
Subhash Suri UC Santa Barbara

Dynamic Programming

• A powerful paradigm for algorithm design.

• Often leads to elegant and efficient algorithms
when greedy or divide-and-conquer don’t work.

• DP also breaks a problem into subproblems, but
subproblems are not independent.

• DP tabulates solutions of subproblems to avoid
solving them again.

Subhash Suri UC Santa Barbara

Dynamic Programming

• Typically applied to optimization problems:
many feasible solutions; find one of optimal value.

• Key is the principle of optimality: solution
composed of optimal subproblem solutions.

• Example: Matrix Chain Product.

• A sequence 〈M1,M2, . . . , Mn〉 of n matrices to be
multiplied.

• Adjacent matrices must agree on dim.

Subhash Suri UC Santa Barbara

Matrix Product

Matrix-Multiply (A,B)

1. Let A be p× q; let B be q × r.

2. If dim of A and B don’t agree, error.

3. for i = 1 to p

4. for j = 1 to r

5. C[i, j] = 0

6. for k = 1 to q

7. C[i, j] + = A[i, k]×B[k, j]

8. return C.

• Cost of multiplying these matrices is p× q × r.

Subhash Suri UC Santa Barbara

Matrix Chain

• Consider 4 matrices: M1,M2,M3,M4.

• We can compute the product in many different
ways, depending on how we parenthesize.

(M1(M2(M3M4)))

(M1((M2M3)M4))

((M1M2)(M3M4))

(((M1M2)M3)M4)

• Different multiplication orders can lead to very
different total costs.

Subhash Suri UC Santa Barbara

Matrix Chain

• Example: M1 = 10× 100, M2 = 100× 5, M3 = 5× 50.

• Parentheses order ((M1M2)M3) has cost
10 · 100 · 5 + 10 · 5 · 50 = 7500.

• Parentheses order (M1(M2M3)) has cost
100 · 5 · 50 + 10 · 100 · 50 = 75, 000!

Subhash Suri UC Santa Barbara

Matrix Chain

• Input: a chain 〈M1,M2, . . . , Mn〉 of n matrices.

• Matrix Mi has size pi−1 × pi, where i = 1, 2, . . . , n.

• Find optimal parentheses order to minimize cost
of chain multiplying Mi’s.

• Checking all possible ways of parenthesizing is
infeasible.

• There are roughly
(
2n
n

)
ways to put parentheses,

which is of the order of 4n!

Subhash Suri UC Santa Barbara

Principle of Optimality

• Consider computing M1 ×M2 . . .×Mn.

• Compute M1,k = M1 × . . .×Mk, in some order.

• Compute Mk+1,n = Mk+1 × . . .×Mn, in some
order.

• Finally, compute M1,n = M1,k ×Mk+1,n.

• Principle of Optimality: To optimize M1,n, we
must optimize M1,k and Mk+1,n too.

Subhash Suri UC Santa Barbara

Recursive Solution

• A subproblem is subchain Mi,Mi+1 . . . , Mj.

• m[i, j] = optimal cost to multiply Mi, . . . , Mj.

• Use principle of optimality to determine m[i, j]
recursively.

• Clearly, m[i, i] = 0, for all i.

• If an algorithm computes Mi,Mi+1 . . . ,Mj as
(Mi, . . . , Mk)× (Mk+1, . . . , Mj), then

m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj

Subhash Suri UC Santa Barbara

Recursive Solution

m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj

• We don’t know which k the optimal algorithm
will use.

• But k must be between i and j − 1.

• Thus, we can write:

m[i, j] = min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1pkpj}

Subhash Suri UC Santa Barbara

The DP Approach

• Thus, we wish to solve:

m[i, j] = min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1pkpj}

• A direct recursive solution is exponential: brute
force checking of all parentheses orders.

• What is the recurrence? What does it solve to?

• DP’s insight: only a small number of
subproblems actually occur, one per choice of i, j.

Subhash Suri UC Santa Barbara

The DP Approach

• Naive recursion is exponential because it solves
the same subproblem over and over again in
different branches of recursion.

• DP avoids this wasted computation by organizing
the subproblems differently: bottom up.

• Start with m[i, i] = 0, for all i.

• Next, we determine m[i, i + 1], and then m[i, i + 2],
and so on.

Subhash Suri UC Santa Barbara

The Algorithm

• Input: [p0, p1, . . . , pn] the dimension vector of the
matrix chain.

• Output: m[i, j], the optimal cost of multiplying
each subchain Mi × . . .×Mj.

• Array s[i, j] stores the optimal k for each
subchain.

Subhash Suri UC Santa Barbara

The Algorithm

Matrix-Chain-Multiply (p)

1. Set m[i, i] = 0, for i = 1, 2, . . . , n.

2. Set d = 1.

3. For all i, j such that j − i = d, compute

m[i, j] = min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1pkpj}

Set s[i, j] = k∗, where k∗ is the choice that gives
min value in above expression.

4. If d < n, increment d and repeat Step 3.

Subhash Suri UC Santa Barbara

Illustration

j

15,125

11,875 10,500

7,1259,375 5,375

7,875 4,375 2,500 3,500

15,750 2,625 750 1000 5000

0 0 0 0 0 0

3

4

5

6 1

2

3

4

5

6
1

2

i

m array

M5 M6M1 M2 M3 M4

M6 = 20 x 25

M5 = 10 x 20

M4 = 5 x 10

M3 = 15 x 5

M2 = 35 x 15

M1 = 30 x 35

Subhash Suri UC Santa Barbara

Illustration

15,125

11,875 10,500

7,1259,375 5,375

7,875 4,375 2,500 3,500

15,750 2,625 750 1000 5000

0 0 0 0 0 0

3

4

5

6 1

2

3

4

5

6
1

2

j i

m array

M5 M6M1 M2 M3 M4

• Computing m[2, 5].

min

m[2, 2] + m[3, 5] + p1p2p5 = 0 + 2500 + 35.15.20 = 13000
m[2, 3] + m[4, 5] + p1p3p5 = 2625 + 1000 + 35.5.20 = 7125
m[2, 4] + m[5, 5] + p1p4p5 = 4375 + 0 + 35.10.20 = 11375

Subhash Suri UC Santa Barbara

Finishing Up

• The algorithm clearly takes O(n3) time.

• The m matrix only outputs the cost.

• The parentheses order from the s matrix.

Matrix-Chain (M, s, i, j)

1. if j > i then

2. X ← Matrix-Chain (A, s, i, s[i, j])

3. Y ← Matrix-Chain (A, s, s[i, j] + 1, j)

4. return X ∗ Y

Subhash Suri UC Santa Barbara

Longest Common Subsequence

• Consider a string of characters: X = ABCBDAB.

• A subsequence is obtained by deleting some (any)
characters of X.

• E.g. ABBB is a subsequence of X, as is ABD. But
AABB is not a subsequence.

• Let X = (x1, x2, . . . , xm) be a sequence.

• Z = (z1, z2, . . . , zk) is subseq. of X if there is an
index sequence (i1, . . . , ik) s.t. zj = xij, for
j = 1, . . . , k.

• Index sequence for ABBB is (1, 2, 4, 7).

Subhash Suri UC Santa Barbara

Longest Common Subsequence

• Given two sequences X and Y , find their longest
common subsequence.

• If X = (A,B,C, B, D, A, B) and Y = (B, D, C, A,B, A),
then (B,C, A) is a common sequence, but not LCS.

• (B,D, A,B) is a LCS.

• How do we find an LCS?

• Can some form of Greedy work? Suggestions?

Subhash Suri UC Santa Barbara

Trial Ideas

• Greedy-1: Scan X. Find the first letter matching
y1; take it and continue.

• Problem: only matches prefix substrings of Y .

• Greedy-2: Find the most frequent letters of X; or
sort the letters by their frequency. Try to match
in frequency order.

• Problem: Frequency can be irrelevant. E.g.
suppose all letters of X are distinct.

Subhash Suri UC Santa Barbara

Properties

• 2m subsequences of X.

• LCS obeys the principle of optimality.

• Let Xi = (x1, x2, . . . , xi) be the i-long prefix of X.

• Examples: if X = (A,B, C, B,D, A,B), then
X2 = (A,B); X5 = (A,B, C, B, D).

Subhash Suri UC Santa Barbara

LCS Structure

• Suppose Z = (z1, z2, . . . , zk) is a LCS of X and Y .
Then,

1. If xm = yn, then zk = xm = yn and
Zk−1 = LCS(Xm−1, Yn−1).

2. If xm 6= yn, then zk 6= xm implies
Z = LCS(Xm−1, Y).

3. If xm 6= yn, then zk 6= yn implies
Z = LCS(X, Yn−1).

Subhash Suri UC Santa Barbara

Recursive Solution

• Let c[i, j] = |LCS(Xi, Yj)| be the optimal solution
for Xi, Yj.

• Obviously, c[i, j] = 0 if either i = 0 or j = 0.

• In general, we have the recurrence:

c[i, j] =

0 if i or j = 0
c[i− 1, j − 1] + 1 if xi = yj

max{c[i, j − 1], c[i− 1, j]} if xi 6= yj

Subhash Suri UC Santa Barbara

Algorithm

• A direct recursive solution is exponential:
T (n) = 2T (n− 1) + 1, which solves to 2n.

• DP builds a table of subproblem solutions,
bottom up.

• Starting from c[i, 0] and c[0, j], we compute
c[1, j], c[2, j], etc.

Subhash Suri UC Santa Barbara

Algorithm

LCS-Length (X, Y)
c[i, 0] ← 0, c[0, j] ← 0, for all i, j;
for i = 1 to m do

for j = 1 to n do
if xi = yj then

c[i, j] ← c[i− 1, j − 1] + 1; b[i, j] ← D

else if c[i− 1, j] ≥ c[i, j − 1] then
c[i, j] ← c[i− 1, j]; b[i, j] ← U

else
c[i, j] ← c[i, j − 1]; b[i, j] ← L

return b, c

Subhash Suri UC Santa Barbara

LCS Algorithm

• LCS-Length (X, Y) only computes the length of
the common subsequence.

• By keeping track of matches, xi = yj, the LCS
itself can be constructed.

Subhash Suri UC Santa Barbara

LCS Algorithm

PRINT-LCS(b,X, i, j)
if i = 0 or j = 0 then return
if b[i, j] = D then

PRINT-LCS(b,X, i− 1, j − 1)
print xi

elseif b[i, j] = U then
PRINT-LCS(b,X, i− 1, j)

else PRINT-LCS(b,X, i, j − 1)

• Initial call is PRINT-LCS(b,X, |X|, |Y |).
• By inspection, the time complexity of the

algorithm is O(nm).

Subhash Suri UC Santa Barbara

Optimal Polygon Triangulation

• Polygon is a piecewise linear closed curve.

• Only consecutive edges intersect, and they do so
at vertices.

• P is convex if line segment xy is inside P

whenever x, y are inside.
v0

v

v

v

v

v

1

2

3

4

5

Subhash Suri UC Santa Barbara

Optimal Polygon Triangulation

• Vertices in counter-clockwise order:
v0, v1, . . . , vn−1. Edges are vivi+1, where vn = v0.

• A chord vivj joins two non-adjacent vertices.

• A triangulation is a set of chords that divide P

into non-overlapping triangles.
v0

v

v

v

v

v

1

2

3

4

5

v0

v

v

v

v

v

1

2

3

4

5

Subhash Suri UC Santa Barbara

Triangulation Problem

• Given a convex polygon P = (v0, . . . , vn−1), and a
weight function w on triangles, find a
triangulation minimizing the total weight.

• Every triangulation of a n-gon has n− 2 triangles
and n− 3 chords.

v0

v

v

v

v

v

1

2

3

4

5

v0

v

v

v

v

v

1

2

3

4

5

Subhash Suri UC Santa Barbara

Optimal Triangulation

• One possible weight:

w(4vivjvk) = |vivj|+ |vjvk|+ |vkvi|
• But problem well defined for any weight function.

Subhash Suri UC Santa Barbara

Greedy Strategies

• Greedy 1: Ring Heuristic. Go around each time,
skipping one vertex; after logn rounds, done.

• Motivation—joining closeby vertices.

• Not always optmal. Consider a flat, pancake like
convex polygon. The optimal will put mostly
vertical diagonals. Greedy’s cost is roughly
O(log n) times the perimeter.

Subhash Suri UC Santa Barbara

Greedy Strategies

• Greedy 2: Always add shortest diagonal,
consistent with previous selections.

• Counter-example by Lloyd. P = (A,B, C, D, E),
where A = (0, 0); B = (50, 25); C = (80, 30); D =
(125, 25); E = (160, 0).

• Edge lengths are BD = 75; CE < 86; AC < 86;
BE > 112; AD > 127.

• Greedy puts BD, then forced to use BE, for total
weight = 187.

• Optimal uses AC,CE, with total weight = 172.

Subhash Suri UC Santa Barbara

Greedy Strategies

• GT (S) is within a constant factor of MWT (S) for
convex polygons.

• For arbitrary point set triangulation, the ratio is
Ω(n1/2).

Subhash Suri UC Santa Barbara

The Algorithm

• m[i, j] be the optimal cost of triangulating the
subpolygon (vi, vi+1, . . . , vj).

• Consider the 4 with one side vivj.

• Suppose the 3rd vertex is k.

• Then, the total cost of the triangulation is:

m[i, j] = m[i, k] + m[k, j] + w(4vivjvk)

Subhash Suri UC Santa Barbara

The Algorithm

• Since we don’t know k, we choose the one that minimizes
this cost:

m[i, j] = min
i<k<j

{m[i, k] + m[k + 1, j] + w(4vivjvk)}

iv

k
v

jv

j−1v

i+1v

m[k, j]

m[i, k]

Subhash Suri UC Santa Barbara

All-Pairs Shortest Paths

• Given G = (V, E), compute shortest path distances
between all pairs of nodes.

• Run single-source shortest path algorithm from
each node as root. Total complexity is
O(nS(n,m)), where S(n,m) is the time for one
shortest path iteration.

• If non-negative edges, use Dijkstra’s algorithm:
O(m log n) time per iteration.

• With negative edges, need to use Bellman-Ford
algorithm: O(nm) time per iteration.

Subhash Suri UC Santa Barbara

Floyd-Warshall Algorithm

• G = (V, E) has vertices {1, 2, . . . , n}. W is cost
matrix. D is output distance matrix.

algorithm Floyd-Warshall

1. D = W ;
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dij = min{dij, dik + dkj}
6. return D.

Subhash Suri UC Santa Barbara

Correctness

• P k
ij : shortest path whose intermediate nodes are in
{1, 2, . . . , k}.

• Goal is to compute Pn
ij, for all i, j.

i

k

j
P1 P2

• Use Dynamic Programming. Two cases:

1. Vertex k not on P k
ij. Then, P k

ij = P k−1
ij .

2. Vertex k is on P k
ij. Then, neither P1 nor P2 uses k as an

intermediate node. in its interior. (Simplicity of P k
ij.)

Thus, P k
ij = P k−1

ik + P k−1
kj

Subhash Suri UC Santa Barbara

Correctness

• Recursive formula for P k
ij:

1. If k = 0, P k
ij = cij.

2. If k > 0, dk
ij = min{dk−1

ij , dk−1
ik + dk−1

kj }

Subhash Suri UC Santa Barbara

Example

4

−4

7

2

6

1

83

−51

4

2

5

3

• Matrices D0 and D1:

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Subhash Suri UC Santa Barbara

Example

4

−4

7

2

6

1

83

−51

4

2

5

3

• Matrices D2 and D5:

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

