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Divide and Conquer

• A general paradigm for algorithm design; inspired
by emperors and colonizers.

• Three-step process:

1. Divide the problem into smaller problems.
2. Conquer by solving these problems.
3. Combine these results together.

• Examples: Binary Search, Merge sort, Quicksort
etc. Matrix multiplication, Selection, Convex
Hulls.



Subhash Suri UC Santa Barbara

Binary Search

• Search for x in a sorted array A.

Binary-Search (A, p, q, x)

1. if p > q return -1;
2. r = b (p + q)/2 c
3. if x = A[r] return r

4. else if x < A[r] Binary-Search(A, p, r, x)
5. else Binary-Search(A, r + 1, q, x)

• The initial call is Binary-Search(A, 1, n, x).
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Binary Search

• Let T (n) denote the worst-case time to binary
search in an array of length n.

• Recurrence is T (n) = T (n/2) + O(1).

• T (n) = O(log n).
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Merge Sort

• Sort an unordered array of numbers A.

Merge-Sort (A, p, q)

1. if p ≥ q return A;
2. r = b (p + q)/2 c
3. Merge-Sort (A, p, r)
4. Merge-Sort (A, r + 1, q)
5. MERGE (A, p, q, r)

• The initial call is Merge-Sort (A, 1, n).
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Merge Sort

• Let T (n) denote the worst-case time to merge sort
an array of length n.

• Recurrence is T (n) = 2T (n/2) + O(n).

• T (n) = O(n log n).
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Merge Sort: Illustration

2 5 4 6 1 3 2 6

63216542

1 2 2 3 4 65 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

62316425

Merge

Divide
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Multiplying Numbers

• We want to multiply two n-bit numbers. Cost is
number of elementary bit steps.

• Grade school method has Θ(n2) cost.:
xxxxxxxx
xxxxxxxx

xxxxxxxxx
xxxxxxxxx

xxxxxxxxx

xxxxxxxxxxxxxxxx

...

• n2 multiplies, n2/2 additions, plus some carries.
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Why Bother?

• Doesn’t hardware provide multiply? It is fast,
optimized, and free. So, why bother?

• True for numbers that fit in one computer word.
But what if numbers are very large.

• Cryptography (encryption, digital signatures)
uses big number “keys.” Typically 256 to 1024
bits long!

• n2 multiplication too slow for such large numbers.

• Karatsuba’s (1962) divide-and-conquer scheme
multiplies two n bit numbers in O(n1.59) steps.
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Karatsuba’s Algorithm

• Let X and Y be two n-bit numbers. Write

X = a b

Y = c d

• a, b, c, d are n/2 bit numbers. (Assume n = 2k.)

XY = (a2n/2 + b)(c2n/2 + d)

= ac2n + (ad + bc)2n/2 + bd
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An Example

• X = 4729 Y = 1326.

• a = 47; b = 29 c = 13; d = 26.

• ac = 47 ∗ 13 = 611

• ad = 47 ∗ 26 = 1222

• bc = 29 ∗ 13 = 377

• bd = 29 ∗ 26 = 754

• XY = 6110000 + 159900 + 754

• XY = 6270654
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Karatsuba’s Algorithm

• This is D&C: Solve 4 problems, each of size n/2;
then perform O(n) shifts to multiply the terms by
2n and 2n/2.

• We can write the recurrence as

T (n) = 4T (n/2) + O(n)

• But this solves to T (n) = O(n2)!
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Karatsuba’s Algorithm

• XY = ac2n + (ad + bc)2n/2 + bd.

• Note that (a− b)(c− d) = (ac + bd)− (ad + bc).

• Solve 3 subproblems: ac, bd, (a− b)(c− d).

• We can get all the terms needed for XY by
addition and subtraction!

• The recurrence for this algorithm is

T (n) = 3T (n/2) + O(n) = O(nlog2 3).

• The complexity is O(nlog2 3) ≈ O(n1.59).
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Recurrence Solving: Review

• T (n) = 2T (n/2) + cn, with T (1) = 1.

• By term expansion.

T (n) = 2T (n/2) + cn

= 2
(
2T (n/22) + cn/2

)
+ cn = 22T (n/22) + 2cn

= 22
(
2T (n/23) + cn/22

)
+ 2cn = 23T (n/23) + 3cn

...

= 2iT (n/2i) + icn

• Set i = log2 n. Use T (1) = 1.

• We get T (n) = n + cn(log n) = O(n log n).
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The Tree View

• T (n) = 2T (n/2) + cn, with T (1) = 1.

T(n/4) T(n/4)

cn/8 cn/8cn/8

cn/4 cn/4

T(n/8)

cn/2 cn/2
T(n/2)T(n/2)

T(n)
cn

T(n/4)
cn/4

T(n/4)
cn/4

cn/8cn/8cn/8cn/8cn/8 cn

Total Cost

cn

2(cn/2) = cn

4(cn/4) = cn

8(cn/8) =

• # leaves = n; # levels = log n.

• Work per level is O(n), so total is O(n log n).
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Solving By Induction

• Recurrence: T (n) = 2T (n/2) + cn.

• Base case: T (1) = 1.

• Claim: T (n) = cn log n + cn.

T (n) = 2T (n/2) + cn

= 2 (c(n/2) log(n/2) + cn/2) + cn

= cn (log n− 1 + 1) + cn

= cn log n + cn
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More Examples

• T (n) = 4T (n/2) + cn, T (1) = 1.

Level Work

0

1

2

3

i

cn

4 cn /
i i2

= 2 cni

4cn/2 = 2cn

16cn/4 = 4cnn/4

n/2

n

n/8
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More Examples

Level Work

0

1

2

3

i

cn

4 cn /
i i2

= 2 cni

4cn/2 = 2cn

16cn/4 = 4cnn/4

n/2

n

n/8

• Stops when n/2i = 1, and i = log n.

• Recurrence solves to T (n) = O(n2).
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By Term Expansion

T (n) = 4T (n/2) + cn

= 42T (n/22) + 2cn + cn

= 43T (n/23) + 22cn + 2cn + cn

...

= 4iT (n/2i) + cn
(
2i−1 + 2i−2 + . . . + 2 + 1

)

= 4iT (n/2i) + 2icn

• Terminates when 2i = n, or i = log n.

• 4i = 2i × 2i = n× n = n2.

• T (n) = n2 + cn2 = O(n2).
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More Examples

T (n) = 2T (n/4) +
√

n, T (1) = 1.

T (n) = 2T (n/4) +
√

n

= 2
(
2T (n/42) +

√
n/4

)
+
√

n

= 22T (n/42) + 2
√

n

= 22
(
2T (n/43) +

√
n/42

)
+ 2

√
n

= 23T (n/43) + 3
√

n

...

= 2iT (n/4i) + i
√

n
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More Examples

• Terminates when 4i = n, or when
i = log4 n = log2 n

log2 4 = 1
2 log n.

T (n) = 2
1
2 log n +

√
n log4 n

=
√

n(log4 n + 1)

= O(
√

n log n)
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Master Method

T (n) = aT
(n

b

)
+ f(n)

n

n/b

n/b
2

a children

a

a a

a

a a

a f(n/b )2 2

a f(n/b )

af(n/b)

i i

f(n)

Total Cost
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Master Method

n

n/b

n/b
2

a children

a

a a

a

a a

a f(n/b )2 2

a f(n/b )

af(n/b)

i i

f(n)

Total Cost

• # children multiply by factor a at each level.

• Number of leaves is alogb n = nlogb a. Verify by
taking logarithm on both sides.
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Master Method

• By recursion tree, we get

T (n) = Θ(nlogb a) +
logb n−1∑

i=0

aif
(n

bi

)

• Let f(n) = Θ(np logk n), where p, k ≥ 0.

• Important: a ≥ 1 and b > 1 are constants.

• Case I: p < logb a.

nlogb a grows faster than f(n).

T (n) = Θ(nlogb a)
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Master Method

• By recursion tree, we get

T (n) = Θ(nlogb a) +
logb n−1∑

i=0

aif
(n

bi

)

• Let f(n) = Θ(np logk n), where p, k ≥ 0.

• Case II: p = logb a.

Both terms have same growth rates.

T (n) = Θ(nlogb a logk+1 n)
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Master Method

• By recursion tree, we get

T (n) = Θ(nlogb a) +
logb n−1∑

i=0

aif
(n

bi

)

• Let f(n) = Θ(np logk n), where p, k ≥ 0.

• Case III: p > logb a.

nlogb a is slower than f(n).

T (n) = Θ (f(n))
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Applying Master Method

• Merge Sort: T (n) = 2T (n/2) + Θ(n).

a = b = 2, p = 1, and k = 0. So logb a = 1, and
p = logb a. Case II applies, giving us

T (n) = Θ(n log n)

• Binary Search: T (n) = T (n/2) + Θ(1).

a = 1, b = 2, p = 0, and k = 0. So logb a = 0, and
p = logb a. Case II applies, giving us

T (n) = Θ(log n)
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Applying Master Method

• T (n) = 2T (n/2) + Θ(n log n).

a = b = 2, p = 1, and k = 1. p = 1 = logb a, and Case
II applies.

T (n) = Θ(n log2 n)

• T (n) = 7T (n/2) + Θ(n2).

a = 7, b = 2, p = 2, and logb 2 = log 7 > 2. Case I
applied, and we get

T (n) = Θ(nlog 7)
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Applying Master Method

• T (n) = 4T (n/2) + Θ(n2
√

n).

a = 4, b = 2, p = 2.5, and k = 0. So logb a = 2, and
p > logb a. Case III applies, giving us

T (n) = Θ(n2
√

n)

• T (n) = 2T (n/2) + Θ
(

n
log n

)
.

a = 2, b = 2, p = 1. But k = −1, and so the Master
Method does not apply!
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Matrix Multiplication

• Multiply two n× n matrices: C = A×B.

• Standard method: Cij =
∑n

k=1 Aik ×Bkj.

• This takes O(n) time per element of C, for the
total cost of O(n3) to compute C.

• This method, known since Gauss’s time, seems
hard to improve.

• A very surprising discovery by Strassen (1969)
broke the n3 asymptotic barrier.

• Method is divide and conquer, with a clever
choice of submatrices to multiply.
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Divide and Conquer

• Let A,B be two n× n matrices. We want to
compute the n× n matrix C = AB.

A =
(

a11 a12

a21 a22

)
B =

(
b11 b12

b21 b22

)

C =
(

c11 c12

c21 c22

)

• Entries a11 are n/2× n/2 submatrices.
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Divide and Conquer

• The product matrix can be written as:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

• Recurrence for this D&C algorithm is
T (n) = 8T (n/2) + O(n2).

• But this solves to T (n) = O(n3)!
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Strassen’s Algorithm

• Strassen chose these submatrices to multiply:

P1 = (a11 + a22)(b11 + b22)

P2 = (a21 + a22)b11

P3 = a11(b12 − b22)

P4 = a22(b21 − b11)

P5 = (a11 + a12)b22

P6 = (a21 − a11)(b11 + b12)

P7 = (a12 − a22)(b21 + b22)
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Strassen’s Algorithm

• Then,

c11 = P1 + P4 − P5 + P7

c12 = P3 + P5

c21 = P2 + P4

c22 = P1 + P3 − P2 + P6

• Recurrence for this algorithm is
T (n) = 7T (n/2) + O(n2).
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Strassen’s Algorithm

• The recurrence T (n) = 7T (n/2) + O(n2).

solves to T (n) = O(nlog2 7) = O(n2.81).

• Ever since other researchers have tried other
products to beat this bound.

• E.g. Victor Pan discovered a way to multiply two
70× 70 matrices using 143, 640 multiplications.

• Using more advanced methods, the current best
algorithm for multiplying two n× n matrices runs
in roughly O(n2.376) time.
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Quick Sort Algorithm

• Simple, fast, widely used in practice.

• Can be done “in place;” no extra space.

• General Form:

1. Partition: Divide into two subarrays, L and R;
elements in L are all smaller than those in R.

2. Recurse: Sort L and R recursively.
3. Combine: Append R to the end of L.

• Partition (A, p, q, i) partitions A with pivot A[i].
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Partition

• Partition returns the index of the cell containing
the pivot in the reorganized array.

11 4 7 39 10 2 136 21 8

• Example: Partition (A, 0, 10, 3).

• 4, 3, 2, 6, 7, 11, 9, 10, 13, 21, 8
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Quick Sort Algorithm

• QuickSort (A, p, q) sorts the subarray A[p · · · q].
• Initial call with p = 0 and q = n− 1.

QuickSort(A, p, q)
if p ≥ q then return
i ← random(p, q)
r ← Partition(A, p, q, i)
Quicksort (A, p, r − 1)
Quicksort (A, r + 1, q)
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Analysis of QuickSort

• Lucky Case: Each Partition splits array in halves.
We get T (n) = 2T (n/2) + Θ(n) = Θ(n log n).

• Unlucky Case: Each partition gives unbalanced
split. We get T (n) = T (n− 1) + Θ(n) = Θ(n2).

• In worst case, Quick Sort as bad as BubbleSort.
The worst-case occurs when the list is already
sorted, and the last element chosen as pivot.

• But, while BubbleSort always performs poorly on
certain inputs, because of random pivot,
QuickSort has a chance of doing much better.
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Analyzing QuickSort

• T (n): runtime of randomized QuickSort.

• Assume all elements are distinct.

• Recurrence for T (n) depends on two subproblem
sizes, which depend on random partition element.

• If pivot is i smallest element, then exactly (i− 1)
items in L and (n− i) in R. Call it an i-split.

• What’s the probability of i-split?

• Each element equally likely to be chosen as pivot,
so the answer is 1

n.
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Solving the Recurrence

T (n) =
n∑

i=1

1
n
(runtime with i-split) + n + 1

=
1
n

n∑

i=1

(T (i− 1) + T (n− i)) + n + 1

=
2
n

n∑

i=1

T (i− 1) + n + 1

=
2
n

n−1∑

i=0

T (i) + n + 1
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Solving the Recurrence

• Multiply both sides by n. Subtract the same
formula for n− 1.

nT (n) = 2
n−1∑

i=0

T (i) + n2 + n

(n− 1)T (n− 1) = 2
n−2∑

i=0

T (i) + (n− 1)2 + (n− 1)
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Solving the Recurrence

nT (n) = (n + 1)T (n− 1) + 2n

T (n)
n + 1

=
T (n− 1)

n
+

2
n + 1

=
T (n− 2)

n− 1
+

2
n

+
2

n + 1
...

=
T (2)

3
+

n∑

i=3

2
i

= Θ(1) + 2 ln n

• Thus, T (n) ≤ 2(n + 1) ln n.
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Median Finding

• Median of n items is the item with rank n/2.

• Rank of an item is its position in the list if the
items were sorted in ascending order.

• Rank i item also called ith statistic.

• Example: {16, 5, 30, 8, 55}.
• Popular statistics are quantiles: items of rank

n/4, n/2, 3n/4.

• SAT/GRE: which score value forms 95th
percentile? Item of rank 0.95n.
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Median Finding

• After spending O(n log n) time on sorting, any
rank can be found in O(n) time.

• Can we find a rank without sorting?
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Min and Max Finding

• We can find items of rank 1 or n in O(n) time.

minimum (A)

min ← A[0]
for i = 1 to n− 1 do

if min > A[i] then min ← A[i];
return min

• The algorithm minimum finds the smallest
(rank 1) item in O(n) time.

• A similar algorithm finds maximum item.
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Both Min and Max

• Find both min and max using 3n/2 comparisons.

MIN-MAX (A)

if |A| = 1, then return min = max = A[0]
Divide A into two equal subsets A1, A2

(min1, max1) := MIN-MAX (A1)
(min2, max2) := MIN-MAX (A2)
if min1 ≤ min2 then return min = min1

else return min = min2

if max1 ≥ max2 then return max = max1

else return max = max2
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Both Min and Max

• The recurrence for this algorithm is
T (n) = 2T (n/2) + 2.

• Verify this solves to T (n) = 3n/2− 2.
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Finding Item of Rank k

• Direct extension of min/max finding to rank k

item will take Θ(kn) time.

• In particular, finding the median will take Ω(n2)
time, which is worse than sorting.

• Median can be used as a perfect pivot for
(deterministic) quick sort.

• But only if found faster than sorting itself.

• We present a linear time algorithm for selecting
rank k item [BFPRT 1973].
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Linear Time Selection

SELECT (k)

1. Divide items into bn/5c groups of 5 each.

2. Find the median of each group (using sorting).

3. Recursively find median of bn/5c group medians.

4. Partition using median-of-median as pivot.

5. Let low side have s, and high side have n− s items.

6. If k ≤ s, call select(k) on low side; otherwise, call
select(k − s) on high side.
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Illustration

• Divide items into bn/5c groups of 5 items each.

• Find the median of each group (using sorting).

• Use SELECT to recursively find the median of the bn/5c group
medians.

���
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x = median
       of
      medians

x
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Illustration

• Partition the input by using this median-of-median as pivot.

• Suppose low side of the partition has s elements, and high side has n− s elements.

• If k ≤ s, recursively call SELECT(k) on low side; otherwise, recursively call
SELECT(k − s) on high side.

Items => x
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Recurrence

• For runtime analysis, we bound the number of
items ≥ x, the median of medians.

• At least half the medians are ≥ x.

• At least half of the bn/5c groups contribute at
least 3 items to the high side. (Only the last
group can contribute fewer.

• Thus, items ≥ x are at least

3
( n

10
− 2

)
≥ 3n

10
− 6.

• Similarly, items ≤ x is also 3n/10− 6.



Subhash Suri UC Santa Barbara

Recurrence

• Recursive call to select is on size ≤ 7n/10 + 6.

• Let T (n) = worst-case complexity of select.

• Group medians, and partition take O(n) time.

• Step 3 has a recursive call T (n/5), and Step 5 has
a recursive call T (7n/10 + 6).

• Thus, we have the recurrence:

T (n) ≤ T (
n

5
) + T (

7n

10
+ 6) + O(n).

• Assume T (n) = O(1) for small n ≤ 80.
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Recurrence

T (n) ≤ T (
n

5
) + T (

7n

10
+ 6) + O(n)

• Inductively verify that T (n) ≤ cn for some
constant c.

T (n) ≤ c(n/5) + c(7n/10 + 6) + O(n)

≤ 9cn/10 + 6c + O(n)

≤ cn

• In above, choose c so that c(n/10− 6) beats the
function O(n) for all n.
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Convex Hulls

1. Convex hulls are to CG what sorting is to
discrete algorithms.

2. First order shape approximation. Invariant under
rotation and translation.

p

3. Rubber-band analogy.
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Convex Hulls

• Many aplications in robotics, shape analysis, line
fitting etc.

• Example: if CH(P1) ∩ CH(P2) = ∅, then objects P1

and P2 do not intersect.

• Convex Hull Problem:
Given a finite set of points S, compute its convex
hull CH(S). (Ordered vertex list.)
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Divide and Conquer

A B
CH(A) CH(B)

Upper Tangent

• Sort points by X-coordinates.

• Divide points into equal halves A and B.

• Recursively compute CH(A) and CH(B).

• Merge CH(A) and CH(B) to obtain CH(S).
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Merging Convex Hulls

Lower Tangent

• a = rightmost point of CH(A).

• b = leftmost point of CH(B).

• while ab not lower tangent of CH(A) and CH(B)
do

1. while ab not lower tangent to CH(A)
set a = a− 1 (move a CW);

2. while ab not lower tangent to CH(B)
set b = b + 1 (move b CCW);

• Return ab
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Tangent Finding

a

b

CH(A) CH(B)
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Analysis of D&C

A B
CH(A) CH(B)

Upper Tangent

• Initial sorting takes O(N log N) time.

• Recurrence T (N) = 2T (N/2) + O(N)

• O(N) for merging (computing tangents).

• Recurrence solves to T (N) = O(N log N).


