Closest Pair Problem

e Given n points in d-dimensions, find two
whose mutual distance is smallest.

¢ Fundamental problem in many
applications as well as a key step in many
algorithms.

e A naive algorithm takes O(dn?) time.

e Element uniqueness reduces to Closest
Pair, so (nlogn) lower bound.

¢ We will develop a divide-and-conquer
based O(nlogn) algorithm; dimension d
assumed constant.

Subhash Suri UC Santa Barbara

1-Dimension Problem

e 1D problem can be solved in O(nlogn) via
sorting.

e Sorting, however, does not generalize to
higher dimensions. So, let’s develop a
divide-and-conquer for 1D.

e Divide the points S into two sets 51,53 by
some r-coordinate so that p < ¢ for all
p € S; and g € 9s.

e Recursively compute closest pair (p1,ps2) in
Sl and (Q1,CJ2) in SQ.

Sl : S2
|
® o—o—o o——o o3
pl p2 p3, o3 ql g2
|

median m

e Let 0 be the smallest separation found so
far:

0 = min(|p2 — p1|, |g2 — q1])

Subhash Suri UC Santa Barbara

1D Divide & Conquer

S : S2
I
° *—o—o *——o —es— o3
pl p2 p3, @3 ql g2
I

median m

e The closest pair is {p1,p2}, or {q1,q2}, or
some {ps,q3} where p3 € 57 and g3 € 5.

e Key Observation: If m is the dividing
coordinate, then ps, g3 must be within 0 of
m.

e In 1D, p3 must be the rightmost point of
S1 and ¢3 the leftmost point of S5, but
these notions do not generalize to higher
dimensions.

¢ How many points of S; can lie in the
interval (m — 6, m|?

e By definition of J, at most one. Same
holds for S5.

Subhash Suri UC Santa Barbara

1D Divide & Conquer

S : S2
I
° *—o—o *——o —es— o3
pl p2 p3, @3 ql g2
I

median m

e Closest-Pair ().

o If |S| =1, output § = ¢
If |S| =2, output § = |ps — p1|.
Otherwise, do the following steps:

. Let m = median(S).

. Divide S into S, S, at m.

. 01 = Closest-Pair(5;).

. 05 = Closest-Pair(S,).

. 012 is minimum distance across the cut.
. Return 0 = min(51,52,512).

e Recurrence is T'(n) = 27(n/2) + O(n), which
solves to T'(n) = O(nlogn).

GOt Wi -

Subhash Suri UC Santa Barbara

2-D Closest Pair

e We partition S into 57,5 by vertical line ¢
defined by median x-coordinate in S.

e Recursively compute closest pair distances
01 and 6. Set § = min(dq, d2).

¢ Now compute the closest pair with one

point each in 57 and S5;.

5 o
1

S1

o
]

e In each candidate pair (p,q), where p € 54
and g € S5, the points p,¢ must both lie
within ¢ of /.

Subhash Suri UC Santa Barbara

2-D Closest Pair

e At this point, complications arise, which
weren’t present in 1D. It’s entirely
possible that all n/2 points of S; (and S5)
lie within ¢ of /.

o O
ﬁﬁl
S1 [) S2
°
° ° o °
pl o al o2
—
02

v

1

Pl P2

e Naively, this would require n?/4
calculations.

e We show that points in P, P, (0 strip
around /) have a special structure, and
solve the conquer step faster.

Subhash Suri UC Santa Barbara

Conquer Step

e Consider a point p € 5;. All points of 55
within distance J of p must lie in a § x 20
rectangle R.

| |

I ® :

S S : —
: :

I ® 10 0
| |

. pe-}--——--- | ® R ¢
| |

R

: Y :5 bo}
1 1

1 1

! s O ——=°
1 1

| |

1 1

1 1

' pp P2

¢ How many points can be inside R if each
pair is at least ¢ apart?

e In 2D, this number is at most 6!

e So, we only need to perform 6 x n/2
distance comparisons!

¢ We don’t have an O(nlogn) time algorithm
yet. Why?

Subhash Suri UC Santa Barbara

Conquer Step Pairs

e In order to determine at most 6 potential
mates of p, project p and all points of P,
onto line /.

pe-f----o g ¢ R o

P1 P2 :
e Pick out points whose projection is within
0 of p; at most six.

e We can do this for all p, by walking sorted
lists of P, and P, in total O(n) time.

e The sorted lists for P, P, can be obtained
from pre-sorting of S, 5s.

e Final recurrence is T'(n) =27 (n/2) + O(n),
which solves to T'(n) = O(nlogn).

Subhash Suri UC Santa Barbara

d-Dimensional Closest Pair

e Two key features of the divide and
conquer strategy are these:

1. The step where subproblems are
combined takes place in one lower
dimension.

2. The subproblems in the combine step
satisfy a sparsity condition.

3. Sparsity Condition: Any cube with side
length 2§ contains O(1) points of S.

4. Note that the original problem does not

necessarily have this condition.

Dividing
Plane H

AN

Subhash Suri UC Santa Barbara

The Sparse Problem

e Given n points with J-sparsity condition,
find all pairs within distance <.

e Divide the set into 57, 5> by a median
place H. Recursively solve the problem in
two halves.

e Project all points lying within ¢ thick slab
around H onto H. Call this set S’.

e S’ inherits the)-sparsity condition. Why?.

e Recursively solve the problem for S’ in
d — 1 space.

e The algorithms satisfies the recurrence
U(n,d) =2Un/2,d)+U(n,d— 1)+ O(n).

which solves to U(n,d) = O(n(logn)?1).

Subhash Suri UC Santa Barbara

Getting Sparsity

e Recall that divide and conquer algorithm
solves the left and right half problems
recursively.

e The sparsity holds for the merge problem,
which concerns points within ¢ thick slab
around H.

Dividing
Plane H

N 0

Set P2

e If S is a set where inter-point distance is
at least 0, then the o-cube centered at p
contains at most a constant number of
points of S, depending on d.

Subhash Suri UC Santa Barbara

Proof of Sparsity

e Let (' be the d-cube centered at p. Let L
be the set of points in C.

e Imagine placing a ball of radius §/2
around each point of L.

e No two balls can intersect. Why?
e The volume of cube C is (26)%.

e The volume of each ball is C—1d(5/2)d, for a
constant c,.

e Thus, the maximum number of balls, or
points, is at most cz4¢, which is O(1).

N

Subhash Suri UC Santa Barbara

Closest Pair Algorithm

e Divide the input S into 5,5 by the
median hyperplane normal to some axis.

e Recursively compute 01,9, for 57, 53. Set

6 = min(dy, d2).

e Let S’ be the set of points that are within
0 of H, projected onto H.

e Use the J-sparsity condition to recursively
examine all pairs in S'—there are only
O(n) pairs.

e The recurrence for the final algorithm is:

T(n,d) = 2T(n/2,d)+U(n,d—1)+ O(n)
= 2T(n/2,d) + O(n(logn)*~?) + O(n)
= O(n(logn)®™1).

Subhash Suri UC Santa Barbara

Improving the Algorithm

e If we could show that the problem size in
the conquer step is m < n/(logn)?=2, then
U(m,d—1) = O(m(logm)?=2) = O(n).

e This would give final recurrence
T(n,d) =2T(n/2,d) +O(n) + O(n), which
solves to O(nlogn).

e¢ Theorem: Given a set S with J-sparsity,
there exists a hyperplane H normal to
some axis such that

1. |51],[S2| > n/4d.
2. Number of points within 0 of H is

((log Z)d—2) ‘

3. H can be found in O(n) time.

Subhash Suri UC Santa Barbara

Sparse Hyperplane

e We prove the theorem for 2D. Show there
is a line with a4/n points within § of it, for
some constant a.

e For contradiction, assume no such line
exists.

e Partition the plane by placing vertical
lines at distance 20 from each other, where
n/8 points to the left of leftmost line, and
right of rightmost line.

n/8 points
2 >[n/2 poirts >
= o
o
o 2 | I'ines
x 7]
= 20

20
n/8 points
k lines

Subhash Suri UC Santa Barbara

Sparse Hyperplane

e If there are k slabs, we have kay/n < 3n/4,
which gives k < 2-/n.

n/8 points
2z >[n/2 poirjts 2
— °
o o
X 7]
= 25
20
n/8 points
k lines

| lines

e Similarly, if there is no horizontal line
with desired properties, we get [< %\/ﬁ

e By sparsity, number of points in any 20

cell is some constant c.

Subhash Suri

UC Santa Barbara

Sparse Hyperplane

n/8 points

\

n/2 poirfts

[lines

n/8 points
swiod gu

20

20

n/8 points

k lines

e This gives that the num. of points inside

all the slabs is at most ckl, which is at

most (%)2 cn.

e Since there are > n/2 points inside the
slabs, this is a contradiction if we choose

VvV 18¢c
o > 1

e So, one of these k vertical of [horizontal
lines must satisfy the desired properties.

e Since we know §, we can check these k + [

lines and choose the correct one in O(n)
time.

E T T T o

Subhash Suri UC Santa Barbara

Optimal Algorithm

e Actually we can start the algorithm with
such a hyperplane.

e The divide and conquer algorithm now
satisfies the recurrence

T(n,d) =2T(n/2,d) +U(m,d—1)+ O(n).

e By new sparsity claim, m < n/(log n)d_Q,

and so U(m,d — 1) = O(m(logm)?=2) = O(n).
e Thus, T'(n,d) =2T(n/2,d) + O(n) + O(n),
which solves to O(nlogn).

e Solves the Closest Pair problem in fixed d
in optimal O(nlogn) time.

Subhash Suri UC Santa Barbara

