## Divide and Conquer

- A general paradigm for algorithm design; inspired by emperors and colonizers.
- Three-step process:

1. Divide the problem into smaller problems.
2. Conquer by solving these problems.
3. Combine these results together.

- Examples: Binary Search, Merge sort, Quicksort etc. Matrix multiplication, Selection, Convex Hulls.


## Binary Search

- Search for $x$ in a sorted array $A$.

Binary-Search $(A, p, q, x)$

1. if $p>q$ return -1 ;
2. $r=\lfloor(p+q) / 2\rfloor$
3. if $x=A[r]$ return $r$
4. else if $x<A[r]$ Binary-Search $(A, p, r, x)$
5. else Binary-Search $(A, r+1, q, x)$

- The initial call is Binary-Search $(A, 1, n, x)$.


## Binary Search

- Let $T(n)$ denote the worst-case time to binary search in an array of length $n$.
- Recurrence is $T(n)=T(n / 2)+O(1)$.
- $T(n)=O(\log n)$.


## Merge Sort

- Sort an unordered array of numbers $A$.

Merge-Sort ( $A, p, q$ )

1. if $p \geq q$ return $A$;
2. $r=\lfloor(p+q) / 2\rfloor$
3. Merge-Sort $(A, p, r)$
4. Merge-Sort $(A, r+1, q)$
5. MERGE $(A, p, q, r)$

- The initial call is Merge-Sort $(A, 1, n)$.


## Merge Sort

- Let $T(n)$ denote the worst-case time to merge sort an array of length $n$.
- Recurrence is $T(n)=2 T(n / 2)+O(n)$.
- $T(n)=O(n \log n)$.


## Merge Sort: Illustration



## Multiplying Numbers

- We want to multiply two $n$-bit numbers. Cost is number of elementary bit steps.
- Grade school method has $\Theta\left(n^{2}\right)$ cost.: XXXXXXXX


XXXXXXXXX
XXXXXXXXXXXXXXXX

- $n^{2}$ multiplies, $n^{2} / 2$ additions, plus some carries.


## Why Bother?

- Doesn't hardware provide multiply? It is fast, optimized, and free. So, why bother?
- True for numbers that fit in one computer word. But what if numbers are very large.
- Cryptography (encryption, digital signatures) uses big number "keys." Typically 256 to 1024 bits long!
- $n^{2}$ multiplication too slow for such large numbers.
- Karatsuba's (1962) divide-and-conquer scheme multiplies two $n$ bit numbers in $O\left(n^{1.59}\right)$ steps.


## Karatsuba's Algorithm

- Let $X$ and $Y$ be two $n$-bit numbers. Write

$$
\begin{aligned}
X & =a b \\
Y & =c d
\end{aligned}
$$

- $a, b, c, d$ are $n / 2$ bit numbers. (Assume $n=2^{k}$.)

$$
\begin{aligned}
X Y & =\left(a 2^{n / 2}+b\right)\left(c 2^{n / 2}+d\right) \\
& =a c 2^{n}+(a d+b c) 2^{n / 2}+b d
\end{aligned}
$$

## An Example

- $X=4729 \quad Y=1326$.
- $a=47 ; b=29 \quad c=13 ; d=26$.
- $a c=47 * 13=611$
- $a d=47 * 26=1222$
- $b c=29 * 13=377$
- $b d=29 * 26=754$
- $X Y=6110000+159900+754$
- $X Y=6270654$


## Karatsuba's Algorithm

- This is $\mathbf{D} \& \mathrm{C}$ : Solve 4 problems, each of size $n / 2$; then perform $O(n)$ shifts to multiply the terms by $2^{n}$ and $2^{n / 2}$.
- We can write the recurrence as

$$
T(n)=4 T(n / 2)+O(n)
$$

- But this solves to $T(n)=O\left(n^{2}\right)$ !


## Karatsuba's Algorithm

- $X Y=a c 2^{n}+(a d+b c) 2^{n / 2}+b d$.
- Note that $(a-b)(c-d)=(a c+b d)-(a d+b c)$.
- Solve 3 subproblems: $a c, \quad b d, \quad(a-b)(c-d)$.
- We can get all the terms needed for $X Y$ by addition and subtraction!
- The recurrence for this algorithm is

$$
T(n)=3 T(n / 2)+O(n)=O\left(n^{\log _{2} 3}\right)
$$

- The complexity is $O\left(n^{\log _{2} 3}\right) \approx O\left(n^{1.59}\right)$.


## Recurrence Solving: Review

- $T(n)=2 T(n / 2)+c n$, with $T(1)=1$.
- By term expansion.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+c n \\
& =2\left(2 T\left(n / 2^{2}\right)+c n / 2\right)+c n=2^{2} T\left(n / 2^{2}\right)+2 c n \\
& =2^{2}\left(2 T\left(n / 2^{3}\right)+c n / 2^{2}\right)+2 c n=2^{3} T\left(n / 2^{3}\right)+3 c n \\
& : \\
& =2^{i} T\left(n / 2^{i}\right)+i c n
\end{aligned}
$$

- Set $i=\log _{2} n$. Use $T(1)=1$.
- We get $T(n)=n+c n(\log n)=O(n \log n)$.


## The Tree View

- $T(n)=2 T(n / 2)+c n$, with $T(1)=1$.

Total Cost


- $\#$ leaves $=n ; \#$ levels $=\log n$.
- Work per level is $O(n)$, so total is $O(n \log n)$.


## Solving By Induction

- Recurrence: $T(n)=2 T(n / 2)+c n$.
- Base case: $T(1)=1$.
- Claim: $T(n)=c n \log n+c n$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+c n \\
& =2(c(n / 2) \log (n / 2)+c n / 2)+c n \\
& =c n(\log n-1+1)+c n \\
& =c n \log n+c n
\end{aligned}
$$

## More Examples

- $T(n)=4 T(n / 2)+c n, \quad T(1)=1$.

Level

0

1

2

3
i

## Work

cn

$$
4 \mathrm{cn} / 2=2 \mathrm{cn}
$$

$$
16 \mathrm{cn} / 4=4 \mathrm{cn}
$$

$$
\begin{aligned}
& 4^{i} \mathrm{cn} / 2^{i} \\
& \quad=2^{i} \mathrm{cn}
\end{aligned}
$$

## More Examples



- Stops when $n / 2^{i}=1$, and $i=\log n$.
- Recurrence solves to $T(n)=O\left(n^{2}\right)$.


## By Term Expansion

$$
\begin{aligned}
T(n) & =4 T(n / 2)+c n \\
& =4^{2} T\left(n / 2^{2}\right)+2 c n+c n \\
& =4^{3} T\left(n / 2^{3}\right)+2^{2} c n+2 c n+c n \\
& : \\
& =4^{i} T\left(n / 2^{i}\right)+c n\left(2^{i-1}+2^{i-2}+\ldots+2+1\right) \\
& =4^{i} T\left(n / 2^{i}\right)+2^{i} c n
\end{aligned}
$$

- Terminates when $2^{i}=n$, or $i=\log n$.
- $4^{i}=2^{i} \times 2^{i}=n \times n=n^{2}$.
- $T(n)=n^{2}+c n^{2}=O\left(n^{2}\right)$.


## More Examples

$$
\begin{aligned}
T(n) & =2 T(n / 4)+\sqrt{n}, \quad T(1)=1 . \\
T(n) & =2 T(n / 4)+\sqrt{n} \\
& =2\left(2 T\left(n / 4^{2}\right)+\sqrt{n / 4}\right)+\sqrt{n} \\
& =2^{2} T\left(n / 4^{2}\right)+2 \sqrt{n} \\
& =2^{2}\left(2 T\left(n / 4^{3}\right)+\sqrt{n / 4^{2}}\right)+2 \sqrt{n} \\
& =2^{3} T\left(n / 4^{3}\right)+3 \sqrt{n} \\
& : \\
& =2^{i} T\left(n / 4^{i}\right)+i \sqrt{n}
\end{aligned}
$$

## More Examples

- Terminates when $4^{i}=n$, or when

$$
\begin{aligned}
i=\log _{4} n=\frac{\log _{2} n}{\log _{2} 4} & =\frac{1}{2} \log n \\
T(n) & =2^{\frac{1}{2} \log n}+\sqrt{n} \log _{4} n \\
& =\sqrt{n}\left(\log _{4} n+1\right) \\
& =O(\sqrt{n} \log n)
\end{aligned}
$$

## Master Method

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Total Cost


## Master Method



- \# children multiply by factor $a$ at each level.
- Number of leaves is $a^{\log _{b} n}=n^{\log _{b} a}$. Verify by taking logarithm on both sides.


## Master Method

- By recursion tree, we get

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

- Let $f(n)=\Theta\left(n^{p} \log ^{k} n\right)$, where $p, k \geq 0$.
- Important: $a \geq 1$ and $b>1$ are constants.
- Case I: $p<\log _{b} a$. $n^{\log _{b} a}$ grows faster than $f(n)$.

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

## Master Method

- By recursion tree, we get

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

- Let $f(n)=\Theta\left(n^{p} \log ^{k} n\right)$, where $p, k \geq 0$.
- Case II: $p=\log _{b} a$.

Both terms have same growth rates.

$$
T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)
$$

## Master Method

- By recursion tree, we get

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

- Let $f(n)=\Theta\left(n^{p} \log ^{k} n\right)$, where $p, k \geq 0$.
- Case III: $p>\log _{b} a$.
$n^{\log _{b} a}$ is slower than $f(n)$.

$$
T(n)=\Theta(f(n))
$$

## Applying Master Method

- Merge Sort: $T(n)=2 T(n / 2)+\Theta(n)$.
$a=b=2, p=1$, and $k=0$. So $\log _{b} a=1$, and $p=\log _{b} a$. Case II applies, giving us

$$
T(n)=\Theta(n \log n)
$$

- Binary Search: $T(n)=T(n / 2)+\Theta(1)$.
$a=1, b=2, p=0$, and $k=0$. So $\log _{b} a=0$, and $p=\log _{b} a$. Case II applies, giving us

$$
T(n)=\Theta(\log n)
$$

## Applying Master Method

- $T(n)=2 T(n / 2)+\Theta(n \log n)$.
$a=b=2, p=1$, and $k=1 . p=1=\log _{b} a$, and Case II applies.

$$
T(n)=\Theta\left(n \log ^{2} n\right)
$$

- $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$.
$a=7, b=2, p=2$, and $\log _{b} 2=\log 7>2$. Case I applied, and we get

$$
T(n)=\Theta\left(n^{\log 7}\right)
$$

## Applying Master Method

- $T(n)=4 T(n / 2)+\Theta\left(n^{2} \sqrt{n}\right)$.
$a=4, b=2, p=2.5$, and $k=0$. So $\log _{b} a=2$, and
$p>\log _{b} a$. Case III applies, giving us

$$
T(n)=\Theta\left(n^{2} \sqrt{n}\right)
$$

- $T(n)=2 T(n / 2)+\Theta\left(\frac{n}{\log n}\right)$.
$a=2, b=2, p=1$. But $k=-1$, and so the Master Method does not apply!


## Matrix Multiplication

- Multiply two $n \times n$ matrices: $C=A \times B$.
- Standard method: $C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}$.
- This takes $O(n)$ time per element of $C$, for the total cost of $O\left(n^{3}\right)$ to compute $C$.
- This method, known since Gauss's time, seems hard to improve.
- A very surprising discovery by Strassen (1969) broke the $n^{3}$ asymptotic barrier.
- Method is divide and conquer, with a clever choice of submatrices to multiply.


## Divide and Conquer

- Let $A, B$ be two $n \times n$ matrices. We want to compute the $n \times n$ matrix $C=A B$.

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
C=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
\end{gathered}
$$

- Entries $a_{11}$ are $n / 2 \times n / 2$ submatrices.


## Divide and Conquer

- The product matrix can be written as:

$$
\begin{aligned}
& c_{11}=a_{11} b_{11}+a_{12} b_{21} \\
& c_{12}=a_{11} b_{12}+a_{12} b_{22} \\
& c_{21}=a_{21} b_{11}+a_{22} b_{21} \\
& c_{22}=a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

- Recurrence for this $\mathbf{D} \& \mathrm{C}$ algorithm is $T(n)=8 T(n / 2)+O\left(n^{2}\right)$.
- But this solves to $T(n)=O\left(n^{3}\right)$ !


## Strassen's Algorithm

- Strassen chose these submatrices to multiply:

$$
\begin{aligned}
& P_{1}=\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right) \\
& P_{2}=\left(a_{21}+a_{22}\right) b_{11} \\
& P_{3}=a_{11}\left(b_{12}-b_{22}\right) \\
& P_{4}=a_{22}\left(b_{21}-b_{11}\right) \\
& P_{5}=\left(a_{11}+a_{12}\right) b_{22} \\
& P_{6}=\left(a_{21}-a_{11}\right)\left(b_{11}+b_{12}\right) \\
& P_{7}=\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right)
\end{aligned}
$$

## Strassen's Algorithm

- Then,

$$
\begin{aligned}
& c_{11}=P_{1}+P_{4}-P_{5}+P_{7} \\
& c_{12}=P_{3}+P_{5} \\
& c_{21}=P_{2}+P_{4} \\
& c_{22}=P_{1}+P_{3}-P_{2}+P_{6}
\end{aligned}
$$

- Recurrence for this algorithm is $T(n)=7 T(n / 2)+O\left(n^{2}\right)$.


## Strassen's Algorithm

- The recurrence $T(n)=7 T(n / 2)+O\left(n^{2}\right)$.
solves to $T(n)=O\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)$.
- Ever since other researchers have tried other products to beat this bound.
- E.g. Victor Pan discovered a way to multiply two $70 \times 70$ matrices using 143, 640 multiplications.
- Using more advanced methods, the current best algorithm for multiplying two $n \times n$ matrices runs in roughly $O\left(n^{2.376}\right)$ time.


## Quick Sort Algorithm

- Simple, fast, widely used in practice.
- Can be done "in place;" no extra space.
- General Form:

1. Partition: Divide into two subarrays, $L$ and $R$; elements in $L$ are all smaller than those in $R$.
2. Recurse: Sort $L$ and $R$ recursively.
3. Combine: Append $R$ to the end of $L$.

- Partition $(A, p, q, i)$ partitions $A$ with pivot $A[i]$.


## Partition

- Partition returns the index of the cell containing the pivot in the reorganized array.

| 11 | 4 | 9 | 7 | 3 | 10 | 2 | 6 | 13 | 21 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Example: Partition ( $A, 0,10,3$ ).
- $4,3,2,6,7,11,9,10,13,21,8$


## Quick Sort Algorithm

- QuickSort $(A, p, q)$ sorts the subarray $A[p \cdots q]$.
- Initial call with $p=0$ and $q=n-1$.

QuickSort $(A, p, q)$
if $p \geq q$ then return
$i \leftarrow \operatorname{random}(p, q)$
$r \leftarrow \operatorname{Partition}(A, p, q, i)$
Quicksort ( $A, p, r-1$ )
Quicksort $(A, r+1, q)$

## Analysis of QuickSort

- Lucky Case: Each Partition splits array in halves. We get $T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)$.
- Unlucky Case: Each partition gives unbalanced split. We get $T(n)=T(n-1)+\Theta(n)=\Theta\left(n^{2}\right)$.
- In worst case, Quick Sort as bad as BubbleSort. The worst-case occurs when the list is already sorted, and the last element chosen as pivot.
- But, while BubbleSort always performs poorly on certain inputs, because of random pivot, QuickSort has a chance of doing much better.


## Analyzing QuickSort

- $T(n)$ : runtime of randomized QuickSort.
- Assume all elements are distinct.
- Recurrence for $T(n)$ depends on two subproblem sizes, which depend on random partition element.
- If pivot is $i$ smallest element, then exactly $(i-1)$ items in $L$ and $(n-i)$ in $R$. Call it an $i$-split.
- What's the probability of $i$-split?
- Each element equally likely to be chosen as pivot, so the answer is $\frac{1}{n}$.


## Solving the Recurrence

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{n} \frac{1}{n}(\text { runtime with } i \text {-split })+n+1 \\
& =\frac{1}{n} \sum_{i=1}^{n}(T(i-1)+T(n-i))+n+1 \\
& =\frac{2}{n} \sum_{i=1}^{n} T(i-1)+n+1 \\
& =\frac{2}{n} \sum_{i=0}^{n-1} T(i)+n+1
\end{aligned}
$$

## Solving the Recurrence

- Multiply both sides by $n$. Subtract the same formula for $n-1$.

$$
\begin{aligned}
n T(n) & =2 \sum_{i=0}^{n-1} T(i)+n^{2}+n \\
(n-1) T(n-1) & =2 \sum_{i=0}^{n-2} T(i)+(n-1)^{2}+(n-1)
\end{aligned}
$$

## Solving the Recurrence

$$
\begin{aligned}
n T(n) & =(n+1) T(n-1)+2 n \\
\frac{T(n)}{n+1} & =\frac{T(n-1)}{n}+\frac{2}{n+1} \\
& =\frac{T(n-2)}{n-1}+\frac{2}{n}+\frac{2}{n+1} \\
& : \\
& =\frac{T(2)}{3}+\sum_{i=3}^{n} \frac{2}{i} \\
& =\Theta(1)+2 \ln n
\end{aligned}
$$

- Thus, $T(n) \leq 2(n+1) \ln n$.


## Median Finding

- Median of $n$ items is the item with rank $n / 2$.
- Rank of an item is its position in the list if the items were sorted in ascending order.
- Rank $i$ item also called $i$ th statistic.
- Example: $\{16,5,30,8,55\}$.
- Popular statistics are quantiles: items of rank $n / 4, n / 2,3 n / 4$.
- SAT/GRE: which score value forms 95 th percentile? Item of rank $0.95 n$.


## Median Finding

- After spending $O(n \log n)$ time on sorting, any rank can be found in $O(n)$ time.
- Can we find a rank without sorting?


## Min and Max Finding

- We can find items of rank 1 or $n$ in $O(n)$ time.
minimum $(A)$

$$
\begin{aligned}
& \min \leftarrow A[0] \\
& \text { for } i=1 \text { to } n-1 \text { do } \\
& \quad \text { if min }>A[i] \text { then } \min \leftarrow A[i] \text {; } \\
& \text { return min }
\end{aligned}
$$

- The algorithm minimum finds the smallest (rank 1) item in $O(n)$ time.
- A similar algorithm finds maximum item.


## Both Min and Max

- Find both min and max using $3 n / 2$ comparisons. MIN-MAX ( $A$ )
if $|A|=1$, then return $\min =\max =A[0]$
Divide $A$ into two equal subsets $A_{1}, A_{2}$ $\left(\min _{1}, \max _{1}\right):=$ MIN-MAX $\left(A_{1}\right)$ $\left(\min _{2}, \max _{2}\right):=$ MIN-MAX $\left(A_{2}\right)$ if $\min _{1} \leq \min _{2}$ then return $\min =\min _{1}$ else return $\min =\min _{2}$ if $\max _{1} \geq \max _{2}$ then return $\max =\max _{1}$
else return $\max =\max _{2}$


## Both Min and Max

- The recurrence for this algorithm is $T(n)=2 T(n / 2)+2$.
- Verify this solves to $T(n)=3 n / 2-2$.


## Finding Item of Rank $k$

- Direct extension of min/max finding to rank $k$ item will take $\Theta(k n)$ time.
- In particular, finding the median will take $\Omega\left(n^{2}\right)$ time, which is worse than sorting.
- Median can be used as a perfect pivot for (deterministic) quick sort.
- But only if found faster than sorting itself.
- We present a linear time algorithm for selecting rank $k$ item [BFPRT 1973].


## Linear Time Selection

## SELECT ( $k$ )

1. Divide items into $\lfloor n / 5\rfloor$ groups of 5 each.
2. Find the median of each group (using sorting).
3. Recursively find median of $\lfloor n / 5\rfloor$ group medians.
4. Partition using median-of-median as pivot.
5. Let low side have $s$, and high side have $n-s$ items.
6. If $k \leq s$, call $\operatorname{SELECT}(k)$ on low side; otherwise, call $\operatorname{SELECT}(k-s)$ on high side.

## Illustration

- Divide items into $\lfloor n / 5\rfloor$ groups of 5 items each.
- Find the median of each group (using sorting).
- Use SELECT to recursively find the median of the $\lfloor n / 5\rfloor$ group medians.



## Illustration

- Partition the input by using this median-of-median as pivot.
- Suppose low side of the partition has $s$ elements, and high side has $n-s$ elements.
- If $k \leq s$, recursively call $\operatorname{SELECT}(k)$ on low side; otherwise, recursively call $\operatorname{SELECT}(k-s)$ on high side.



## Recurrence

- For runtime analysis, we bound the number of items $\geq x$, the median of medians.
- At least half the medians are $\geq x$.
- At least half of the $\lfloor n / 5\rfloor$ groups contribute at least 3 items to the high side. (Only the last group can contribute fewer.
- Thus, items $\geq x$ are at least

$$
3\left(\frac{n}{10}-2\right) \geq \frac{3 n}{10}-6
$$

- Similarly, items $\leq x$ is also $3 n / 10-6$.


## Recurrence

- Recursive call to SELECT is on size $\leq 7 n / 10+6$.
- Let $T(n)=$ worst-case complexity of SELECT.
- Group medians, and partition take $O(n)$ time.
- Step 3 has a recursive call $T(n / 5)$, and Step 5 has a recursive call $T(7 n / 10+6)$.
- Thus, we have the recurrence:

$$
T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}+6\right)+O(n)
$$

- Assume $T(n)=O(1)$ for small $n \leq 80$.


## Recurrence

$$
T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}+6\right)+O(n)
$$

- Inductively verify that $T(n) \leq c n$ for some constant $c$.

$$
\begin{aligned}
T(n) & \leq c(n / 5)+c(7 n / 10+6)+O(n) \\
& \leq 9 c n / 10+6 c+O(n) \\
& \leq c n
\end{aligned}
$$

- In above, choose $c$ so that $c(n / 10-6)$ beats the function $O(n)$ for all $n$.


## Convex Hulls

1. Convex hulls are to CG what sorting is to discrete algorithms.
2. First order shape approximation. Invariant under rotation and translation.

3. Rubber-band analogy.

## Convex Hulls

- Many aplications in robotics, shape analysis, line fitting etc.
- Example: if $C H\left(P_{1}\right) \cap C H\left(P_{2}\right)=\emptyset$, then objects $P_{1}$ and $P_{2}$ do not intersect.
- Convex Hull Problem: Given a finite set of points $S$, compute its convex hull $C H(S)$. (Ordered vertex list.)


## Divide and Conquer



- Sort points by $X$-coordinates.
- Divide points into equal halves $A$ and $B$.
- Recursively compute $C H(A)$ and $C H(B)$.
- Merge $C H(A)$ and $C H(B)$ to obtain $C H(S)$.


## Merging Convex Hulls

## Lower Tangent

- $a=$ rightmost point of $C H(A)$.
- $b=$ leftmost point of $C H(B)$.
- while $a b$ not lower tangent of $C H(A)$ and $C H(B)$ do

1. while $a b$ not lower tangent to $C H(A)$ set $a=a-1$ (move $a \mathbf{C W}$ );
2. while $a b$ not lower tangent to $C H(B)$ set $b=b+1$ (move $b$ CCW);

- Return $a b$


## Tangent Finding



## Analysis of D\&C



- Initial sorting takes $O(N \log N)$ time.
- Recurrence $T(N)=2 T(N / 2)+O(N)$
- $O(N)$ for merging (computing tangents).
- Recurrence solves to $T(N)=O(N \log N)$.

