Shortest Paths

- G is a directed graph, and each edge (i,j) has a non-negative cost (or length) $c(i,j)$.

- A path $P(a,b)$ between two nodes, a and b, is a sequence of edges, starting at a, ending at b.

- The length of the path is the sum of the costs of edges on it.

- The shortest path between x and y is the path of minimum total length.

- We want to find shortest paths from node s to all other nodes.
Greedy Algorithm

- Because of edge costs, there may be no relation between number of hops and total path length.
- Thus, breadth-first search by itself is not enough.
- Let us begin with the trivial path, from \(s \) to \(s \), which has cost zero.
- What will be a good strategy to find a shortest path to another vertex?

- A neighbor of \(s \) with cheapest edge from \(s \).
Dijkstra’s Algorithm

One greedy strategy could be to always extend the current shortest path to generate the next shortest path.

This does not work: Path \(s \rightarrow x \rightarrow v \) is not the shortest path to \(v \).

An alternative greedy scheme is to consider all shortest paths generated so far for 1-edge extensions.

Of all such possibilities, pick the shortest one to extend. This is Dijkstra’s algorithm.
Subpath Optimality

• If $s \leadsto u \rightarrow v$ is a shortest path to v, then $s \leadsto u$ is a shortest path to u.

• With this property, we need not explicitly store all shortest paths.

• Instead, each node stores a pointer to its predecessor node.
1. Initialize $d(s) = 0$, and $d(i) = \infty$, for $i \neq s$.

2. Put s into a priority queue L.

3. If L is empty, terminate; otherwise go to Step 3.

4. Delete from L the vertex i with minimum value of d. In case of ties, pick arbitrarily.

5. For each node j such that (i, j) is an edge in the graph,

$$d(j) = \min\{d(j), d(i) + c(i, j)\}$$

If $d(j)$ changes, set $p(j) = i$, and add j to L if it is not already there. Go to Step 2.

- C++ code for the algorithm in the textbook, page 645.
Illustration
Analysis

- We can store G as an adjacency matrix: $A[i,j]$ stores the information about edge (i,j). We can store L as an unordered list.

- Choosing i with smallest d takes $O(n)$ time.

- Updating $d(j)$ for each neighbor of i takes $O(1)$ time, and there are at most n neighbors.

- Each iteration of the loop takes $O(n)$ time and it deletes one vertex from L.

- Thus, total time complexity of Dijkstra’s algorithm using unordered list L and adjacency matrix is $O(n^2)$.
Analysis

- We improve the running time by storing L in a heap, and using the adjacency list representation of the graph.

- Choosing i with smallest d takes $O(\log n)$ time.

- Updating $d(j)$ takes $O(1)$ time, but when d changes, the heap needs to propagate the change, which takes $O(\log n)$ time.

- While a node i can have up to n neighbors, the total number of neighbors is $|E|$, the number of edges in G.

- Thus, the complexity of the steps 3–4 is $O(|E| \log n)$.
Correctness Proof

• Think of $d(i)$ as tentative distance label.

• Dijkstra’s algorithm makes the distance label of one node permanent in each iteration.

• We argue that when $d(i)$ is made permanent (deleted from L), it equals the shortest path distance.

• By hypothesis, P_1 is longer than $d(u) + c(u, i)$.

• Since P_2 has positive length, no alternative path to i via k can be shorter.
Minimum Spanning Trees

- $G = (V, E)$ is an undirected graph; each edge (i, j) has a non-negative cost $c(i, j)$.

- A spanning tree $T = (V, F)$ connects all vertices of V using fewest possible edges.

- A minimum spanning tree is a spanning tree with least possible total cost.

- All spanning trees on n nodes have $n - 1$ edges. The problem is to choose the cheapest collection that spans the nodes.
Kruskals’ Algorithm

- Sort the edges in non-decreasing order of cost: $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$.
- Set T to be the empty tree.
- For $i = 1$ to m, add edge e_i to T if it does not create a cycle.
- Output T as the MST.

Graph G

MST

- Sorted order: $2, 3, 4, 5, 8, 10, 12, 14, 16, 18, 26, 30$.
Correctness Proof

• An undirected graph G has a spanning tree if and only if G itself is connected.

• The only edges rejected by Kruskal’s algorithm are those that form a cycle with previously chosen edges.

• Removing any edge from a cycle leaves the remaining subgraph connected.

• So, if G is connected, Kruskal’s algorithm indeed produces a spanning tree.

• In order to argue that it produces a minimum spanning tree, we use the by now standard swapping argument.

• Many edges of G can have the same cost, so MST need not be unique. We show that no spanning tree can have lower cost than output of Kruskal.
Correctness of Kruskal

• Suppose T is the output of Kruskal’s algorithm. Let U be another MST claimed to have smaller cost than T.

• We transform U into T without increasing its cost, thereby refuting the claim.

• Let e be the cheapest edge of T that is not in U.

• Adding e to U creates a unique cycle C.

• Let f be any edge of cycle C that is not in T; such an f must exist.

• Since Kruskal’s algorithm scans edges in sorted order, and it chose e but rejected f, we must have $c(e) \leq c(f)$.

• We remove f from U and add e instead. This keeps U connected, and does not increase its cost.

• Repeat until $T = U$.
Correctness of Kruskal
Data Structures

• Initial sorting of edges takes $O(e \log e)$ time, where $e = |E|$.

• The non-obvious operation is to detect whether an edge (u, v) forms a cycle with the previously accepted edges.
Data Structures

• Initially, forest has n singleton trees.

• After i edges have been added, there are $n - i$ components.

Graph G

Collection of trees after scanning 4 edges.

• When considering edge (u, v), we can perform the reachability test (DFS, BFS) to see if v is reachable from u in the current forest.

• This could take $O(n)$ time per test, and will lead to $O(ne)$ time for the overall algorithm.

• We can do the cycle test faster using the Union-Find data structure.
Union Find

- Each component as a set, with one vertex acting as “representative”.
- The operation $\text{Find}(x)$ returns the name of the set containing x.
- If $\text{Find}(u) = \text{Find}(v)$, then u, v are in the same tree \Rightarrow edge (u, v) forms a cycle.
- Otherwise, we merge the sets containing u and v. (The union operation.) This requires renaming all elements of at least one set.
- Store sets as rooted trees, and using the Union-by-Rank heuristic we can achieve $O(\log n)$ cost for both Find and (amortized) Union.
- With this data structure, Kruskal’s algorithm runs in $O(e \log e)$ worst-case time.
Improved Union Find

• There is an improved version of Union-Find data structure.

• Besides union-by-rank, it uses path compression.

• Suppose we perform a sequence of \(m \) operations, of which at most \(n \) are make-set; others are unions and finds.

• Total time complexity is \(O(m\alpha(m, n)) \), where \(\alpha(m, n) \) is extremely slow growing function, called Inverse Ackermann function.
Prim’ Algorithm

- Prim’s algorithm grows a single tree \(T \), one edge at a time, until it becomes a spanning tree.

- We initialize \(T \) to be a singleton node, and no edges.

- At each step, Prim’s algorithm adds the cheapest edge with one endpoint in \(T \) and other not in \(T \).

- Since each edge adds one new vertex to \(T \), after \(n - 1 \) additions, \(T \) becomes a spanning tree.

![Graph G](image1.png)
![MST](image2.png)
Correctness Proof

• Suppose there is a MST U that is claimed to be cheaper than T.

• We use contradiction. Suppose among all tree cheaper than T, U differs from T in least number of edges.

• Let e be the first edge added to T that is not in U.

• Just before e was added, let X be the set of nodes connected by T, and let $Y = V - X$ be the remaining nodes.

• Since U spans all the vertices, it contains at least one edge, f, with one endpoint in each of X and Y.

• By the choice of e, we have $c(e) \leq c(f)$.

• We add e to U and remove f from it. This does not increase the cost of U, but now U differs from T in one fewer edge.

• This contradicts the choice of U. So, T is optimal.
Data Structures

- Use adjacency list representation of graph G.

- Vertices not in T are stored in a heap, where the $key(v)$ is the cost of the cheapest edge from v to some node in T.

- Initially we put one node s in T, and make $key()$ of all neighbors of s finite. All other vertices have infinite keys.

- Do a DeleteMin to find the cheapest edge. If vertex v is the node connected by the cheapest edge, we add v to T.

- We then scan all edges incident to v, and update the keys of their other endpoints, if necessary.
Illustration

Blue edges and keys after 3 steps

After 3 steps
Time Complexity

- DeleteMin operations takes $O(\log n)$ time, and there are at most $n - 1$ such operations.

- When a node v is pulled into T, we need to scan all neighbors of v, and potentially update their keys.

- There can be at most e such updates, and each update takes $O(\log n)$ time.

- Using a binary heap, Prim’s algorithm can be implemented in $O(e \log n)$ time.