Dynamic Programming

e A powerful paradigm for algorithm design.

e Often leads to elegant and efficient algorithms
when greedy or divide-and-conquer don’t work.

e DP also breaks a problem into subproblems, but
subproblems are not independent.

e DP tabulates solutions of subproblems to avoid
solving them again.

Subhash Suri UC Santa Barbara

Dynamic Programming

e Typically applied to optimization problems:
many feasible solutions; find one of optimal value.

e Key is the principle of optimality: solution
composed of optimal subproblem solutions.

e Example: Matrix Chain Product.

e A sequence (My, Ms,..., M,) of n matrices to be
multiplied.

e Adjacent matrices must agree on dim.

Subhash Suri UC Santa Barbara

Matrix Product

Matrix-Multiply (A, B)

1. Let A be p xq; let B be g xr.

2. If dim of A and B don’t agree, error.
3. fori:=1top

4 for j=1tor

5. Cli, 7] =0

6 for £k =1 to q

7 Cli,j] += Ali,k] x Blk,j]

8

. return C.

e Cost of multiplying these matrices is p X ¢ X r.

Subhash Suri UC Santa Barbara

Matrix Chain

e Consider 4 matrices: My, My, M3, M,.

¢ We can compute the product in many different
ways, depending on how we parenthesize.

(M1 (M2(M3My)))
(M ((M2M3)My))
(M1 M2)(M3My))
(((M1M2)Mz)My)

e Different multiplication orders can lead to very
different total costs.

Subhash Suri UC Santa Barbara

Matrix Chain

e Example: M; = 10 x 100, My = 100 x 5, M3 = 5 x 50.

e Parentheses order ((M;Ms)M;s) has cost
10-100 -5+ 10-5-50 = 7500.

e Parentheses order (M;(M>M;3)) has cost
100-5-50+ 10 - 100 - 50 = 75, 000!

Subhash Suri UC Santa Barbara

Matrix Chain

e Input: a chain (M, Ms,..., M,) of n matrices.
e Matrix M, has size p,_1 X p;, where 1 =1,2,..., n.

e Find optimal parentheses order to minimize cost
of chain multiplying M;’s.

e Checking all possible ways of parenthesizing is
infeasible.

e There are roughly (27?) ways to put parentheses,

which is of the order of 4™!

Subhash Suri UC Santa Barbara

Principle of Optimality

e Consider computing M; X My ... X M,,.

e Compute M; = M; x ... X My, in some order.
e Compute My 1, = Mgy X ... x M,, iIn some
order.

e Finally, compute M;, = M X My41n.

e Principle of Optimality: To optimize M, ,, we
must optimize M, ; and M4, , too.

Subhash Suri UC Santa Barbara

Recursive Solution

e A subproblem is subchain M;, M; ..., M;.
e m|i,j] = optimal cost to multiply M, ..., M,.

e Use principle of optimality to determine m/|i, j]
recursively.

e Clearly, m|i,7] = 0, for all 1.
e If an algorithm computes M;, M; ..., M; as
(Mi, ce ,Mk) X (Mk+1, e ,Mj), then

mli,j] = mli, k] + mlk+1,7] + pi—1pep;

Subhash Suri UC Santa Barbara

Recursive Solution

mli,j| = mli,k] + mlk+1,7] + pi—1pkp;

¢ We don’t know which £ the optimal algorithm
will use.

e But £ must be between : and ; — 1.

e Thus, we can write:

mfi,j] = min {mfi,k] + mlk+ 15 + pioipips)

Subhash Suri UC Santa Barbara

The DP Approach

e Thus, we wish to solve:

mlij) = min {mli.k] + mlk+1,j] + piipxps}

e A direct recursive solution is exponential: brute
force checking of all parentheses orders.
e¢ What is the recurrence? What does it solve to?

e DP’s insight: only a small number of
subproblems actually occur, one per choice of 1, j.

Subhash Suri UC Santa Barbara

The DP Approach

e Naive recursion is exponential because it solves
the same subproblem over and over again in
different branches of recursion.

e DP avoids this wasted computation by organizing
the subproblems differently: bottom up.

e Start with ml:,i| = 0, for all i.

e Next, we determine mli,i + 1], and then mli,i + 2|,
and so on.

Subhash Suri UC Santa Barbara

The Algorithm

e Input: [pg,p1,...,pn] the dimension vector of the
matrix chain.

e Output: mli, j|, the optimal cost of multiplying
each subchain M; x ... x Mj.

e Array s|i, j| stores the optimal k for each
subchain.

Subhash Suri UC Santa Barbara

The Algorithm

Matrix-Chain-Multiply (p)

1. Set m|i,i] =0, for i =1,2,... n.

2. Set d=1.

3. For all 7,7 such that ;j — i = d, compute

mli,j] = min {mi, k] +mlk+1,j] + picapips)

Set sli, j] = k*, where k* is the choice that gives
min value in above expression.

4. If d < n, increment d and repeat Step 3.

Subhash Suri UC Santa Barbara

Illustration

m array

M3

M4

M1=30x 3¢
M2=35x 1t

M3=15x5
M4=5x10
M5=10x 2C
M6=20x 2

Subhash Suri

UC Santa Barbara

Illustration

e Computing m|2, 5].

[m[2,2] +m[3,5] + pipaps = 0+ 2500 + 35.15.20 = 13000
min ¢ m|2, 3] +m[4, 5] 4+ p1psps = 2625 4+ 1000 + 35.5.20 = 7125
| m[2,4] + m[5,5] + pipaps = 4375 + 0 + 35.10.20 = 11375

Subhash Suri UC Santa Barbara

Finishing Up

e The algorithm clearly takes O(n?) time.
e The m matrix only outputs the cost.

e The parentheses order from the s matrix.

Matrix-Chain (M, s, i, j)

1. if j > i then

2. X < Matrix-Chain (A, s, i, s[t, j])

3. Y <« Matrix-Chain (A4, s, s[i,j] + 1,7)
4. return X xY

Subhash Suri UC Santa Barbara

Longest Common Subsequence

e Comnsider a string of characters: X = ABCBDAB.

e A subsequence is obtained by deleting some (any)
characters of X.

e E.g. ABBB is a subsequence of X, as is ABD. But
AABB is not a subsequence.

o Let X = (z1,22,...,2,,) be a sequence.

o / = (z1,%2,...,2) is subseq. of X if there is an
index sequence (i1,...,i) s.t. z; =x; , for
j=1,...,k.

e Index sequence for ABBB is (1,2,4,7).

Subhash Suri UC Santa Barbara

Longest Common Subsequence

e Given two sequences X and Y, find their longest
common subsequence.

o If X = (A,B,C,B,D,A,B) and Y = (B,D,C, A, B, A),
then (B,(C, A) is a common sequence, but not LCS.

e (B,D,A,B) is a LCS.
e How do we find an LCS?

e Can some form of Greedy work? Suggestions?

Subhash Suri UC Santa Barbara

Trial Ideas

e Greedy-1: Scan X. Find the first letter matching
y1; take it and continue.

e Problem: only matches prefix substrings of Y.

e Greedy-2: Find the most frequent letters of X; or
sort the letters by their frequency. Try to match
in frequency order.

e Problem: Frequency can be irrelevant. E.g.
suppose all letters of X are distinct.

Subhash Suri UC Santa Barbara

Properties

e 2" subsequences of X.
e LCS obeys the principle of optimality.
o Let X, = (x1,22,...,2;) be the i-long prefix of X.

e Examples: if X = (A,B,C,B,D, A, B), then
X2 — (A,B), X5 — (A,B,C,B,D).

Subhash Suri UC Santa Barbara

LCS Structure

e Suppose Z = (z1,29,...,2;) is a LCS of X and Y.
Then,

1. If »,,, = vy,,, then 2z, = z,, = v,, and
Zk—l — LCS(Xm—hYn—l)°

2. If z,, # y,, then z; # x,, implies
Z =LCS(Xpm_1,Y).

3. If x,,, # y,, then z; # y,, implies
Z =LCS(X,Y, 1).

Subhash Suri UC Santa Barbara

Recursive Solution

o Let c|i,j] = |LCS(X;,Y;)| be the optimal solution
for X,;, Y.

e Obviously, c[i, j] = 0 if either i =0 or j = 0.

e In general, we have the recurrence:

0 if i or j =0 \
cli,jl=1¢ cli—1,7—-1]+1 if z; =y, 5
max{cli,j — 1], cli —1,7]} if x; #y;)

Subhash Suri UC Santa Barbara

Algorithm

e A direct recursive solution is exponential:
T(n)=2T(n— 1)+ 1, which solves to 2".

e DP builds a table of subproblem solutions,
bottom up.

e Starting from c|i,0] and [0, j|, we compute
c[1, 4], c[2,7], etc.

Subhash Suri UC Santa Barbara

Algorithm

LCS-Length (X,Y)
cli, 0] < 0, |0, j] < 0, for all i, j;
for : =1 to m do
for j =1 ton do
if z; = y; then
cli,jl «—cli — 1,5 — 1] 4+ 1; bli, j] < D
else if cli — 1,7] > cli, 7 — 1] then

cli,jl < cli—1,4]; bli,j] < U
else
lirj] — clij— 1) bij] — L

return b, c

Subhash Suri UC Santa Barbara

LCS Algorithm

e LCS-Length (X,Y) only computes the length of
the common subsequence.

e By keeping track of matches, z; = y;, the LCS
itself can be constructed.

Subhash Suri UC Santa Barbara

LCS Algorithm

PRINT-LCS(b, X, i, §)

if 2 =0 or 7 =0 then return

if b[7, j] = D then
PRINT-LCS(b, X,i — 1,57 — 1)
print z;

elseif b[i, j| = U then
PRINT-LCS(b, X,i —1,7)

else PRINT-LCS(b, X,i,j — 1)

e Initial call is PRINT-LCS(b, X, | X/, |[Y]).

e By inspection, the time complexity of the
algorithm is O(nm).

Subhash Suri UC Santa Barbara

Optimal Polygon Triangulation

e Polygon is a piecewise linear closed curve.

e Only consecutive edges intersect, and they do so
at vertices.

e P is convex if line segment zy is inside P
whenever z,y are inside.

Vi

Subhash Suri UC Santa Barbara

Optimal Polygon Triangulation

e Vertices in counter-clockwise order:
Vg, V1, ... ,Un_1. Eidges are v;v;11, where v,, = vy.

e A chord v;v; joins two non-adjacent vertices.

e A triangulation is a set of chords that divide P
into non-overlapping triangles.

Vi

Subhash Suri UC Santa Barbara

Triangulation Problem

e Given a convex polygon P = (vgy,...,v,_1), and a
weight function w on triangles, find a
triangulation minimizing the total weight.

e Every triangulation of a n-gon has n — 2 triangles

and n — 3 chords.

Vi

Subhash Suri UC Santa Barbara

Optimal Triangulation

e One possible weight:
w(Avivog) = |vivs| + |v0k| + [vkvi]

e But problem well defined for any weight function.

Subhash Suri UC Santa Barbara

Greedy Strategies

e Greedy 1: Ring Heuristic. Go around each time,
skipping one vertex; after logn rounds, done.

e Motivation—joining closeby vertices.

e Not always optmal. Consider a flat, pancake like
convex polygon. The optimal will put mostly
vertical diagonals. Greedy’s cost is roughly
O(logn) times the perimeter.

Subhash Suri UC Santa Barbara

Greedy Strategies

e Greedy 2: Always add shortest diagonal,
consistent with previous selections.

e Counter-example by Lloyd. P = (A,B,C,D, FE),
where A = (0,0); B = (50,25); C' = (80,30); D =
(125,25); E = (160, 0).

e Edge lengths are BD = 75; CE < 86; AC < 86;
BE > 112; AD > 127.

e Greedy puts BD, then forced to use BFE, for total
weight = 187.

e Optimal uses AC,CFE, with total weight = 172.

Subhash Suri UC Santa Barbara

Greedy Strategies

e GT(S) is within a constant factor of MWT(S) for
convex polygons.

e For arbitrary point set triangulation, the ratio is
Q(nt/?).

Subhash Suri UC Santa Barbara

The Algorithm

e mli, j| be the optimal cost of triangulating the
subpolygon (v;, vit1,...,0;).

e Consider the A with one side v;v;.
e Suppose the 3rd vertex is k.

e Then, the total cost of the triangulation is:

mli,j] = mli, k| + mlk, j] + w(Dvvvg)

Subhash Suri UC Santa Barbara

The Algorithm

e Since we don’t know k, we choose the one that minimizes
this cost:
mli,j] = min {mi, k| +mlk + 1, 5] + w(Dvv;vg) }
U] 1<k<j

vj—l

mlk, j]

mli, k]

Subhash Suri UC Santa Barbara

All-Pairs Shortest Paths

e Given GG = (V, F), compute shortest path distances
between all pairs of nodes.

e Run single-source shortest path algorithm from
each node as root. Total complexity is
O(nS(n,m)), where S(n,m) is the time for one
shortest path iteration.

e If non-negative edges, use Dijkstra’s algorithm:
O(mlogn) time per iteration.

¢ With negative edges, need to use Bellman-Ford
algorithm: O(nm) time per iteration.

Subhash Suri UC Santa Barbara

Floyd-Warshall Algorithm

e G =(V,FE) has vertices {1,2,...,n}. W is cost
matrix. D is output distance matrix.

algorithm Floyd-Warshall

. D=Ws;
.for k=1 ton
for i =1 ton
for j=1ton
dij — min{dij, dzk -+ dkj}
. return D.

NN

Subhash Suri UC Santa Barbara

Correctness

o Pz-lj- : shortest path whose intermediate nodes are in
{1,2,...,k}.

e Goal is to compute Pg,

for all i, ;.

O
p N

¢ Use Dynamic Programming. Two cases:

1. Vertex £ not on Pfy Then, P,L-]‘; — P,L-Ij._l.
2. Vertex k is on PZ; Then, neither P; nor P, uses k£ as an
intermediate node. in its interior. (Simplicity of PZ’:”;)

Thus, P} = Pi~ !+ P]fj_l

(¥

Subhash Suri UC Santa Barbara

Correctness

e Recursive formula for Pilj-:

]_- Ifk:O, P’Lézc’bj‘
2. If]{f > O, df’.] — mln{d,]:j_lj d,];k_l i d]]zj—l

Subhash Suri UC Santa Barbara

Example

e Matrices Dy and D;:

7%40

— o ©

S o ¥

R e

~ 8 8 o
~ 8 oo
2o 8
SRS
g 8 g

UC Santa Barbara

Subhash Suri

Example

e Matrices Dy and Ds:

0 3
oo 0
oo 4
2 5
00 00

8
00
0

—9
00

o)y O Ot =

—4 7]

1 -3 2 —47
0 -4 1 -1
4 0 5 3
1 -5 0 -2
5 1 6 0 |

Subhash Suri

UC Santa Barbara

