Divide and Conquer

- A general paradigm for algorithm design; inspired by emperors and colonizers.
- Three-step process:
 - 1. Divide the problem into smaller problems.
 - 2. Conquer by solving these problems.
 - **3.** Combine these results together.
- Examples: Binary Search, Merge sort, Quicksort etc. Matrix multiplication, Selection, Convex Hulls.

Binary Search

• Search for x in a sorted array A.

Binary-Search (A, p, q, x)

- **1.** if p > q return -1;
- **2.** $r = \lfloor (p+q)/2 \rfloor$
- **3.** if x = A[r] return r
- 4. else if x < A[r] Binary-Search(A, p, r, x)
- **5.** else Binary-Search(A, r + 1, q, x)
- The initial call is Binary-Search(A, 1, n, x).

Binary Search

- Let T(n) denote the worst-case time to binary search in an array of length n.
- Recurrence is T(n) = T(n/2) + O(1).
- $T(n) = O(\log n)$.

Merge Sort

• Sort an unordered array of numbers A.

Merge-Sort (A, p, q)

- 1. if $p \ge q$ return A;
- **2.** $r = \lfloor (p+q)/2 \rfloor$
- **3. Merge-Sort** (A, p, r)
- 4. Merge-Sort (A, r+1, q)
- **5. MERGE** (A, p, q, r)
- The initial call is Merge-Sort (A, 1, n).

Merge Sort

- Let T(n) denote the worst-case time to merge sort an array of length n.
- Recurrence is T(n) = 2T(n/2) + O(n).
- $T(n) = O(n \log n)$.

Merge Sort: Illustration

Multiplying Numbers

- We want to multiply two *n*-bit numbers. Cost is number of elementary bit steps.
- Grade school method has $\Theta(n^2)$ cost.:

• n^2 multiplies, $n^2/2$ additions, plus some carries.

Why Bother?

- Doesn't hardware provide multiply? It is fast, optimized, and free. So, why bother?
- True for numbers that fit in one computer word. But what if numbers are very large.
- Cryptography (encryption, digital signatures) uses big number "keys." Typically 256 to 1024 bits long!
- n^2 multiplication too slow for such large numbers.
- Karatsuba's (1962) divide-and-conquer scheme multiplies two n bit numbers in $O(n^{1.59})$ steps.

Karatsuba's Algorithm

• Let X and Y be two n-bit numbers. Write

• a, b, c, d are n/2 bit numbers. (Assume $n = 2^k$.)

$$XY = (a2^{n/2} + b)(c2^{n/2} + d)$$

= $ac2^n + (ad + bc)2^{n/2} + bd$

An Example

- X = 4729 Y = 1326.
- a = 47; b = 29 c = 13; d = 26.
- ac = 47 * 13 = 611
- ad = 47 * 26 = 1222
- bc = 29 * 13 = 377
- bd = 29 * 26 = 754
- XY = 6110000 + 159900 + 754
- XY = 6270654

Karatsuba's Algorithm

- This is D&C: Solve 4 problems, each of size n/2; then perform O(n) shifts to multiply the terms by 2^n and $2^{n/2}$.
- We can write the recurrence as

T(n) = 4T(n/2) + O(n)

• But this solves to $T(n) = O(n^2)!$

Karatsuba's Algorithm

- $XY = ac2^n + (ad + bc)2^{n/2} + bd$.
- Note that (a b)(c d) = (ac + bd) (ad + bc).
- Solve 3 subproblems: ac, bd, (a-b)(c-d).
- We can get all the terms needed for *XY* by addition and subtraction!
- The recurrence for this algorithm is

$$T(n) = 3T(n/2) + O(n) = O(n^{\log_2 3}).$$

• The complexity is $O(n^{\log_2 3}) \approx O(n^{1.59})$.

Recurrence Solving: Review

- T(n) = 2T(n/2) + cn, with T(1) = 1.
- By term expansion.

$$T(n) = 2T(n/2) + cn$$

= $2(2T(n/2^2) + cn/2) + cn = 2^2T(n/2^2) + 2cn$
= $2^2(2T(n/2^3) + cn/2^2) + 2cn = 2^3T(n/2^3) + 3cn$
i
= $2^iT(n/2^i) + icn$

• Set
$$i = \log_2 n$$
. Use $T(1) = 1$.

• We get
$$T(n) = n + cn(\log n) = O(n \log n)$$
.
Subhash Suri UC Santa Barbara

The Tree View

• T(n) = 2T(n/2) + cn, with T(1) = 1.

- # leaves = n; # levels = $\log n$.
- Work per level is O(n), so total is $O(n \log n)$.

Solving By Induction

- Recurrence: T(n) = 2T(n/2) + cn.
- **Base case:** T(1) = 1.
- Claim: $T(n) = cn \log n + cn$.

$$T(n) = 2T(n/2) + cn$$

= $2(c(n/2)\log(n/2) + cn/2) + cn$
= $cn(\log n - 1 + 1) + cn$
= $cn\log n + cn$

More Examples

• T(n) = 4T(n/2) + cn, T(1) = 1.

More Examples

- Stops when $n/2^i = 1$, and $i = \log n$.
- Recurrence solves to $T(n) = O(n^2)$.

By Term Expansion

$$T(n) = 4T(n/2) + cn$$

= $4^{2}T(n/2^{2}) + 2cn + cn$
= $4^{3}T(n/2^{3}) + 2^{2}cn + 2cn + cn$
:
= $4^{i}T(n/2^{i}) + cn(2^{i-1} + 2^{i-2} + ... + 2 + 1)$
= $4^{i}T(n/2^{i}) + 2^{i}cn$

• Terminates when $2^i = n$, or $i = \log n$.

•
$$4^i = 2^i \times 2^i = n \times n = n^2$$
.

•
$$T(n) = n^2 + cn^2 = O(n^2)$$
.

More Examples

$$T(n) = 2T(n/4) + \sqrt{n}, \qquad T(1) = 1.$$

$$T(n) = 2T(n/4) + \sqrt{n}$$

= $2\left(2T(n/4^2) + \sqrt{n/4}\right) + \sqrt{n}$
= $2^2T(n/4^2) + 2\sqrt{n}$
= $2^2\left(2T(n/4^3) + \sqrt{n/4^2}\right) + 2\sqrt{n}$
= $2^3T(n/4^3) + 3\sqrt{n}$
:
= $2^iT(n/4^i) + i\sqrt{n}$

Subhash Suri

More Examples

• Terminates when $4^{i} = n$, or when $i = \log_4 n = \frac{\log_2 n}{\log_2 4} = \frac{1}{2} \log n$. $T(n) = 2^{\frac{1}{2} \log n} + \sqrt{n} \log_4 n$ $= \sqrt{n} (\log_4 n + 1)$ $= O(\sqrt{n} \log n)$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- # children multiply by factor a at each level.
- Number of leaves is $a^{\log_b n} = n^{\log_b a}$. Verify by taking logarithm on both sides.

• By recursion tree, we get

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

• Let $f(n) = \Theta(n^p \log^k n)$, where $p, k \ge 0$.

- Important: $a \ge 1$ and b > 1 are constants.
- Case I: $p < \log_b a$.

 $n^{\log_b a}$ grows faster than f(n).

$$T(n) = \Theta(n^{\log_b a})$$

• By recursion tree, we get

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

• Let $f(n) = \Theta(n^p \log^k n)$, where $p, k \ge 0$.

• Case II: $p = \log_b a$.

Both terms have same growth rates.

$$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

• By recursion tree, we get

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

• Let $f(n) = \Theta(n^p \log^k n)$, where $p, k \ge 0$.

• Case III: $p > \log_b a$.

 $n^{\log_b a}$ is slower than f(n).

$$T(n) = \Theta(f(n))$$

Applying Master Method

• Merge Sort: $T(n) = 2T(n/2) + \Theta(n)$.

a = b = 2, p = 1, and k = 0. So $\log_b a = 1$, and $p = \log_b a$. Case II applies, giving us

 $T(n) = \Theta(n \log n)$

• Binary Search: $T(n) = T(n/2) + \Theta(1)$.

a = 1, b = 2, p = 0, and k = 0. So $\log_b a = 0$, and $p = \log_b a$. Case II applies, giving us

 $T(n) = \Theta(\log n)$

Applying Master Method

• $T(n) = 2T(n/2) + \Theta(n \log n)$.

a = b = 2, p = 1, and k = 1. $p = 1 = \log_b a$, and Case II applies.

$$T(n) = \Theta(n \log^2 n)$$

•
$$T(n) = 7T(n/2) + \Theta(n^2)$$
.

a = 7, b = 2, p = 2, and $\log_b 2 = \log 7 > 2$. Case I applied, and we get

$$T(n) = \Theta(n^{\log 7})$$

Applying Master Method

• $T(n) = 4T(n/2) + \Theta(n^2\sqrt{n})$.

a = 4, b = 2, p = 2.5, and k = 0. So $\log_b a = 2$, and $p > \log_b a$. Case III applies, giving us

 $T(n) = \Theta(n^2 \sqrt{n})$

•
$$T(n) = 2T(n/2) + \Theta\left(\frac{n}{\log n}\right)$$
.

a = 2, b = 2, p = 1. But k = -1, and so the Master Method does not apply!

Matrix Multiplication

- Multiply two $n \times n$ matrices: $C = A \times B$.
- Standard method: $C_{ij} = \sum_{k=1}^{n} A_{ik} \times B_{kj}$.
- This takes O(n) time per element of C, for the total cost of $O(n^3)$ to compute C.
- This method, known since Gauss's time, seems hard to improve.
- A very surprising discovery by Strassen (1969) broke the n^3 asymptotic barrier.
- Method is divide and conquer, with a clever choice of submatrices to multiply.

Divide and Conquer

• Let A, B be two $n \times n$ matrices. We want to compute the $n \times n$ matrix C = AB.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

• Entries a_{11} are $n/2 \times n/2$ submatrices.

Divide and Conquer

• The product matrix can be written as:

 $c_{11} = a_{11}b_{11} + a_{12}b_{21}$ $c_{12} = a_{11}b_{12} + a_{12}b_{22}$ $c_{21} = a_{21}b_{11} + a_{22}b_{21}$ $c_{22} = a_{21}b_{12} + a_{22}b_{22}$

- Recurrence for this D&C algorithm is $T(n) = 8T(n/2) + O(n^2)$.
- But this solves to $T(n) = O(n^3)!$

Strassen's Algorithm

• Strassen chose these submatrices to multiply:

$$P_{1} = (a_{11} + a_{22})(b_{11} + b_{22})$$

$$P_{2} = (a_{21} + a_{22})b_{11}$$

$$P_{3} = a_{11}(b_{12} - b_{22})$$

$$P_{4} = a_{22}(b_{21} - b_{11})$$

$$P_{5} = (a_{11} + a_{12})b_{22}$$

$$P_{6} = (a_{21} - a_{11})(b_{11} + b_{12})$$

$$P_{7} = (a_{12} - a_{22})(b_{21} + b_{22})$$

Strassen's Algorithm

• Then,

 $c_{11} = P_1 + P_4 - P_5 + P_7$ $c_{12} = P_3 + P_5$ $c_{21} = P_2 + P_4$ $c_{22} = P_1 + P_3 - P_2 + P_6$

• Recurrence for this algorithm is $T(n) = 7T(n/2) + O(n^2).$

Strassen's Algorithm

• The recurrence $T(n) = 7T(n/2) + O(n^2)$.

solves to $T(n) = O(n^{\log_2 7}) = O(n^{2.81})$.

- Ever since other researchers have tried other products to beat this bound.
- E.g. Victor Pan discovered a way to multiply two 70×70 matrices using 143,640 multiplications.
- Using more advanced methods, the current best algorithm for multiplying two $n \times n$ matrices runs in roughly $O(n^{2.376})$ time.

Quick Sort Algorithm

- Simple, fast, widely used in practice.
- Can be done "in place;" no extra space.
- General Form:
 - **1.** Partition: Divide into two subarrays, L and R; elements in L are all smaller than those in R.
 - **2. Recurse: Sort** L and R recursively.
 - **3.** Combine: Append R to the end of L.
- Partition (A, p, q, i) partitions A with pivot A[i].

Partition

• Partition returns the index of the cell containing the pivot in the reorganized array.

11	4	9	7	3	10	2	6	13	21	8
----	---	---	---	---	----	---	---	----	----	---

- Example: Partition (A, 0, 10, 3).
- \bullet 4, 3, 2, 6, 7, 11, 9, 10, 13, 21, 8

Quick Sort Algorithm

- QuickSort (A, p, q) sorts the subarray $A[p \cdots q]$.
- Initial call with p = 0 and q = n 1.

 $\begin{aligned} \mathbf{QuickSort}(A, p, q) \\ & \text{if} \quad p \geq q \quad \text{then return} \\ & i \leftarrow \quad \mathbf{random}(p, q) \\ & r \leftarrow \quad \mathbf{Partition}(A, p, q, i) \\ & \mathbf{Quicksort} \quad (A, p, r-1) \\ & \mathbf{Quicksort} \quad (A, r+1, q) \end{aligned}$

Analysis of QuickSort

- Lucky Case: Each Partition splits array in halves. We get $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$.
- Unlucky Case: Each partition gives unbalanced split. We get $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$.
- In worst case, Quick Sort as bad as BubbleSort. The worst-case occurs when the list is already sorted, and the last element chosen as pivot.
- But, while BubbleSort always performs poorly on certain inputs, because of random pivot, QuickSort has a chance of doing much better.

Analyzing QuickSort

- T(n): runtime of randomized QuickSort.
- Assume all elements are distinct.
- Recurrence for T(n) depends on two subproblem sizes, which depend on random partition element.
- If pivot is *i* smallest element, then exactly (i 1) items in *L* and (n i) in *R*. Call it an *i*-split.
- What's the probability of *i*-split?
- Each element equally likely to be chosen as pivot, so the answer is $\frac{1}{n}$.

Solving the Recurrence

$$T(n) = \sum_{i=1}^{n} \frac{1}{n} (\text{runtime with } i\text{-split}) + n + 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + n + 1$$

$$= \frac{2}{n} \sum_{i=1}^{n} T(i-1) + n + 1$$

$$= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + n + 1$$

Solving the Recurrence

• Multiply both sides by n. Subtract the same formula for n-1.

$$nT(n) = 2\sum_{i=0}^{n-1} T(i) + n^2 + n$$
$$(n-1)T(n-1) = 2\sum_{i=0}^{n-2} T(i) + (n-1)^2 + (n-1)$$

Solving the Recurrence

$$nT(n) = (n+1)T(n-1) + 2n$$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2}{n+1}$$

$$= \frac{T(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n+1}$$

$$i$$

$$= \frac{T(2)}{3} + \sum_{i=3}^{n} \frac{2}{i}$$

$$= \Theta(1) + 2\ln n$$

• Thus,
$$T(n) \le 2(n+1) \ln n$$
.

Subhash Suri

Median Finding

- Median of n items is the item with rank n/2.
- Rank of an item is its position in the list if the items were sorted in ascending order.
- Rank *i* item also called *i*th statistic.
- **Example:** $\{16, 5, 30, 8, 55\}$.
- Popular statistics are quantiles: items of rank n/4, n/2, 3n/4.
- SAT/GRE: which score value forms 95th percentile? Item of rank 0.95n.

Median Finding

- After spending $O(n \log n)$ time on sorting, any rank can be found in O(n) time.
- Can we find a rank without sorting?

Min and Max Finding

• We can find items of rank 1 or n in O(n) time.

 $\begin{array}{l} \text{MINIMUM } (A) \\ \min \leftarrow A[0] \\ \textbf{for } i = 1 \ \textbf{to } n-1 \ \textbf{do} \\ \quad \textbf{if } \min > A[i] \ \textbf{then } \min \leftarrow A[i]; \\ \textbf{return } \min \end{array}$

- The algorithm MINIMUM finds the smallest (rank 1) item in O(n) time.
- A similar algorithm finds maximum item.

Both Min and Max

• Find both min and max using 3n/2 comparisons.

MIN-MAX (A)

if |A| = 1, then return min = max = A[0]Divide A into two equal subsets A_1, A_2 $(min_1, max_1) :=$ MIN-MAX (A_1) $(min_2, max_2) :=$ MIN-MAX (A_2) if min_1 \leq min_2 then return min = min_1 else return min = min_2 if max_1 \geq max_2 then return max = max_1 else return max = max_2

Both Min and Max

- The recurrence for this algorithm is T(n) = 2T(n/2) + 2.
- Verify this solves to T(n) = 3n/2 2.

Finding Item of Rank k

- Direct extension of min/max finding to rank kitem will take $\Theta(kn)$ time.
- In particular, finding the median will take $\Omega(n^2)$ time, which is worse than sorting.
- Median can be used as a perfect pivot for (deterministic) quick sort.
- But only if found faster than sorting itself.
- We present a linear time algorithm for selecting rank k item [BFPRT 1973].

Linear Time Selection

SELECT (k)

- **1.** Divide items into $\lfloor n/5 \rfloor$ groups of 5 each.
- 2. Find the median of each group (using sorting).
- **3.** Recursively find median of $\lfloor n/5 \rfloor$ group medians.
- 4. Partition using median-of-median as pivot.
- **5.** Let low side have s, and high side have n s items.
- 6. If $k \le s$, call SELECT(k) on low side; otherwise, call SELECT(k s) on high side.

Illustration

- Divide items into $\lfloor n/5 \rfloor$ groups of 5 items each.
- Find the median of each group (using sorting).
- Use SELECT to recursively find the median of the $\lfloor n/5 \rfloor$ group medians.

Illustration

- Partition the input by using this median-of-median as pivot.
- Suppose low side of the partition has s elements, and high side has n s elements.
- If $k \le s$, recursively call SELECT(k) on low side; otherwise, recursively call SELECT(k s) on high side.

Recurrence

- For runtime analysis, we bound the number of items $\geq x$, the median of medians.
- At least half the medians are $\geq x$.
- At least half of the $\lfloor n/5 \rfloor$ groups contribute at least 3 items to the high side. (Only the last group can contribute fewer.
- Thus, items $\geq x$ are at least

$$3\left(\frac{n}{10} - 2\right) \ge \frac{3n}{10} - 6.$$

• Similarly, items $\leq x$ is also 3n/10 - 6.

Recurrence

- Recursive call to SELECT is on size $\leq 7n/10 + 6$.
- Let T(n) = worst-case complexity of SELECT.
- Group medians, and partition take O(n) time.
- Step 3 has a recursive call T(n/5), and Step 5 has a recursive call T(7n/10+6).
- Thus, we have the recurrence:

$$T(n) \leq T(\frac{n}{5}) + T(\frac{7n}{10} + 6) + O(n).$$

• Assume T(n) = O(1) for small $n \le 80$.

Recurrence

$$T(n) \leq T(\frac{n}{5}) + T(\frac{7n}{10} + 6) + O(n)$$

• Inductively verify that $T(n) \leq cn$ for some constant c.

$$T(n) \leq c(n/5) + c(7n/10 + 6) + O(n)$$

$$\leq 9cn/10 + 6c + O(n)$$

$$\leq cn$$

In above, choose c so that c(n/10 − 6) beats the function O(n) for all n.

Convex Hulls

- **1.** Convex hulls are to CG what sorting is to discrete algorithms.
- 2. First order shape approximation. Invariant under rotation and translation.

3. Rubber-band analogy.

Convex Hulls

- Many aplications in robotics, shape analysis, line fitting etc.
- Example: if $CH(P_1) \cap CH(P_2) = \emptyset$, then objects P_1 and P_2 do not intersect.
- Convex Hull Problem:
 Given a finite set of points S, compute its convex hull CH(S). (Ordered vertex list.)

Divide and Conquer

- Sort points by X-coordinates.
- Divide points into equal halves A and B.
- Recursively compute CH(A) and CH(B).
- Merge CH(A) and CH(B) to obtain CH(S).

Merging Convex Hulls

Lower Tangent

- a =rightmost point of CH(A).
- b =leftmost point of CH(B).
- while ab not lower tangent of CH(A) and CH(B) do
 - 1. while ab not lower tangent to CH(A)set a = a - 1 (move a CW);
 - 2. while ab not lower tangent to CH(B)set b = b + 1 (move b CCW);
- Return *ab*

Tangent Finding

Analysis of D&C

- Initial sorting takes $O(N \log N)$ time.
- Recurrence T(N) = 2T(N/2) + O(N)
- O(N) for merging (computing tangents).
- Recurrence solves to $T(N) = O(N \log N)$.