Closest Pair Problem

- Given n points in d-dimensions, find two whose mutual distance is smallest.
- Fundamental problem in many applications as well as a key step in many algorithms.

- A naive algorithm takes $O\left(d n^{2}\right)$ time.
- Element uniqueness reduces to Closest Pair, so $\Omega(n \log n)$ lower bound.
- We will develop a divide-and-conquer based $O(n \log n)$ algorithm; dimension d assumed constant.

1-Dimension Problem

- 1D problem can be solved in $O(n \log n)$ via sorting.
- Sorting, however, does not generalize to higher dimensions. So, let's develop a divide-and-conquer for 1D.
- Divide the points S into two sets S_{1}, S_{2} by some x-coordinate so that $p<q$ for all $p \in S_{1}$ and $q \in S_{2}$.
- Recursively compute closest pair $\left(p_{1}, p_{2}\right)$ in S_{1} and $\left(q_{1}, q_{2}\right)$ in S_{2}.

median m
- Let δ be the smallest separation found so far:

$$
\delta=\min \left(\left|p_{2}-p_{1}\right|,\left|q_{2}-q_{1}\right|\right)
$$

1D Divide \& Conquer

median m

- The closest pair is $\left\{p_{1}, p_{2}\right\}$, or $\left\{q_{1}, q_{2}\right\}$, or some $\left\{p_{3}, q_{3}\right\}$ where $p_{3} \in S_{1}$ and $q_{3} \in S_{2}$.
- Key Observation: If m is the dividing coordinate, then p_{3}, q_{3} must be within δ of m.
- In 1D, p_{3} must be the rightmost point of S_{1} and q_{3} the leftmost point of S_{2}, but these notions do not generalize to higher dimensions.
- How many points of S_{1} can lie in the interval $(m-\delta, m]$?
- By definition of δ, at most one. Same holds for S_{2}.

1D Divide \& Conquer

median m

- Closest-Pair (S).
- If $|S|=1$, output $\delta=\infty$.

If $|S|=2$, output $\delta=\left|p_{2}-p_{1}\right|$.
Otherwise, do the following steps:

1. Let $m=\operatorname{median}(S)$.
2. Divide S into S_{1}, S_{2} at m.
3. $\delta_{1}=$ Closest-Pair $\left(S_{1}\right)$.
4. $\delta_{2}=$ Closest-Pair $\left(S_{2}\right)$.
5. δ_{12} is minimum distance across the cut.
6. Return $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{12}\right)$.

- Recurrence is $T(n)=2 T(n / 2)+O(n)$, which solves to $T(n)=O(n \log n)$.

2-D Closest Pair

- We partition S into S_{1}, S_{2} by vertical line ℓ defined by median x-coordinate in S.
- Recursively compute closest pair distances δ_{1} and δ_{2}. Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$.
- Now compute the closest pair with one point each in S_{1} and S_{2}.

- In each candidate pair (p, q), where $p \in S_{1}$ and $q \in S_{2}$, the points p, q must both lie within δ of ℓ.

2-D Closest Pair

- At this point, complications arise, which weren't present in 1D. It's entirely possible that all $n / 2$ points of S_{1} (and S_{2}) lie within δ of ℓ.

- Naively, this would require $n^{2} / 4$ calculations.
- We show that points in P_{1}, P_{2} (δ strip around ℓ) have a special structure, and solve the conquer step faster.

Conquer Step

- Consider a point $p \in S_{1}$. All points of S_{2} within distance δ of p must lie in a $\delta \times 2 \delta$ rectangle R.

- How many points can be inside R if each pair is at least δ apart?
- In 2D, this number is at most 6!
- So, we only need to perform $6 \times n / 2$ distance comparisons!
- We don't have an $O(n \log n)$ time algorithm yet. Why?

Conquer Step Pairs

- In order to determine at most 6 potential mates of p, project p and all points of P_{2} onto line ℓ.

- Pick out points whose projection is within δ of p; at most six.
- We can do this for all p, by walking sorted lists of P_{1} and P_{2}, in total $O(n)$ time.
- The sorted lists for P_{1}, P_{2} can be obtained from pre-sorting of S_{1}, S_{2}.
- Final recurrence is $T(n)=2 T(n / 2)+O(n)$, which solves to $T(n)=O(n \log n)$.

d-Dimensional Closest Pair

- Two key features of the divide and conquer strategy are these:

1. The step where subproblems are combined takes place in one lower dimension.
2. The subproblems in the combine step satisfy a sparsity condition.
3. Sparsity Condition: Any cube with side length 2δ contains $O(1)$ points of S.
4. Note that the original problem does not necessarily have this condition.

The Sparse Problem

- Given n points with δ-sparsity condition, find all pairs within distance $\leq \delta$.
- Divide the set into S_{1}, S_{2} by a median place H. Recursively solve the problem in two halves.
- Project all points lying within δ thick slab around H onto H. Call this set S^{\prime}.
- S^{\prime} inherits the δ-sparsity condition. Why?.
- Recursively solve the problem for S^{\prime} in $d-1$ space.
- The algorithms satisfies the recurrence

$$
U(n, d)=2 U(n / 2, d)+U(n, d-1)+O(n)
$$

which solves to $U(n, d)=O\left(n(\log n)^{d-1}\right)$.

Getting Sparsity

- Recall that divide and conquer algorithm solves the left and right half problems recursively.
- The sparsity holds for the merge problem, which concerns points within δ thick slab around H.

- If S is a set where inter-point distance is at least δ, then the δ-cube centered at p contains at most a constant number of points of S, depending on d.

Proof of Sparsity

- Let C be the δ-cube centered at p. Let L be the set of points in C.
- Imagine placing a ball of radius $\delta / 2$ around each point of L.
- No two balls can intersect. Why?
- The volume of cube C is $(2 \delta)^{d}$.
- The volume of each ball is $\frac{1}{c_{d}}(\delta / 2)^{d}$, for a constant c_{d}.
- Thus, the maximum number of balls, or points, is at most $c_{d} 4^{d}$, which is $O(1)$.

Closest Pair Algorithm

- Divide the input S into S_{1}, S_{2} by the median hyperplane normal to some axis.
- Recursively compute δ_{1}, δ_{2} for S_{1}, S_{2}. Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$.
- Let S^{\prime} be the set of points that are within δ of H, projected onto H.
- Use the δ-sparsity condition to recursively examine all pairs in S^{\prime}-there are only $O(n)$ pairs.
- The recurrence for the final algorithm is:

$$
\begin{aligned}
T(n, d) & =2 T(n / 2, d)+U(n, d-1)+O(n) \\
& =2 T(n / 2, d)+O\left(n(\log n)^{d-2}\right)+O(n) \\
& =O\left(n(\log n)^{d-1}\right)
\end{aligned}
$$

Improving the Algorithm

- If we could show that the problem size in the conquer step is $m \leq n /(\log n)^{d-2}$, then $U(m, d-1)=O\left(m(\log m)^{d-2}\right)=O(n)$.
- This would give final recurrence $T(n, d)=2 T(n / 2, d)+O(n)+O(n)$, which solves to $O(n \log n)$.
- Theorem: Given a set S with δ-sparsity, there exists a hyperplane H normal to some axis such that

1. $\left|S_{1}\right|,\left|S_{2}\right| \geq n / 4 d$.
2. Number of points within δ of H is
$O\left(\frac{n}{(\log n)^{d-2}}\right)$.
3. H can be found in $O(n)$ time.

Sparse Hyperplane

- We prove the theorem for 2D. Show there is a line with $\alpha \sqrt{n}$ points within δ of it, for some constant α.
- For contradiction, assume no such line exists.
- Partition the plane by placing vertical lines at distance 2δ from each other, where $n / 8$ points to the left of leftmost line, and right of rightmost line.

Sparse Hyperplane

- If there are k slabs, we have $k \alpha \sqrt{n} \leq 3 n / 4$, which gives $k \leq \frac{3}{4 \alpha} \sqrt{n}$.

- Similarly, if there is no horizontal line with desired properties, we get $l \leq \frac{3}{4 \alpha} \sqrt{n}$.
- By sparsity, number of points in any 2δ cell is some constant c.

Sparse Hyperplane

- This gives that the num. of points inside all the slabs is at most $c k l$, which is at most $\left(\frac{3}{4 \alpha}\right)^{2}$ cn.
- Since there are $\geq n / 2$ points inside the slabs, this is a contradiction if we choose $\alpha \geq \frac{\sqrt{18 c}}{4}$.
- So, one of these k vertical of l horizontal lines must satisfy the desired properties.
- Since we know δ, we can check these $k+l$ lines and choose the correct one in $O(n)$ time.

Optimal Algorithm

- Actually we can start the algorithm with such a hyperplane.
- The divide and conquer algorithm now satisfies the recurrence $T(n, d)=2 T(n / 2, d)+U(m, d-1)+O(n)$.
- By new sparsity claim, $m \leq n /(\log n)^{d-2}$, and so $U(m, d-1)=O\left(m(\log m)^{d-2}\right)=O(n)$.
- Thus, $T(n, d)=2 T(n / 2, d)+O(n)+O(n)$, which solves to $O(n \log n)$.
- Solves the Closest Pair problem in fixed d in optimal $O(n \log n)$ time.

