Point Location

- Preprocess a planar, polygonal subdivision for point location queries.

$$
\mathrm{p}=(18,11)
$$

- Input is a subdivision S of complexity n, say, number of edges.
- Build a data structure on S so that for a query point $p=(x, y)$, we can find the face containing p fast.
- Important metrics: space and query complexity.

The Slab Method

- Draw a vertical line through each vertex. This decomposes the plane into slabs.
- In each slab, the vertical order of line segments remains constant.

Partition into slabs

Slab 1

- If we know which slab $p=(x, y)$ lies, we can perform a binary search, using the sorted order of segments.

The Slab Method

- To find which slab contains p, we perform a binary search on x, among slab boundaries.
- A second binary search in the slab determines the face containing p.

Partition into slabs

Slab 1

- Thus, the search complexity is $O(\log n)$.
- But the space complexity is $\Theta\left(n^{2}\right)$.

Optimal Schemes

- There are other schemes ($k d$-tree, quad-trees) that can perform point location reasonably well, they lack theoretical guarantees. Most have very bad worst-case performance.
- Finding an optimal scheme was challenging. Several schemes were developed in 70's that did either $O(\log n)$ query, but with $O(n \log n)$ space, or $O\left(\log ^{2} n\right)$ query with $O(n)$ space.
- Today, we will discuss an elegant and simple method that achieved optimality, $O(\log n)$ time and $O(n)$ space [D. Kirkpatrick '83].
- Kirkpatrick's scheme however involves large constant factors, which make it less attractive in practice.
- Later we will discuss a more practical, randomized optimal scheme.

Kirkpatrick's Algorithm

- Start with the assumption that planar subdivision is a triangulation.
- If not, triangulate each face, and label each triangular face with the same label as the original containing face.
- If the outer face is not a triangle, compute the convex hull, and triangulate the pockets between the subdivision and CH .
- Now put a large triangle $a b c$ around the subdivision, and triangulate the space between the two.

Modifying Subdivision

- By Euler'e formula, the final size of this triangulated subdivision is still $O(n)$.
- This transformation from S to triangulation can be performed in $O(n \log n)$ time.

- If we can find the triangle containing p, we will know the original subdivision face containing p.

Hierarchical Method

- Kirkpatrick's method is hierarchical: produce a sequence of increasingly coarser triangulations, so that the last one has $O(1)$ size.
- Sequence of triangulations $T_{0}, T_{1}, \ldots, T_{k}$, with following properties:

1. T_{0} is the initial triangulation, and T_{k} is just the outer triangle $a b c$.
2. k is $O(\log n)$.
3. Each triangle in T_{i+1} overlaps $O(1)$ triangles of T_{i}.

- Let us first discuss how to construct this sequence of triangulations.

Building the Sequence

- Main idea is to delete some vertices of T_{i}.
- Their deletion creates holes, which we re-triangulate.

Vertex deletion and re-triangulation

- We want to go from $O(n)$ size subdivision T_{0} to $O(1)$ size subdivision T_{k} in $O(\log n)$ steps.
- Thus, we need to delete a constant fraction of vertices from T_{i}.
- A critical condition is to ensure each new triangle in T_{i+1} overlaps with $O(1)$ triangles of T_{i}.

Independent Sets

- Suppose we want to go from T_{i} to T_{i+1}, by deleting some points.
- Kirkpatrick's choice of points to be deleted had the following two properties:
[Constant Degree] Each deletion candidate has $O(1)$ degree in graph T_{i}.
- If p has degree d, then deleting p leaves a hole that can be filled with $d-2$ triangles.
- When we re-triangulate the hole, each new triangle can overlap at most d original triangles in T_{i}.

Vertex deletion and re-triangulation

Independent Sets

[Independent Sets] No two deletion candidates are adjacent.

- This makes re-triangulation easier; each hole handled independently.

Vertex deletion and re-triangulation

I.S. Lemma

Lemma: Every planar graph on n vertices contains an independent vertex set of size $n / 18$ in which each vertex has degree at most 8. The set can be found in $O(n)$ time.

- We prove this later. Let's use this now to build the triangle hierarchy, and show how to perform point location.
- Start with T_{0}. Select an ind set S_{0} of size $n / 18$, with max degree 8 . Never pick a, b, c, the outer triangle's vertices.
- Remove the vertices of S_{0}, and re-triangulate the holes.
- Label the new triangulation T_{1}. It has at most $\frac{17}{18} n$ vertices. Recursively build the hierarchy, until T_{k} is reduced to abc.
- The number of vertices drops by $17 / 18$ each time, so the depth of hierarchy is $k=\log _{18 / 17} n \approx 12 \log n$

Illustration

The Data Structure

- Modeled as a DAG: the root corresponds to single triangle T_{k}.
- The nodes at next level are triangles of T_{k-1}.
- Each node for a triangle in T_{i+1} has pointers to all triangles of T_{i} that it overlaps.
- To locate a point p, start at the root. If p outside T_{k}, we are done (exterior face). Otherwise, set $t=T_{k}$, as the triangle at current level containing p.

The Search

- Check each triangle of T_{k-1} that overlaps with t-at most 6 such triangles. Update t, and descend the structure until we reach T_{0}.
- Output t.

Analysis

- Search time is $O(\log n)$-there are $O(\log n)$ levels, and it takes $O(1)$ time to move from level i to level $i-1$.
- Space complexity requires summing up the sizes of all the triangulations.
- Since each triangulation is a planar graph, it is sufficient to count the number of vertices.
- The total number of vertices in all triangulations is
$n\left(1+(17 / 18)+(17 / 18)^{2}+(17 / 18)^{3}+\cdots\right) \leq 18 n$.
- Kirkpatrick structure has $O(n)$ space and $O(\log n)$ query time.

Finding I.S.

- We describe an algorithm for finding the independent set with desired properties.
- Mark all nodes of degree ≥ 9.
- While there is an unmarked node, do

1. Choose an unmarked node v.
2. Add v to IS.
3. Mark v and all its neighbors.

- Algorithm can be implemented in $O(n)$ time-keep unmarked vertices in list, and representing T so that neighbors can be found in $O(1)$ time.

I.S. Analysis

- Existence of large size, low degree IS follows from Euler's formula for planar graphs.
- A triangulated planar graph on n vertices has $e=3 n-6$ edges.
- Summing over the vertex degrees, we get

$$
\sum_{v} \operatorname{deg}(v)=2 e=6 n-12<6 n .
$$

- We now claim that at least $n / 2$ vertices have degree ≤ 8.
- Suppose otherwise. Then $n / 2$ vertices all have degree ≥ 9. The remaining have degree at least 3. (Why?)
- Thus, the sum of degrees will be at least $9 \frac{n}{2}+3 \frac{n}{2}=6 n$, which contradicts the degree bound above.
- So, in the beginning, at least $n / 2$ nodes are unmarked. Each chosen v marks at most 8 other nodes (total 9 counting itself.)
- Thus, the node selection step can be repeated at least $n / 18$ times.
- So, there is a I.S. of size $\geq n / 18$, where each node has degree ≤ 8.

Trapezoidal Maps

- A randomized point location scheme, with (expected) query $O(\log n)$, space $O(n)$, and construction time $O(n \log n)$.
- The expectation does not depend on the polygonal subdivision. The bounds holds for any subdivision.
- It appears simpler to implement, and its constant factors are better than Kirkpatrick's.
- The algorithm is based on trapezoidal maps, or decompositions, also encountered earlier in triangulation.

Trapezoidal Maps

- Input a set of non-intersecting line segments $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$.
- Query: given point p, report the segment directly above p.
- The region label can be easily encoded into the line segments.
- Map is created by shooting a ray vertically from each vertex, up and down, until a segment is hit.
- In order to avoid degeneracies, assume that no segment is vertical.
- The resulting rays plus the segments define the trapezoidal map.

Trapezoidal Maps

- Enclose S into a bounding box to avoid infinite rays.
- All faces of the subdivision are trapezoids, with vertical sides.
- Size Claim: If S has n segments, the map has at most $6 n+4$ vertices and $3 n+1$ traps.

- Each vertex shoots one ray, each resulting in two new vertices, so at most $6 n$ vertices, plus 4 for the outer box.
- The left boundary of each trapezoid is defined by a segment endpoint, or lower left corner of enclosing box.
- The corner of box acts as leftpoint for one trap; the right endpoint of any segment also for one trap; and left endpoint of any segment for at most 2 trapezoids. So total of $3 n+1$.

Construction

- Plane sweep possible, but not helpful for point location.
- Instead we use randomized incremental construction.
- Historically, invented for randomized segment intersection. Point location an intermediate problem.
- Start with outer box, one trapezoid. Then, add one segment at a time, in an arbitrary, not sorted, order.

Before

After inserting s

Construction

- Let $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ be first i segments, and \mathcal{T}_{i} be their trapezoidal map.
- Suppose \mathcal{T}_{i-1} built, and we add s_{i}.
- Find the trapezoid containing the left endpoint of s_{i}. Defer for now: this is point location.
- Walk through \mathcal{T}_{i-1}, identifying trapezoids that are cut. Then, "fix them up".
- Fixing up means, shoot rays from left and right endpoints of s_{i}, and trim the earlier rays that are cut by s_{i}.

Before

After inserting s

Analysis

- Observation: Final structure of trap map does not depend on the order of segments. (Why?)
- Claim: Ignoring point location, segment i 's insertion takes $O\left(k_{i}\right)$ time if k_{i} new trapezoids created.
- Proof:
- Each endpoint of s_{i} shoots two rays.
- Additionally, suppose s_{i} interrupts K existing ray shots, so total of $K+4$ rays need processing.
- If $K=0$, we get exactly 4 new trapezoids.
- For each interrupted ray shot, a new trapezoid created.
- With DCEL, update takes $O(1)$ per ray.

Before

After

Worst Case

- In a worst-case, k_{i} can be $\Theta(i)$. This can happen for all i, making the worst-case run time $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$.
- Using randomization, we prove that if segments are inserted in random order, then expected value of k_{i} is $O(1)$!
- So, for each segment s_{i}, the expected number of new trapezoids created is a constant.
- Figure below shows a worst-case example. How will randomization help?

Randomization

- Theorem: Assume $s_{1}, s_{2}, \ldots, s_{n}$ is a random permutation. Then, $E\left[k_{i}\right]=O(1)$, where k_{i} trapezoids created upon s_{i} 's insertion, and the expectation is over all permutations.

- Proof.

1. Consider \mathcal{T}_{i}, the map after s_{i} 's insertion.
2. \mathcal{I}_{i} does not depend on the order in which segments s_{1}, \ldots, s_{i} were added.
3. Reshuffle s_{1}, \ldots, s_{i}. What's the probability that a particular s was the last segment added?
4. The probability is $1 / i$.
5. We want to compute the number of trapezoids that would have been created if s were the last segment.

The trapezoids that depend on s

The segments that the trapezoid depends on.

Proof

- Say trapezoid Δ depends on s if Δ would be created by s if s were added last.
- Want to count trapezoids that depend on each segment, and then find the average over all segments.
- Define $\delta(\Delta, s)=1$ if Δ depends on s; otherwise, $\delta(\Delta, s)=0$.

The trapezoids that depend on s

The segments that the trapezoid depends on.

- The expected complexity is

$$
E\left[k_{i}\right]=\frac{1}{i} \sum_{s \in S_{i}} \sum_{\Delta \in \mathcal{T}_{i}} \delta(\Delta, s)
$$

- Some segments create a lot of trapezoids; others very few.
- Switch the order of summation:

$$
E\left[k_{i}\right]=\frac{1}{i} \sum_{\Delta \in \mathcal{T}_{i}} \sum_{s \in S_{i}} \delta(\Delta, s)
$$

Proof

The trapezoids that depend on s

The segments that the trapezoid depends on.

- Now we are counting number of segments each trapezoid depents on.

$$
E\left[k_{i}\right]=\frac{1}{i} \sum_{\Delta \in \mathcal{T}_{i}} \sum_{s \in S_{i}} \delta(\Delta, s)
$$

- This is much easier-each Δ depends on at most 4 segments.
- Top and bottom of Δ defined by two segments; if either of them added last, then Δ comes into existence.
- Left and right sides defined by two segments endpoints, and if either one added last, Δ is created.
- Thus, $\sum_{s \in S_{i}} \delta(\Delta, s) \leq 4$.
- \mathcal{T}_{i} has $O(i)$ trapezoids, so

$$
E\left[k_{i}\right]=\frac{1}{i} \sum_{\Delta \in \mathcal{T}_{i}} 4=\frac{1}{i} 4\left|\mathcal{T}_{i}\right|=\frac{1}{i} O(i)=O(1)
$$

- End of proof.

Point Location

- Like Kirkpatrick's, point location structure is a rooted directed acyclic graph.
- To query processor, it looks like a binary tree, but subtree may be shared.
- Tree has two types of nodes:
- x-node: contains the x-coordinate of a segment endpoint. (Circle)
- y-node: pointer to a segment. (Hexagon)
- A leaf for each trapzedoid.

Point Location

- Children of x-node correspond to points lying to the left and right of x coord.
- Children of y-node correspond to space below and above the segment.
- y-node searched only when query's x-coordinate is within segment's span.
- Example: query in region D.

- Encodes the trap decomposition, and enables point location during the construction as well.

Building the Structure

- Incremental construction, mirroring the trapezoidal map.
- When a segment s added, modify the tree to account for changes in trapezoids.
- Essentially, some leaves will be replaced by new subtrees.
- Like Kirkpatrick's, each old trapezoid will overlap $O(1)$ new trapezoids.

- Each trapezoid appears exactly once as a leaf. For instance, F.

Adding a Segment

- Consider adding segment s_{3}.

Adding a Segment

- Changes are highly local.
- If segment s passes entirely through an old trapezoid t, then t is replaced by two traps $t^{\prime}, t^{\prime \prime}$.
- During search, we need to compare query point to s to decide above/below.
- So, a new y-node added which is the parent of t^{\prime} and $t^{\prime \prime}$.
- If an endpoint of s lies in t, then we add a x-node to decide left/right and a y-node for the segment.

Analysis

- Space is $O(n)$, and query time is $O(\log n)$, both in expectation.
- Expected bound depends on the random permutation, and not on the choice of input segments or the query point.
- The data structure size \propto number of trapezpoids, which is $O(n)$, since $O(1)$ expected number of traps created when a new segment inserted.
- In order to analyze query bound, fix a query q.
- We consider how q moves incrementally through the trapezoidal map as new segments are inserted.
- Search complexity \propto number of trapezoids encountered by q.

Search Analysis

- Let Δ_{i} be trapezoid containing q after insertion of i th segment.
- If $\Delta_{i}=\Delta_{i-1}$ then new insertion does not affect q 's trapezoid. (E.g. $q \in B$ and s_{3} 's insertion.)
- If $\Delta_{i} \neq \Delta_{i-1}$, then new segment deleted q 's trapezoid, and q needs to locate itself among the (at most 4) new traps.
- q could fall 3 levels in the tree. E.g. $q \in C$ falling to J after s_{3} 's insertion.

Search Analysis

- Let P_{i} be probability that $\Delta_{i} \neq \Delta_{i-1}$, over all random permutation.
- Since q can drop ≤ 3 levels, expected search path length is $\sum_{i=1}^{n} 3 P_{i}$.
- We will show that $P_{i} \leq 4 / i$. That will imply that expected search path length is

$$
3 \sum_{i=1}^{n} \frac{4}{i}=12 \sum_{i=1}^{n} \frac{1}{i}=12 \ln n
$$

- Why is $P_{i} \leq 4 / i$? Use backward analysis.
- The trapezoid Δ_{i} depends on at most 4 segments. The probability that i th segment is one of these 4 is at most $4 / i$.

Final Remarks

- Expectation only says that average search path is small. It can still have large variance.
- The trapezoidal map data structure has bounds on variance too. See the textbook for complete analysis.

Theorem: For any $\lambda>0$, the probability that depth of the randomized seach structure exceeds $3 \lambda \ln (n+1)$ is at most

$$
\frac{2}{(n+1)^{\lambda \ln 1.25-3}}
$$

- More careful analysis can provide better constants for the data structure.

