T (n) = Θ(n2
√

n)

• T (n) = 2T (n/2) + Θ
(

n
log n

)
.

a = 2, b = 2, p = 1. But k = −1, and so the Master
Method does not apply!

Subhash Suri UC Santa Barbara

Matrix Multiplication

• Multiply two n× n matrices: C = A×B.

• Standard method: Cij =
∑n

k=1 Aik ×Bkj.

• This takes O(n) time per element of C, for the
total cost of O(n3) to compute C.

• This method, known since Gauss’s time, seems
hard to improve.

• A very surprising discovery by Strassen (1969)
broke the n3 asymptotic barrier.

• Method is divide and conquer, with a clever
choice of submatrices to multiply.

Subhash Suri UC Santa Barbara

Divide and Conquer

• Let A,B be two n× n matrices. We want to
compute the n× n matrix C = AB.

A =
(

a11 a12

a21 a22

)
B =

(
b11 b12

b21 b22

)

C =
(

c11 c12

c21 c22

)

• Entries a11 are n/2× n/2 submatrices.

Subhash Suri UC Santa Barbara

Divide and Conquer

• The product matrix can be written as:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

• Recurrence for this D&C algorithm is
T (n) = 8T (n/2) + O(n2).

• But this solves to T (n) = O(n3)!

Subhash Suri UC Santa Barbara

Strassen’s Algorithm

• Strassen chose these submatrices to multiply:

P1 = (a11 + a22)(b11 + b22)

P2 = (a21 + a22)b11

P3 = a11(b12 − b22)

P4 = a22(b21 − b11)

P5 = (a11 + a12)b22

P6 = (a21 − a11)(b11 + b12)

P7 = (a12 − a22)(b21 + b22)

Subhash Suri UC Santa Barbara

Strassen’s Algorithm

• Then,

c11 = P1 + P4 − P5 + P7

c12 = P3 + P5

c21 = P2 + P4

c22 = P1 + P3 − P2 + P6

• Recurrence for this algorithm is
T (n) = 7T (n/2) + O(n2).

Subhash Suri UC Santa Barbara

Strassen’s Algorithm

• The recurrence T (n) = 7T (n/2) + O(n2).

solves to T (n) = O(nlog2 7) = O(n2.81).

• Ever since other researchers have tried other
products to beat this bound.

• E.g. Victor Pan discovered a way to multiply two
70× 70 matrices using 143, 640 multiplications.

• Using more advanced methods, the current best
algorithm for multiplying two n× n matrices runs
in roughly O(n2.376) time.

Subhash Suri UC Santa Barbara

Quick Sort Algorithm

• Simple, fast, widely used in practice.

• Can be done “in place;” no extra space.

• General Form:

1. Partition: Divide into two subarrays, L and R;
elements in L are all smaller than those in R.

2. Recurse: Sort L and R recursively.
3. Combine: Append R to the end of L.

• Partition (A, p, q, i) partitions A with pivot A[i].

Subhash Suri UC Santa Barbara

Partition

• Partition returns the index of the cell containing
the pivot in the reorganized array.

11 4 7 39 10 2 136 21 8

• Example: Partition (A, 0, 10, 3).

• 4, 3, 2, 6, 7, 11, 9, 10, 13, 21, 8

Subhash Suri UC Santa Barbara

Quick Sort Algorithm

• QuickSort (A, p, q) sorts the subarray A[p · · · q].
• Initial call with p = 0 and q = n− 1.

QuickSort(A, p, q)
if p ≥ q then return
i ← random(p, q)
r ← Partition(A, p, q, i)
Quicksort (A, p, r − 1)
Quicksort (A, r + 1, q)

Subhash Suri UC Santa Barbara

Analysis of QuickSort

• Lucky Case: Each Partition splits array in halves.
We get T (n) = 2T (n/2) + Θ(n) = Θ(n log n).

• Unlucky Case: Each partition gives unbalanced
split. We get T (n) = T (n− 1) + Θ(n) = Θ(n2).

• In worst case, Quick Sort as bad as BubbleSort.
The worst-case occurs when the list is already
sorted, and the last element chosen as pivot.

• But, while BubbleSort always performs poorly on
certain inputs, because of random pivot,
QuickSort has a chance of doing much better.

Subhash Suri UC Santa Barbara

Analyzing QuickSort

• T (n): runtime of randomized QuickSort.

• Assume all elements are distinct.

• Recurrence for T (n) depends on two subproblem
sizes, which depend on random partition element.

• If pivot is i smallest element, then exactly (i− 1)
items in L and (n− i) in R. Call it an i-split.

• What’s the probability of i-split?

• Each element equally likely to be chosen as pivot,
so the answer is 1

n.

Subhash Suri UC Santa Barbara

Solving the Recurrence

T (n) =
n∑

i=1

1
n
(runtime with i-split) + n + 1

=
1
n

n∑

i=1

(T (i− 1) + T (n− i)) + n + 1

=
2
n

n∑

i=1

T (i− 1) + n + 1

=
2
n

n−1∑

i=0

T (i) + n + 1

Subhash Suri UC Santa Barbara

Solving the Recurrence

• Multiply both sides by n. Subtract the same
formula for n− 1.

nT (n) = 2
n−1∑

i=0

T (i) + n2 + n

(n− 1)T (n− 1) = 2
n−2∑

i=0

T (i) + (n− 1)2 + (n− 1)

Subhash Suri UC Santa Barbara

Solving the Recurrence

nT (n) = (n + 1)T (n− 1) + 2n

T (n)
n + 1

=
T (n− 1)

n
+

2
n + 1

=
T (n− 2)

n− 1
+

2
n

+
2

n + 1
...

=
T (2)

3
+

n∑

i=3

2
i

= Θ(1) + 2 ln n

• Thus, T (n) ≤ 2(n + 1) ln n.

Subhash Suri UC Santa Barbara

Median Finding

• Median of n items is the item with rank n/2.

• Rank of an item is its position in the list if the
items were sorted in ascending order.

• Rank i item also called ith statistic.

• Example: {16, 5, 30, 8, 55}.
• Popular statistics are quantiles: items of rank

n/4, n/2, 3n/4.

• SAT/GRE: which score value forms 95th
percentile? Item of rank 0.95n.

Subhash Suri UC Santa Barbara

Median Finding

• After spending O(n log n) time on sorting, any
rank can be found in O(n) time.

• Can we find a rank without sorting?

Subhash Suri UC Santa Barbara

Min and Max Finding

• We can find items of rank 1 or n in O(n) time.

minimum (A)

min ← A[0]
for i = 1 to n− 1 do

if min > A[i] then min ← A[i];
return min

• The algorithm minimum finds the smallest
(rank 1) item in O(n) time.

• A similar algorithm finds maximum item.

Subhash Suri UC Santa Barbara

Both Min and Max

• Find both min and max using 3n/2 comparisons.

MIN-MAX (A)

if |A| = 1, then return min = max = A[0]
Divide A into two equal subsets A1, A2

(min1, max1) := MIN-MAX (A1)
(min2, max2) := MIN-MAX (A2)
if min1 ≤ min2 then return min = min1

else return min = min2

if max1 ≥ max2 then return max = max1

else return max = max2

Subhash Suri UC Santa Barbara

Both Min and Max

• The recurrence for this algorithm is
T (n) = 2T (n/2) + 2.

• Verify this solves to T (n) = 3n/2− 2.

Subhash Suri UC Santa Barbara

Finding Item of Rank k

• Direct extension of min/max finding to rank k

item will take Θ(kn) time.

• In particular, finding the median will take Ω(n2)
time, which is worse than sorting.

• Median can be used as a perfect pivot for
(deterministic) quick sort.

• But only if found faster than sorting itself.

• We present a linear time algorithm for selecting
rank k item [BFPRT 1973].

Subhash Suri UC Santa Barbara

Linear Time Selection

SELECT (k)

1. Divide items into bn/5c groups of 5 each.

2. Find the median of each group (using sorting).

3. Recursively find median of bn/5c group medians.

4. Partition using median-of-median as pivot.

5. Let low side have s, and high side have n− s items.

6. If k ≤ s, call select(k) on low side; otherwise, call
select(k − s) on high side.

Subhash Suri UC Santa Barbara

Illustration

• Divide items into bn/5c groups of 5 items each.

• Find the median of each group (using sorting).

• Use SELECT to recursively find the median of the bn/5c group
medians.

���
���
���

���
���
���

G
ro

up
 1

G
ro

up
 2

G
ro

up
 3

G
ro

up
 4

G
ro

up
 5

G
ro

up
 6

medians

x = median
 of
 medians

x

Subhash Suri UC Santa Barbara

Illustration

• Partition the input by using this median-of-median as pivot.

• Suppose low side of the partition has s elements, and high side has n− s elements.

• If k ≤ s, recursively call SELECT(k) on low side; otherwise, recursively call
SELECT(k − s) on high side.

Items => x

G
ro

up
 6

���
���
���
���
���
��� �

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

G
ro

up
 1

G
ro

up
 3

G
ro

up
 4

G
ro

up
 5

G
ro

up
 2

x

Subhash Suri UC Santa Barbara

Recurrence

• For runtime analysis, we bound the number of
items ≥ x, the median of medians.

• At least half the medians are ≥ x.

• At least half of the bn/5c groups contribute at
least 3 items to the high side. (Only the last
group can contribute fewer.

• Thus, items ≥ x are at least

3
(n

10
− 2

)
≥ 3n

10
− 6.

• Similarly, items ≤ x is also 3n/10− 6.

Subhash Suri UC Santa Barbara

Recurrence

• Recursive call to select is on size ≤ 7n/10 + 6.

• Let T (n) = worst-case complexity of select.

• Group medians, and partition take O(n) time.

• Step 3 has a recursive call T (n/5), and Step 5 has
a recursive call T (7n/10 + 6).

• Thus, we have the recurrence:

T (n) ≤ T (
n

5
) + T (

7n

10
+ 6) + O(n).

• Assume T (n) = O(1) for small n ≤ 80.

Subhash Suri UC Santa Barbara

Recurrence

T (n) ≤ T (
n

5
) + T (

7n

10
+ 6) + O(n)

• Inductively verify that T (n) ≤ cn for some
constant c.

T (n) ≤ c(n/5) + c(7n/10 + 6) + O(n)

≤ 9cn/10 + 6c + O(n)

≤ cn

• In above, choose c so that c(n/10− 6) beats the
function O(n) for all n.

Subhash Suri UC Santa Barbara

Convex Hulls

1. Convex hulls are to CG what sorting is to
discrete algorithms.

2. First order shape approximation. Invariant under
rotation and translation.

p

3. Rubber-band analogy.

Subhash Suri UC Santa Barbara

Convex Hulls

• Many aplications in robotics, shape analysis, line
fitting etc.

• Example: if CH(P1) ∩ CH(P2) = ∅, then objects P1

and P2 do not intersect.

• Convex Hull Problem:
Given a finite set of points S, compute its convex
hull CH(S). (Ordered vertex list.)

Subhash Suri UC Santa Barbara

Divide and Conquer

A B
CH(A) CH(B)

Upper Tangent

• Sort points by X-coordinates.

• Divide points into equal halves A and B.

• Recursively compute CH(A) and CH(B).

• Merge CH(A) and CH(B) to obtain CH(S).

Subhash Suri UC Santa Barbara

Merging Convex Hulls

Lower Tangent

• a = rightmost point of CH(A).

• b = leftmost point of CH(B).

• while ab not lower tangent of CH(A) and CH(B)
do

1. while ab not lower tangent to CH(A)
set a = a− 1 (move a CW);

2. while ab not lower tangent to CH(B)
set b = b + 1 (move b CCW);

• Return ab

Subhash Suri UC Santa Barbara

Tangent Finding

a

b

CH(A) CH(B)

Subhash Suri UC Santa Barbara

Analysis of D&C

A B
CH(A) CH(B)

Upper Tangent

• Initial sorting takes O(N log N) time.

• Recurrence T (N) = 2T (N/2) + O(N)

• O(N) for merging (computing tangents).

• Recurrence solves to T (N) = O(N log N).

