Range Searching

- Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

- Depends on type of objects and queries. Consider basic data structures with broad applicability.

- Time-Space tradeoff: the more we preprocess and store, the faster we can solve a query.

- Consider data structures with (nearly) linear space.
Orthogonal Range Searching

• Fix a n-point set P. It has 2^n subsets. How many are possible answers to geometric range queries?

Some impossible rectangular ranges (1,2,3), (1,4), (2,5,6).
Range (1,5,6) is possible.

• Efficiency comes from the fact that only a small fraction of subsets can be formed.

• Orthogonal range searching deals with point sets and axis-aligned rectangle queries.

• These generalize 1-dimensional sorting and searching, and the data structures are based on compositions of 1-dim structures.
1-Dimensional Search

- Points in 1D \(P = \{p_1, p_2, \ldots, p_n\} \).
- Queries are intervals.

```
3 7 9 21 23 25 45 70 72 100 120 21 25 3 7 9 45 70 72 100 120
```

- If the range contains \(k \) points, we want to solve the problem in \(O(\log n + k) \) time.

- Does hashing work? Why not?
- A sorted array achieves this bound. But it doesn’t extend to higher dimensions.
- Instead, we use a balanced binary tree.
Tree Search

- Build a balanced binary tree on the sorted list of points (keys).

- Leaves correspond to points; internal nodes are branching nodes.

- Given an interval \([x_{lo}, x_{hi}]\), search down the tree for \(x_{lo}\) and \(x_{hi}\).

- All leaves between the two form the answer.

- Tree searches takes \(2 \log n\), and reporting the points in the answer set takes \(O(k)\) time; assume leaves are linked together.
Canonical Subsets

- S_1, S_2, \ldots, S_k are canonical subsets, $S_i \subseteq P$, if the answer to any range query can be written as the disjoint union of some S_i’s.

- The canonical subsets may overlap.

- Key is to determine correct S_i’s, and given a query, efficiently determine the appropriate ones to use.

- In 1D, a canonical subset for each node of the tree: S_v is the set of points at the leaves of the subtree with root v.
1D Range Query

• Given query \([x_{lo}, x_{hi}]\), search down the tree for leftmost leaf \(u \geq x_{lo}\), and leftmost leaf \(v \geq x_{hi}\).

• All leaves between \(u\) and \(v\) are in the range.

• If \(u = x_{lo}\) or \(v = x_{hi}\), include that leaf’s canonical set (singleton) into the range.

• The remainder range determined by maximal subtree lying in the range \([u, v]\).
Query Processing

- Let z be the last node common to search paths from root to u, v.

- Follow the left path from z to u. When path goes left, add the canonical subset of right child. (Nodes 7, 3, 1 in Fig.)

- Follow the right path from z to v. When path goes right, add the canonical subset of left child. (Nodes 20, 22 in Fig.)
• Since search paths have $O(\log n)$ nodes, there are $O(\log n)$ canonical subsets, which are found in $O(\log n)$ time.

• To list the sets, traverse those subtrees in linear time, for additional $O(k)$ time.

• If only count is needed, storing sizes of canonical sets at nodes suffices.

• Data structure uses $O(n)$ space, and answers range queries in $O(\log n)$ time.
Multi-Dimensional Data

- Range searching in higher dimensions?
- kD-trees [Jon Bentley 1975]. Stands for k-dimensional trees.
- Simple, general, and arbitrary dimensional. Asymptotic search complexity not very good.
- Extends 1D tree, but alternates using x-y-coordinates to split. In k-dimensions, cycle through the dimensions.
kD-Trees

- A binary tree. Each node has two values: split dimension, and split value.

- If split along x, at coordinate s, then left child has points with x-coordinate $\leq s$; right child has remaining points. Same for y.

- When $O(1)$ points remain, put them in a leaf node.

- Data points at leaves only; internal nodes for branching and splitting.
To get balanced trees, use the **median** coordinate for splitting—median itself can be put in either half.

With median splitting, the height of the tree guaranteed to be $O(\log n)$.

Either cycle through the splitting dimensions, or make data-dependent choices. E.g. select dimension with max spread.
Space Partitioning View

- kD-tree induces a space subdivision—each node introduces a x- or y-aligned cut.
- Points lying on two sides of the cut are passed to two children nodes.
- The subdivision consists of rectangular regions, called cells (possibly unbounded).
- Root corresponds to entire space; each child inherits one of the halfspaces, so on.
- Leaves correspond to the terminal cells.
- Special case of a general partition BSP.
Construction

- Can be built in $O(n \log n)$ time recursively.
- Presort points by x and y-coordinates, and cross-link these two sorted lists.
- Find the x-median, say, by scanning the x list. Split the list into two. Use the cross-links to split the y-list in $O(n)$ time.
- Now two subproblems, each of size $n/2$, and with their own sorted lists. Recurse.
- Recurrence $T(n) = 2T(n/2) + n$, which solves to $T(n) = O(n \log n)$.
Searching kD-Trees

• Suppose query rectangle is R. Start at root node.

• Suppose current splitting line is vertical (analogous for horizontal). Let v, w be left and right children nodes.

• If v a leaf, report $\text{cell}(v) \cap R$; if $\text{cell}(v) \subseteq R$, report all points of $\text{cell}(v)$; if $\text{cell}(v) \cap R = \emptyset$, skip; otherwise, search subtree of v recursively.

• Do the same for w.

• Procedure obviously correct. What is the time complexity?
Search Complexity

- **When** \(\text{cell}(v) \subseteq R \), complexity is linear in output size.
- **It suffices to bound the number of nodes** \(v \) **visited for which the boundaries of** \(\text{cell}(v) \) **and** \(R \) **intersect.**
- **If** \(\text{cell}(v) \) **outside** \(R \), we don’t search it; if \(\text{cell}(v) \) **inside** \(R \), we enumerate all points in region of \(v \); a recursive call is made only if \(\text{cell}(v) \) **partially overlaps** \(R \); the \(kD \)-tree height is \(O(\log n) \).
- **Let** \(\ell \) **be the line defining one side of** \(R \).
- **We prove a bound on the number of cells that intersect** \(\ell \); this is more than what is needed; multiply by 4 for total bound.
• How many cells can a line intersect?

• Since splitting dimensions alternate, the key idea is to consider two levels of the tree at a time.

• Suppose the first cut is vertical, and second horizontal. We have 4 cells, each with \(n/4 \) points.

• A line intersects exactly two cells; the others cells will be either outside or entirely inside \(R \).

• The recurrence is

\[
Q(n) = \begin{cases}
1 & \text{if } n = 1, \\
2Q(n/4) + 2 & \text{otherwise.}
\end{cases}
\]
Search Complexity

- The recurrence \(Q(n) = 2Q(n/4) + 2 \) solves to
 \[
 Q(n) = O(\sqrt{n})
 \]

- \(kD\)-Tree is an \(O(n) \) space data structure that solves 2D range query in worst-case time \(O(\sqrt{n} + m) \), where \(m \) is the output size.
\textbf{\textit{d-Dim Search Complexity}}

- What’s the complexity in higher dimensions?
- Try 3D, and then generalize.
- The recurrence is

\[Q(n) = 2^{d-1}Q(n/2^d) + 1 \]

- It solves to

\[Q(n) = O(n^{1-1/d}) \]

- \textit{kD-Tree} is an \(O(dn) \) space data structure that solves \(d \)-dim range query in worst-case time \(O(n^{1-1/d} + m) \), where \(m \) is the output size.
Orthogonal Range Trees

Generalize 1D search trees to dimension d.

Each search recursively decomposes into multiple lower dimensional searches.

Search complexity is $O((\log n)^d + k)$, where k is the answer size.

Space & time complexity $O(n(\log n)^{d-1})$.

Fractional cascading eliminates one $\log n$ factor from search time.

We focus on 2D, but ideas readily extend.
2D Range Trees

- Suppose $P = \{p_1, p_2, \ldots, p_n\}$ set of points in the plane.
- The generic query is $R = [x_{lo}, x_{hi}] \times [y_{lo}, y_{hi}]$.
- We first ignore the y-coordinates, and build a 1D x-range tree on P.

![Diagram of a 2D range tree]

- The set of points that fall in $[x_{lo}, x_{hi}]$ belong to $O(\log n)$ canonical sets.
- This is a superset of the final answer. It can be significantly bigger than $|R \cap P|$, so we can’t afford to look at each point in these canonical sets.
Level 2 Trees

• **Key idea** is to collect points of each canonical set, and build a *y*-range tree on them.

• **E.g.,** the canonical set \{9, 12, 14, 15\} is organized into a 1D range tree using those points’ *y*-coordinates.

• We search each of the \(O(\log n)\) canonical sets that include points for *x*-range \([x_{lo}, x_{hi}]\) using their *y*-range trees for range \([y_{lo}, y_{hi}]\).

• The *y*-range searches list out the points in \(R \cap P\). (No duplicates.)
Canonical Sets

Level 1 canonical sets.

Level 2 canonical sets.

x–range tree
Analysis

- Time complexity for 2D is $O((\log n)^2)$.
 1. $O(\log n)$ canonical sets for x-range.
 2. Each set’s y-range query takes $O(\log n)$ time.

- Space complexity is $O(n \log n)$.
 1. What is the total size of all canonical sets in x-tree?
 2. Number of nodes \equiv number of leaves.
 3. One set of size n. Two of size $n/2$, etc.
 4. Total is $O(n \log n)$.
 5. Each canonical set of size m requires $O(m)$ space for the y-range tree.
 6. So, overall space is $O(n \log n)$.
The \(x \)-tree can be built in \(O(n \log n) \) time.

Naively, since total size of all \(y \)-trees is \(O(n \log n) \), it will take \(O(n(\log n)^2) \) time to build them.

By building them bottom-up, we can avoid sorting cost at each node.

Once \(y \)-trees for the children nodes are built, we can merge their \(y \)-lists to get the parent’s \(y \)-list in linear time.

The cost of building the 1D range tree is linear after sorting.

Thus, total time is linear in \(O(n \log n) \), the total sizes of all \(y \)-tree.s
d-Dim Range Trees

- The multi-level range tree idea extends naturally to any dimension d.
- Build the x-tree on first coordinate.
- At each node v of this tree, build the $(d-1)$-dimensional range tree for canonical set of v on the remaining $d-1$ dimensions.
- Search complexity grows by one $\log n$ factor for each dimension—each dimensional increases the number of canonical sets by $\log n$ factor.
- So, search cost is $O((\log n)^d)$.
- Space and time complexity is $O(n(\log n)^{d-1})$.
Fractional Cascading

- A technique that improves the range tree search time by log factor. 2D search can be done in $O(\log n)$ time.

- Basic idea: Range tree first finds the set of points lying in $[x_{lo}, x_{hi}]$ as union of $O(\log n)$ canonical sets.

- Next, each canonical set is searched using the y-tree for range $[y_{lo}, y_{hi}]$. We locate y_{lo}; then read off points until y_{hi} reached.

- Since each set is searched for the same key, y_{lo}, we can improve the search to $O(1)$ per set.

- In effect, we do the first search in $O(\log n)$ time, but then use that information to search other structures more efficiently.

- The key is to place smart hooks linking the search structures for the canonical sets.
Basic Idea

- **To understand the basic idea, consider a simple example.**

- **We have two sets of numbers,** A_1, A_2, **both sorted.**

- **Given a range** $[x, x']$, **want to report all keys in** A_1, A_2 **that lie in the range.**

- **Straightforward method takes** $2 \log n + k$, **if** k **is the answer size; separate binary searches in** A_1, A_2 **to locate** x.

- **For example, range** $[20, 65]$.

![Diagram showing the range and keys]

$$
\begin{array}{cccccccccc}
3 & 10 & 19 & 23 & 30 & 37 & 59 & 62 & 70 & 80 & 100 & 105 \\
10 & 19 & 30 & 62 & 70 & 80 & 100
\end{array}
$$
Fractional Cascading Idea

- Suppose $A_2 \subseteq A_1$. Add pointers from A_1 to A_2.
- If $A_1[i] = y_i$, store ptr to entry in A_2 with smallest key $\geq y_i$. (Nil if undefined.)

```
3 10 19 23 30 37 59 62 70 80 100 105
```

- Suppose we want keys in range $[y, y']$.
- Search A_1 for y, and walk until past y'.
 Time $O(\log n + k_1)$.
- If A_1 search for y ended at $A_1[i]$, use its pointer to start search in A_2. This takes $O(1 + k_2)$ time.
- Example $[20, 65]$.
FC in Range Trees

- **Key observation:** canonical subsets $S(\ell(v))$ and $S(r(v))$ are subsets of $S(v)$.

- The x-tree is same as before. But instead of building y-trees for canonical subsets, we store them as sorted arrays, by y-coordinate.

- **Each entry in $A(v)$ stores two pointers, into arrays $A(\ell(v))$ and $A(r(v))$.**

- **If** $A(v)[i]$ stores point p, **then** ptr into $A(\ell(v))$ is to entry with smallest y-coordinate $\geq y(p)$. Same for $(r(v))$.
• Only some pointers shown to avoid clutter.
FC Search

• Consider range \(R = [x, x'] \times [y, y'] \).

• Search for \(x, x' \) in the main \(x \)-tree.

• Let \(v_{\text{split}} \) be the node where the two search paths diverge.

• The \(O(\log n) \) canonical subsets correspond to nodes that lie below \(v_{\text{split}} \), and are the right (left) child of a node on search path to \(x \) (resp. \(x' \)) where the path goes left (resp. right).

![Diagram of an x-tree with labeled nodes and ranges for illustration purposes.]

x–range [3,16]
FC Search

- At \(v_{\text{split}} \), do binary search to locate \(y \) in \(A(v_{\text{split}}) \). \(O(\log n) \) time.

- As we search down the \(x \)-tree for \(x, x' \), keep track of the entries in the associated arrays for smallest keys \(\geq y \), at \(O(1) \) cost per node.

- Let \(A(v) \) be one of the \(O(\log n) \) canonical nodes that is to be searched for \([y, y']\) range.

- We just need to find the smallest entry in \(A(v) \geq y \).
FC Search

- We can find this in $O(1)$ time because $parent(v)$ is on the search path, and we know smallest entry $\geq y$ in $A(parent(v))$, and have a pointer from that to v’s array.

- So we can output all points in $A(v)$ that lie in range $[y, y']$ in time $O(1 + k_v)$, where k_v is the answer size.

- For 2D range search, the final time complexity is $O(\log n + k)$, and space $O(n \log n)$.

- d-dim range search takes $O((\log n)^{d-1} + k)$ time with fractional cascading.