Dynamic Programming

- A powerful paradigm for algorithm design.
- Often leads to elegant and efficient algorithms when greedy or divide-and-conquer don't work.
- DP also breaks a problem into subproblems, but subproblems are not independent.
- DP tabulates solutions of subproblems to avoid solving them again.

Dynamic Programming

- Typically applied to optimization problems: many feasible solutions; find one of optimal value.
- Key is the principle of optimality: solution composed of optimal subproblem solutions.
- Example: Matrix Chain Product.
- A sequence $\left\langle M_{1}, M_{2}, \ldots, M_{n}\right\rangle$ of n matrices to be multiplied.
- Adjacent matrices must agree on dim.

Matrix Product

Matrix-Multiply (A, B)

1. Let A be $p \times q$; let B be $q \times r$.
2. If dim of A and B don't agree, error.
3. for $i=1$ to p
4. for $j=1$ to r
5. $C[i, j]=0$
6. for $k=1$ to q
7. $C[i, j]+=A[i, k] \times B[k, j]$
8. return C.

- Cost of multiplying these matrices is $p \times q \times r$.

Matrix Chain

- Consider 4 matrices: $M_{1}, M_{2}, M_{3}, M_{4}$.
- We can compute the product in many different ways, depending on how we parenthesize.

$$
\begin{aligned}
& \left(M_{1}\left(M_{2}\left(M_{3} M_{4}\right)\right)\right) \\
& \left(M_{1}\left(\left(M_{2} M_{3}\right) M_{4}\right)\right) \\
& \left(\left(M_{1} M_{2}\right)\left(M_{3} M_{4}\right)\right) \\
& \left(\left(\left(M_{1} M_{2}\right) M_{3}\right) M_{4}\right)
\end{aligned}
$$

- Different multiplication orders can lead to very different total costs.

Matrix Chain

- Example: $M_{1}=10 \times 100, M_{2}=100 \times 5, M_{3}=5 \times 50$.
- Parentheses order $\left(\left(M_{1} M_{2}\right) M_{3}\right)$ has cost $10 \cdot 100 \cdot 5+10 \cdot 5 \cdot 50=7500$.
- Parentheses order $\left(M_{1}\left(M_{2} M_{3}\right)\right)$ has cost $100 \cdot 5 \cdot 50+10 \cdot 100 \cdot 50=75,000$!

Matrix Chain

- Input: a chain $\left\langle M_{1}, M_{2}, \ldots, M_{n}\right\rangle$ of n matrices.
- Matrix M_{i} has size $p_{i-1} \times p_{i}$, where $i=1,2, \ldots, n$.
- Find optimal parentheses order to minimize cost of chain multiplying M_{i} 's.
- Checking all possible ways of parenthesizing is infeasible.
- There are roughly $\binom{2 n}{n}$ ways to put parentheses, which is of the order of 4^{n} !

Principle of Optimality

- Consider computing $M_{1} \times M_{2} \ldots \times M_{n}$.
- Compute $M_{1, k}=M_{1} \times \ldots \times M_{k}$, in some order.
- Compute $M_{k+1, n}=M_{k+1} \times \ldots \times M_{n}$, in some order.
- Finally, compute $M_{1, n}=M_{1, k} \times M_{k+1, n}$.
- Principle of Optimality: To optimize $M_{1, n}$, we must optimize $M_{1, k}$ and $M_{k+1, n}$ too.

Recursive Solution

- A subproblem is subchain $M_{i}, M_{i+1} \ldots, M_{j}$.
- $m[i, j]=$ optimal cost to multiply M_{i}, \ldots, M_{j}.
- Use principle of optimality to determine $m[i, j]$ recursively.
- Clearly, $m[i, i]=0$, for all i.
- If an algorithm computes $M_{i}, M_{i+1} \ldots, M_{j}$ as $\left(M_{i}, \ldots, M_{k}\right) \times\left(M_{k+1}, \ldots, M_{j}\right)$, then

$$
m[i, j]=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}
$$

Recursive Solution

$$
m[i, j]=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}
$$

- We don't know which k the optimal algorithm will use.
- But k must be between i and $j-1$.
- Thus, we can write:

$$
m[i, j]=\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}
$$

The DP Approach

- Thus, we wish to solve:

$$
m[i, j]=\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}
$$

- A direct recursive solution is exponential: brute force checking of all parentheses orders.
- What is the recurrence? What does it solve to?
- DP's insight: only a small number of subproblems actually occur, one per choice of i, j.

The DP Approach

- Naive recursion is exponential because it solves the same subproblem over and over again in different branches of recursion.
- DP avoids this wasted computation by organizing the subproblems differently: bottom up.
- Start with $m[i, i]=0$, for all i.
- Next, we determine $m[i, i+1]$, and then $m[i, i+2]$, and so on.

The Algorithm

- Input: $\left[p_{0}, p_{1}, \ldots, p_{n}\right]$ the dimension vector of the matrix chain.
- Output: $m[i, j]$, the optimal cost of multiplying each subchain $M_{i} \times \ldots \times M_{j}$.
- Array $s[i, j]$ stores the optimal k for each subchain.

The Algorithm

Matrix-Chain-Multiply (p)

1. Set $m[i, i]=0$, for $i=1,2, \ldots, n$.
2. Set $d=1$.
3. For all i, j such that $j-i=d$, compute

$$
m[i, j]=\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}
$$

Set $s[i, j]=k^{*}$, where k^{*} is the choice that gives min value in above expression.
4. If $d<n$, increment d and repeat Step 3.

Illustration

Illustration

- Computing $m[2,5]$.

$$
\min \left\{\begin{array}{c}
m[2,2]+m[3,5]+p_{1} p_{2} p_{5}=0+2500+35.15 .20=13000 \\
m[2,3]+m[4,5]+p_{1} p_{3} p_{5}=2625+1000+35.5 .20=7125 \\
m[2,4]+m[5,5]+p_{1} p_{4} p_{5}=4375+0+35.10 .20=11375
\end{array}\right.
$$

Finishing Up

- The algorithm clearly takes $O\left(n^{3}\right)$ time.
- The m matrix only outputs the cost.
- The parentheses order from the s matrix.

Matrix-Chain (M, s, i, j)

1. if $j>i$ then
2. $\quad X \leftarrow$ Matrix-Chain $(A, s, i, s[i, j])$
3. $\quad Y \leftarrow$ Matrix-Chain $(A, s, s[i, j]+1, j)$
4. return $X * Y$

Longest Common Subsequence

- Consider a string of characters: $X=A B C B D A B$.
- A subsequence is obtained by deleting some (any) characters of X.
- E.g. $A B B B$ is a subsequence of X, as is $A B D$. But $A A B B$ is not a subsequence.
- Let $X=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a sequence.
- $Z=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ is subseq. of X if there is an index sequence $\left(i_{1}, \ldots, i_{k}\right)$ s.t. $z_{j}=x_{i_{j}}$, for $j=1, \ldots, k$.
- Index sequence for $A B B B$ is $(1,2,4,7)$.

Longest Common Subsequence

- Given two sequences X and Y, find their longest common subsequence.
- If $X=(A, B, C, B, D, A, B)$ and $Y=(B, D, C, A, B, A)$, then (B, C, A) is a common sequence, but not LCS.
- (B, D, A, B) is a LCS.
- How do we find an LCS?
- Can some form of Greedy work? Suggestions?

Trial Ideas

- Greedy-1: Scan X. Find the first letter matching y_{1}; take it and continue.
- Problem: only matches prefix substrings of Y.
- Greedy-2: Find the most frequent letters of X; or sort the letters by their frequency. Try to match in frequency order.
- Problem: Frequency can be irrelevant. E.g. suppose all letters of X are distinct.

Properties

- 2^{m} subsequences of X.
- LCS obeys the principle of optimality.
- Let $X_{i}=\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ be the i-long prefix of X.
- Examples: if $X=(A, B, C, B, D, A, B)$, then

$$
X_{2}=(A, B) ; X_{5}=(A, B, C, B, D)
$$

LCS Structure

- Suppose $Z=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ is a LCS of X and Y. Then,

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and

$$
Z_{k-1}=L C S\left(X_{m-1}, Y_{n-1}\right)
$$

2. If $x_{m} \neq y_{n}$, then $z_{k} \neq x_{m}$ implies

$$
Z=L C S\left(X_{m-1}, Y\right)
$$

3. If $x_{m} \neq y_{n}$, then $z_{k} \neq y_{n}$ implies

$$
Z=L C S\left(X, Y_{n-1}\right)
$$

Recursive Solution

- Let $c[i, j]=\left|L C S\left(X_{i}, Y_{j}\right)\right|$ be the optimal solution for X_{i}, Y_{j}.
- Obviously, $c[i, j]=0$ if either $i=0$ or $j=0$.
- In general, we have the recurrence:

$$
c[i, j]=\left\{\begin{array}{ll}
0 & \text { if } i \text { or } j=0 \\
c[i-1, j-1]+1 & \text { if } x_{i}=y_{j} \\
\max \{c[i, j-1], c[i-1, j]\} & \text { if } x_{i} \neq y_{j}
\end{array}\right\}
$$

Algorithm

- A direct recursive solution is exponential: $T(n)=2 T(n-1)+1$, which solves to 2^{n}.
- DP builds a table of subproblem solutions, bottom up.
- Starting from $c[i, 0]$ and $c[0, j]$, we compute $c[1, j], c[2, j]$, etc.

Algorithm

LCS-Length (X, Y)
$c[i, 0] \leftarrow 0, c[0, j] \leftarrow 0$, for all $i, j ;$
for $i=1$ to m do
for $j=1$ to n do
if $x_{i}=y_{j}$ then

$$
c[i, j] \leftarrow c[i-1, j-1]+1 ; \quad b[i, j] \leftarrow D
$$

else if $c[i-1, j] \geq c[i, j-1]$ then

$$
c[i, j] \leftarrow c[i-1, j] ; \quad b[i, j] \leftarrow U
$$

else

$$
c[i, j] \leftarrow c[i, j-1] ; \quad b[i, j] \leftarrow L
$$

return b, c

LCS Algorithm

- LCS-Length (X, Y) only computes the length of the common subsequence.
- By keeping track of matches, $x_{i}=y_{j}$, the LCS itself can be constructed.

LCS Algorithm

PRINT-LCS (b, X, i, j)

$$
\begin{aligned}
& \text { if } i=0 \text { or } j=0 \text { then return } \\
& \text { if } b[i, j]=D \text { then } \\
& \text { PRINT-LCS }(b, X, i-1, j-1) \\
& \text { print } x_{i} \\
& \text { elseif } b[i, j]=U \text { then } \\
& \text { PRINT-LCS }(b, X, i-1, j) \\
& \text { else PRINT-LCS }(b, X, i, j-1)
\end{aligned}
$$

- Initial call is PRINT-LCS $(b, X,|X|,|Y|)$.
- By inspection, the time complexity of the algorithm is $O(n m)$.

Optimal Polygon Triangulation

- Polygon is a piecewise linear closed curve.
- Only consecutive edges intersect, and they do so at vertices.
- P is convex if line segment $x y$ is inside P whenever x, y are inside.

Optimal Polygon Triangulation

- Vertices in counter-clockwise order: $v_{0}, v_{1}, \ldots, v_{n-1}$. Edges are $v_{i} v_{i+1}$, where $v_{n}=v_{0}$.
- A chord $v_{i} v_{j}$ joins two non-adjacent vertices.
- A triangulation is a set of chords that divide P into non-overlapping triangles.

Triangulation Problem

- Given a convex polygon $P=\left(v_{0}, \ldots, v_{n-1}\right)$, and a weight function w on triangles, find a triangulation minimizing the total weight.
- Every triangulation of a n-gon has $n-2$ triangles and $n-3$ chords.

Optimal Triangulation

- One possible weight:

$$
w\left(\triangle v_{i} v_{j} v_{k}\right)=\left|v_{i} v_{j}\right|+\left|v_{j} v_{k}\right|+\left|v_{k} v_{i}\right|
$$

- But problem well defined for any weight function.

Greedy Strategies

- Greedy 1: Ring Heuristic. Go around each time, skipping one vertex; after logn rounds, done.
- Motivation-joining closeby vertices.
- Not always optmal. Consider a flat, pancake like convex polygon. The optimal will put mostly vertical diagonals. Greedy's cost is roughly $O(\log n)$ times the perimeter.

Greedy Strategies

- Greedy 2: Always add shortest diagonal, consistent with previous selections.
- Counter-example by Lloyd. $P=(A, B, C, D, E)$, where $A=(0,0) ; B=(50,25) ; C=(80,30) ; D=$ $(125,25) ; E=(160,0)$.
- Edge lengths are $B D=75 ; C E<86 ; A C<86$; $B E>112 ; A D>127$.
- Greedy puts $B D$, then forced to use $B E$, for total weight $=187$.
- Optimal uses $A C, C E$, with total weight $=172$.

Greedy Strategies

- $G T(S)$ is within a constant factor of $M W T(S)$ for convex polygons.
- For arbitrary point set triangulation, the ratio is $\Omega\left(n^{1 / 2}\right)$.

The Algorithm

- $m[i, j]$ be the optimal cost of triangulating the subpolygon $\left(v_{i}, v_{i+1}, \ldots, v_{j}\right)$.
- Consider the \triangle with one side $v_{i} v_{j}$.
- Suppose the 3rd vertex is k.
- Then, the total cost of the triangulation is:

$$
m[i, j]=m[i, k]+m[k, j]+w\left(\triangle v_{i} v_{j} v_{k}\right)
$$

The Algorithm

- Since we don't know k, we choose the one that minimizes this cost:

All-Pairs Shortest Paths

- Given $G=(V, E)$, compute shortest path distances between all pairs of nodes.
- Run single-source shortest path algorithm from each node as root. Total complexity is $O(n S(n, m))$, where $S(n, m)$ is the time for one shortest path iteration.
- If non-negative edges, use Dijkstra's algorithm: $O(m \log n)$ time per iteration.
- With negative edges, need to use Bellman-Ford algorithm: $O(\mathrm{~nm})$ time per iteration.

Floyd-Warshall Algorithm

- $G=(V, E)$ has vertices $\{1,2, \ldots, n\} . W$ is cost matrix. D is output distance matrix.
algorithm Floyd-Warshall

1. $D=W$;
2. for $k=1$ to n
3. for $i=1$ to n
4. for $j=1$ to n
5. $\quad d_{i j}=\min \left\{d_{i j}, \quad d_{i k}+d_{k j}\right\}$
6. return D.

Correctness

- $P_{i j}^{k}$: shortest path whose intermediate nodes are in $\{1,2, \ldots, k\}$.
- Goal is to compute $P_{i j}^{n}$, for all i, j.

- Use Dynamic Programming. Two cases:

1. Vertex k not on $P_{i j}^{k}$. Then, $P_{i j}^{k}=P_{i j}^{k-1}$.
2. Vertex k is on $P_{i j}^{k}$. Then, neither P_{1} nor P_{2} uses k as an intermediate node. in its interior. (Simplicity of $P_{i j}^{k}$.) Thus, $P_{i j}^{k}=P_{i k}^{k-1}+P_{k j}^{k-1}$

Correctness

- Recursive formula for $P_{i j}^{k}$:

1. If $k=0, P_{i j}^{k}=c_{i j}$.
2. If $k>0, d_{i j}^{k}=\min \left\{d_{i j}^{k-1}, \quad d_{i k}^{k-1}+d_{k j}^{k-1}\right\}$

Example

- Matrices D_{0} and D_{1} :

$$
\left[\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right] \quad\left[\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right]
$$

Example

- Matrices D_{2} and D_{5} :

$$
\left[\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right] \quad\left[\begin{array}{ccccc}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right]
$$

