
Subhash Suri UC Santa Barbara

Closest Pair Problem

• Given n points in d-dimensions, find two
whose mutual distance is smallest.

• Fundamental problem in many
applications as well as a key step in many
algorithms.

p
q

• A naive algorithm takes O(dn2) time.

• Element uniqueness reduces to Closest
Pair, so Ω(n log n) lower bound.

• We will develop a divide-and-conquer
based O(n log n) algorithm; dimension d
assumed constant.

Subhash Suri UC Santa Barbara

1-Dimension Problem

• 1D problem can be solved in O(n log n) via
sorting.

• Sorting, however, does not generalize to
higher dimensions. So, let’s develop a
divide-and-conquer for 1D.

• Divide the points S into two sets S1, S2 by
some x-coordinate so that p < q for all
p ∈ S1 and q ∈ S2.

• Recursively compute closest pair (p1, p2) in
S1 and (q1, q2) in S2.

p1 p2 p3 q3 q1 q2

S1 S2

median m

• Let δ be the smallest separation found so
far:

δ = min(|p2 − p1|, |q2 − q1|)

Subhash Suri UC Santa Barbara

1D Divide & Conquer

p1 p2 p3 q3 q1 q2

S1 S2

median m

• The closest pair is {p1, p2}, or {q1, q2}, or
some {p3, q3} where p3 ∈ S1 and q3 ∈ S2.

• Key Observation: If m is the dividing
coordinate, then p3, q3 must be within δ of
m.

• In 1D, p3 must be the rightmost point of
S1 and q3 the leftmost point of S2, but
these notions do not generalize to higher
dimensions.

• How many points of S1 can lie in the
interval (m− δ,m]?

• By definition of δ, at most one. Same
holds for S2.

Subhash Suri UC Santa Barbara

1D Divide & Conquer

p1 p2 p3 q3 q1 q2

S1 S2

median m

• Closest-Pair (S).

• If |S| = 1, output δ = ∞.
If |S| = 2, output δ = |p2 − p1|.
Otherwise, do the following steps:

1. Let m = median(S).
2. Divide S into S1, S2 at m.
3. δ1 = Closest-Pair(S1).
4. δ2 = Closest-Pair(S2).
5. δ12 is minimum distance across the cut.
6. Return δ = min(δ1, δ2, δ12).

• Recurrence is T (n) = 2T (n/2) + O(n), which
solves to T (n) = O(n log n).

Subhash Suri UC Santa Barbara

2-D Closest Pair

• We partition S into S1, S2 by vertical line `
defined by median x-coordinate in S.

• Recursively compute closest pair distances
δ1 and δ2. Set δ = min(δ1, δ2).

• Now compute the closest pair with one
point each in S1 and S2.

δ2δ1

p1

p2

q1 q2

S1 S2

δ δ

P1 P2

• In each candidate pair (p, q), where p ∈ S1

and q ∈ S2, the points p, q must both lie
within δ of `.

Subhash Suri UC Santa Barbara

2-D Closest Pair

• At this point, complications arise, which
weren’t present in 1D. It’s entirely
possible that all n/2 points of S1 (and S2)
lie within δ of `.

δ2δ1

p1

p2

q1 q2

S1 S2

δ δ

P1 P2

• Naively, this would require n2/4
calculations.

• We show that points in P1, P2 (δ strip
around `) have a special structure, and
solve the conquer step faster.

Subhash Suri UC Santa Barbara

Conquer Step

• Consider a point p ∈ S1. All points of S2

within distance δ of p must lie in a δ × 2δ
rectangle R.

P2P1

δ

δ

δ

p

δ

δ

δ

R

R

• How many points can be inside R if each
pair is at least δ apart?

• In 2D, this number is at most 6!

• So, we only need to perform 6× n/2
distance comparisons!

• We don’t have an O(n log n) time algorithm
yet. Why?

Subhash Suri UC Santa Barbara

Conquer Step Pairs

• In order to determine at most 6 potential
mates of p, project p and all points of P2

onto line `.

P2P1

δ

δ

δ

p

δ

δ

δ

R

R

• Pick out points whose projection is within
δ of p; at most six.

• We can do this for all p, by walking sorted
lists of P1 and P2, in total O(n) time.

• The sorted lists for P1, P2 can be obtained
from pre-sorting of S1, S2.

• Final recurrence is T (n) = 2T (n/2) + O(n),
which solves to T (n) = O(n log n).

Subhash Suri UC Santa Barbara

d-Dimensional Closest Pair

• Two key features of the divide and
conquer strategy are these:

1. The step where subproblems are
combined takes place in one lower
dimension.

2. The subproblems in the combine step
satisfy a sparsity condition.

3. Sparsity Condition: Any cube with side
length 2δ contains O(1) points of S.

4. Note that the original problem does not
necessarily have this condition.

Dividing
Plane H

Subhash Suri UC Santa Barbara

The Sparse Problem

• Given n points with δ-sparsity condition,
find all pairs within distance ≤ δ.

• Divide the set into S1, S2 by a median
place H. Recursively solve the problem in
two halves.

• Project all points lying within δ thick slab
around H onto H. Call this set S′.

• S′ inherits the δ-sparsity condition. Why?.

• Recursively solve the problem for S′ in
d− 1 space.

• The algorithms satisfies the recurrence

U(n, d) = 2U(n/2, d) + U(n, d− 1) + O(n).

which solves to U(n, d) = O(n(log n)d−1).

Subhash Suri UC Santa Barbara

Getting Sparsity

• Recall that divide and conquer algorithm
solves the left and right half problems
recursively.

• The sparsity holds for the merge problem,
which concerns points within δ thick slab
around H.

Dividing
Plane H

δ

Set P2

• If S is a set where inter-point distance is
at least δ, then the δ-cube centered at p
contains at most a constant number of
points of S, depending on d.

Subhash Suri UC Santa Barbara

Proof of Sparsity

• Let C be the δ-cube centered at p. Let L
be the set of points in C.

• Imagine placing a ball of radius δ/2
around each point of L.

• No two balls can intersect. Why?

• The volume of cube C is (2δ)d.

• The volume of each ball is 1
cd

(δ/2)d, for a
constant cd.

• Thus, the maximum number of balls, or
points, is at most cd4d, which is O(1).

a b

δ

δ/2

ball

ball

Subhash Suri UC Santa Barbara

Closest Pair Algorithm

• Divide the input S into S1, S2 by the
median hyperplane normal to some axis.

• Recursively compute δ1, δ2 for S1, S2. Set
δ = min(δ1, δ2).

• Let S′ be the set of points that are within
δ of H, projected onto H.

• Use the δ-sparsity condition to recursively
examine all pairs in S′—there are only
O(n) pairs.

• The recurrence for the final algorithm is:

T (n, d) = 2T (n/2, d) + U(n, d− 1) + O(n)

= 2T (n/2, d) + O(n(log n)d−2) + O(n)

= O(n(log n)d−1).

Subhash Suri UC Santa Barbara

Improving the Algorithm

• If we could show that the problem size in
the conquer step is m ≤ n/(log n)d−2, then
U(m, d− 1) = O(m(log m)d−2) = O(n).

• This would give final recurrence
T (n, d) = 2T (n/2, d) + O(n) + O(n), which
solves to O(n log n).

• Theorem: Given a set S with δ-sparsity,
there exists a hyperplane H normal to
some axis such that

1. |S1|, |S2| ≥ n/4d.
2. Number of points within δ of H is

O(n
(log n)d−2).

3. H can be found in O(n) time.

Subhash Suri UC Santa Barbara

Sparse Hyperplane

• We prove the theorem for 2D. Show there
is a line with α

√
n points within δ of it, for

some constant α.

• For contradiction, assume no such line
exists.

• Partition the plane by placing vertical
lines at distance 2δ from each other, where
n/8 points to the left of leftmost line, and
right of rightmost line.

> n/2 points

2δ

2δ

k lines

l lines

n/8 points

n/8 points

n/
8

po
in

ts

n/8 points

Subhash Suri UC Santa Barbara

Sparse Hyperplane

• If there are k slabs, we have kα
√

n ≤ 3n/4,
which gives k ≤ 3

4α

√
n.

> n/2 points

2δ

2δ

k lines

l lines

n/8 points

n/8 points

n/
8

po
in

ts

n/8 points

• Similarly, if there is no horizontal line
with desired properties, we get l ≤ 3

4α

√
n.

• By sparsity, number of points in any 2δ
cell is some constant c.

Subhash Suri UC Santa Barbara

Sparse Hyperplane

> n/2 points

2δ

2δ

k lines

l lines

n/8 points

n/8 points

n/
8

po
in

ts

n/8 points

• This gives that the num. of points inside
all the slabs is at most ckl, which is at
most

(
3
4α

)2
cn.

• Since there are ≥ n/2 points inside the
slabs, this is a contradiction if we choose
α ≥

√
18c
4 .

• So, one of these k vertical of l horizontal
lines must satisfy the desired properties.

• Since we know δ, we can check these k + l
lines and choose the correct one in O(n)
time.

Subhash Suri UC Santa Barbara

Optimal Algorithm

• Actually we can start the algorithm with
such a hyperplane.

• The divide and conquer algorithm now
satisfies the recurrence
T (n, d) = 2T (n/2, d) + U(m, d− 1) + O(n).

• By new sparsity claim, m ≤ n/(log n)d−2,
and so U(m, d− 1) = O(m(log m)d−2) = O(n).

• Thus, T (n, d) = 2T (n/2, d) + O(n) + O(n),
which solves to O(n log n).

• Solves the Closest Pair problem in fixed d
in optimal O(n log n) time.

