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Abstract 

Papadimitriou, C.H. and M. Yannakakis, Shortest paths without a map, Theoretical Computer 

Science 84 (1991) 127-150. 

We study several versions of the shortest-path problem when the map is not known in advance, 

but is specified dynamically. We are seeking dynamic decision rules that optimize the worst-case 

ratio of the distance covered to the length of the (statically) optimal path. We describe optimal 

decision rules for two cases: layered graphs of width two, and two-dimensional scenes with unit 

square obstacles. The optimal rules turn out to be intuitive, common-sense heuristics. For slightly 

more general graphs and scenes, we show that no bounded ratio is possible. We also show that 

the computational problem of devising a strategy that achieves a given worst-case ratio to the 

optimum path in a graph with unknown parameters is a universal two-person game, and thus 

PSPACE-complete, whereas optimizing the expected ratio is #P-hard. 

1. Introduction 

Finding shortest paths is one of the most well-looked at problems in Computer 

Science and Operations Research (see, for example, [7 161, and the classical survey 

by Dreyfus [4]). More recently, several versions of the shortest-path problem in a 

geometric setting have been considered (see, for example, [9, 10, 3, 13, 11, 12, 151 

for a survey with over thirty references). Such variants are motivated by planning 

the motion of a robot in a scene sprinkled with obstacles, in which the metric is 

determined by the geometry of the obstacles. 

It is sometimes natural to assume, both in the graph-theoretic and the geometric 

contexts, that the planner initially has incomplete information about the graph or 

scene, and such information is acquired in a dynamic manner, as the search for a 

good path evolves (e.g., by acquisition of sensory information in the geometric case, 

or by timed acquisition of the parameters, when the layer structure of a graph 

models time). What are appropriate search strategies in such a situation? And what 

are the right measures for evaluating such strategies? 
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Besides its inherent interest as a natural extension of a classical problem, this 

body of problems serves as an important paradigm in decision-making under 

incomplete information. Since it involves the design and evaluation of search 

heuristics, the techniques developed will add to the scarce rigorous methodological 

arsenal of Artificial Intelligence. As it turns out, the heuristics developed in this 

paper (and shown to be optimal in two important cases) have the flavor of nontrivial, 

yet natural and common-sense approaches to the problem. 

To acquaint the reader with the kind of problems studied, consider the three 

examples in Figs l-3. In Fig. 1 we have a layered graph of width two. Shortest-path 

problems for such graphs model dynamic decisions, as layers from left to right may 

model stages of the decision-making process, that is, time. Such problems can be 

solved by specialized dynamic programming techniques (in fact, these were the 

archetypical applications of this method). Imagine, however, that the graph is given 

to us one stage at a time. In the beginning, we only know the part shown in Fig. lb. 

A rational searcher would probably try the lower choice. When the unfortunate 

information of the next stage (Fig. lc) is revealed, should the searcher persist on 

this path? (He/she always has the choice of following edges backwards, thus 

switching paths, but the distance traversed this way is counted in the total score.) 

Obviously, there is no way to guarantee that the searcher always finds the shortest 

path (shortest in the static sense, as if the graph were known beforehand). We 

assume that the goal of the searcher is to devise a strategy, so that the total distance 

traversed has the best possible ratio to the shortest path. This is a rather familiar 

notion of performance from another area of research, namely on-line algorithms 

for assigning “servers” to “requests,” a topic that recently has attracted wide 

attention (see, e.g., [18,2,8]). Although our problems come from a completely 

Cc) Cd) 

Fig. 1. Searching layered graphs of width two. 
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different application area (i.e., Robot Motion), and are typically graph-theoretic or 

geometric in nature, our work can also be seen as a contribution to on-line algorithms. 

For example, a reasonable strategy for the problem of layered graphs of width 

two could be, informally: “Take the shortest edge out of the current node, unless 

there is a path to the other node that is less than half this one.” Thus, in the example 

of Fig. 1, the searcher should persist in the second stage, but should switch in the 

next (Fig. Id). We show (Theorem 2.4) that a variant of this strategy is optimal, 

and achieves a worst-case ratio of distance travelled to shortest path equal to 9, the 

best possible. 

In Fig. 2, the searcher must traverse an unknown obstacle course and reach a 

goal point, again seeking to optimize the ratio of distance travelled to shortest path. 

The scene is not known a priori, but the perimeter of the obstacles becomes known 

to the searcher as he/she sees its various parts. What are reasonable strategies in 

this regime? One possible strategy, familiar to those who walk long distances among 

irregular city blocks, would be this: “When faced with a block, turn the nearest 

corner.” We shall show that neither this nor any other strategy can achieve a constant 

ratio, even if the obstacles are nonintersecting rectangles with sides parallel to the 

axes. However, if the obstacles are unit squares (or squares of bounded size), an 

intuitive variant of the nearest-corner heuristic is guaranteed to be asymptotically 

at most 50% above the shortest path, and this is optimal (Theorems 3.2 and 3.7). 

For squares of arbitrary size (but with sides parallel to the axes) we have another 

heuristic that achieves a ratio m/3 = 1.7. 

Fig. 2. Searching an obstacle scene. 

0 1 

We can also study such a situation as a computational problem. Consider Fig. 3. 

The road map is now known, but the roads with question marks may be unsuitable 

for travel (say, due to snowfall), an eventuality that is revealed to us only when an 

adjacent node is reached. What is the computational complexity of devising a travel 

strategy which guarantees a given ratio to the shortest (feasible) path? We call this 

the CANADIAN TRAVELLER'S PROBLEM. It is, in fact, the specification of a two-person 

game, between a searcher and a malicious adversary, who sets the weather conditions 

so as to maximize the ratio. As it turns out, it is a PSPACE-complete problem 

(Theorem 4.1). Simple geometric situations are shown to be equally intractable. 
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Fig. 3. The Canadian Traveller’s Problem. 

Variants in which we are given probabilities of unavailability of the edges (or 

presence of obstacles in the geometric case) and we are asked to minimize the 

expected ratio to the optimum are also intractable (#P-hard, and solvable in 

polynomial space). 

2. Layered graphs 

A layered graph is a graph in which the nodes are partitioned into layers 

L I,‘.., L,, and all edges are between adjacent layers. We consider layered graphs 

of width two, that is, 1 Lil 6 2 for all i. We assume that the edges between Li and 

Li+l 9 and their lengths, become known only when a node in Li is reached; the 

number of layers is also unknown. Edges can be traversed backwards, and the 

lengths are nonnegative integers. The first and last layers have one node. 

We are interested in determining the strategy for searching such graphs that 

achieves the best possible worst-case ratio of the length of the path traversed, divided 

by the optimum path. This coincides with the value of the following game played 

on layered graphs of width two: The game is between two players, the searcher and 

the adversary. At the beginning of stage i a layered graph of width two and i layers 

has been revealed. The searcher is at one of the two nodes of the last layer. Then 

the adversary moves, and describes a new layer with at most two nodes, the edges 

connecting these new nodes with nodes of the previous layer, and their costs. The 

searcher must move from the current node to one of the nodes in the new layer, 

using edges of the graph. Also, the adversary may declare the new layer to be the 

last one. In this case the ratio of the total distance covered by the searcher divided 

by shortest path from the first layer to the last layer is computed. The searcher pays 

the adversary this amount. 

Consider the following family of standard strategies for the adversary: At the first 

play add two nodes, connected with edges of length 1 to the start node. At each 

subsequent play except for the last, add two new nodes, each connected with a 

node in the previous layer by an edge. The edge out of the node occupied by the 

searcher has length 1, the other has length 0. A graph created by a standard strategy 

is depicted in Fig. 4. The positions of the searcher are marked by a *. 
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Fig. 4. The adversary’s standard strategy. 

Lemma 2.1. For any strategy for the adversary, there is a standard strategy that 

achieves at least the same ratio. 

Proof. We have to show that if the searcher can achieve a given ratio against standard 

strategies, then he can achieve the same ratio against all adversary strategies. We 

will give the proof in three steps. Consider an arbitrary strategy T of the adversary. 

At stage k the adversary presents the lengths of the edges from the nodes U, , u2 of 

the kth layer to the nodes v, , v2 of the next layer. Since the searcher can backtrack, 

we can assume without loss of generality that the length of each edge (uj, Vj) does 

not exceed the length of the shortest path from Ui to v, through the portion of the 

graph seen so far. The shortest paths from the start node s to the nodes u,, u2 of 

the kth layer (with ties broken arbitrarily) form a rooted tree Tk with root s and 

the two leaves U, , u2. Similarly, the shortest paths from s to v, , v2 form a tree Tktl 

which is an extension of Tk, i.e. it is obtained by hanging each one of v, and v2 

from one of the previous leaves. 

Consider the strategy ~~ of the adversary defined as follows: If node vi hangs 

from uj in the tree Tk+, , then the adversary includes the edge (vi, uj) with the same 

length as in T, but does not include the edge to v, from the other node U, of the 

previous layer (i.e. I #j), or equivalently, the other edge (uI, v,) is given the length 

of the shortest weighted path from u, to v, through the tree Tk+,. It should be 

intuitively clear that the graph can only become harder for the searcher. This can 

be easily formalized. Clearly, the distances from the start node to the nodes of each 

layer are identical in the two strategies, and the same is true of the trees Tk. Given 

any strategy of the searcher in response to the strategy pi of the adversary, if the 

searcher makes the exact same choices in response to T, then he achieves at least 

as good a ratio against T  as against TV .  Consequently, we may restrict our attention 

to strategies of the adversary with the property that every node vi of each layer has 

an edge only to one node of the preceding layer, and the length of the other edge 

incident to vi is the distance implied by the triangle inequality. Let us call these 

strategies type 1. 

Let type 2 be the subset of adversary strategies TV  in which the two nodes of each 

layer are hung from distinct nodes of the previous layer, and let r be the best possible 

ratio achievable by a type 2 strategy. Thus, there is a strategy m2 for the searcher 

which can guarantee ratio r against a type 2 strategy. Then we claim that there is 

a searcher strategy g1 that guarantees ratio r also against any adversary strategy of 
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type 1. The searcher operates in rounds as follows. As long as the tree of the shortest 

paths consists of two disjoint paths from the start node to the nodes of the current 

level, the searcher follows the choices of u2. Suppose that the adversary reveals two 

nodes zii, v2 in the next layer, both hanging from the same node, say pi, of the 

current layer (the other possibility where the next layer has only one node is easy). 

The searcher first goes to u,, if he is not already there, and regards the current 

round as being finished. The distance traversed until reaching ui is within a factor 

of r of the shortest path from the start node to ui. The reason is that the adversary 

could have made instead the next layer be the last one with the goal node hanging 

from u1 with an edge of length 0. After the searcher reaches ui, he erases all the 

preceding layers, begins a new round with start node ul, lets the nodes a,, v2 be 

the first layer, and starts again simulating u2 on the new graph. Therefore, type 2 

strategies for the adversary are as powerful as general strategies. 

The difference between a type 2 and a standard strategy is that in a standard 

strategy the adversary reveals the information one unit at a time, in an effort to 

entice the searcher to perform useless work. It should be intuitively clear that this 

makes things only harder for the searcher. This can be easily formalized to prove 

that standard strategies are as powerful as type 2, to complete the proof. 0 

Lemma 2.1 gives rise to the following game, called SEQ: Player I defines an 

infinite sequence of positive integers (a,, u2,. . .) such that (i) a, = a2 = 0; and (ii) 

the even and the odd subsequences are increasing and unbounded. Then Player II 

picks a positive integer n > 2. Player I pays Player II (2Cy=, u~+u,_,)/u,_,. 

Lemma 2.2. The value of SEQ equals the optimum ratio for traversing layered graphs 

of width two. 

Proof. The standard adversary strategy defines two paths. The searcher’s strategy 

defines the path lengths at which a path is abandoned for the other. These lengths 

are precisely the ai’s in SEQ. The adversary’s strategy is reduced to choosing the 

end of the game. 0 

It turns out that the value of SEQ has been computed by researchers working on 

another, more geometric, problem: We have a two-way infinite line and a searcher 

starting from the origin. The searcher can move in unit steps, and wants to find a 

goal that lies at some unknown distance d. The objective of the searcher is to 

minimize the ratio of the distance traversed to the true distance d. 

Lemma 2.3 (Baeza-Yates et al. [l]). The value of SEQ is 9. It is asymptotically 

achieved by taking the ai’s to be powers of 2. 

Consider thus the following intuitive strategy for the searcher: “If the shortest 

paths from the start node to the nodes of the next layer go through the same node 

u of the current layer, then go first to this node U, erase all the preceding layers 
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and regard u as the new start node. In either case, follow the shortest edge out of 

the current node to a node of the next layer, unless there is a path from the start 

node to the other node in the next layer, whose length is less than half the length 

of the (shortest) path from the start to the considered node. In the latter case, follow 

the shortest path to the other node of the next layer.” From Lemmata 2.1,2.2, and 

2.3 we have the following: 

Theorem 2.4. The strategy above is optimal, and achieves a ratio of 9, the best possible. 

If we consider layered graphs with unbounded width w then it is easy to see that 

no fixed ratio is possible. A lower bound of w is trivial. Furthermore, [l] analysed 

the generalization of SEQ where we have w half-lines emanating from the origin, 

and a searcher at the origin who wants to locate a goal that lies on one of the lines, 

and he wants again to minimize the ratio of the distance traversed to the true 

distance. They showed that the optimal search strategy is to rotate among the 

half-lines travelling distances that form a geometric series with ratio p = w/( w - 1). 

The optimal ratio to the shortest path, which is achieved by this strategy, is 

2w” 
rW=(w_l)“-l+l; 

its limit, as w grows, is 2ew + 1. It is easy to see that this problem is a special case 

of searching layered graphs of width w, when the adversary uses a standard strategy; 

thus r, is a lower bound for the best ratio achievable. 

If every stage of the layered graph is a perfect matching, i.e., consists of exactly 

one edge from each node of the current layer to a distinct node of the next layer, 

then the layered graph consists of w paths out of the source with no cross edges, 

and the situation is clearly similar to that of searching for a goal along w half-lines. 

In this special case the ratio T,,, is also an upper bound. One strategy that achieves 

ratio r, is the following. Initially, set a counter c to 0 and take the shortest edge 

out of the source. In each stage, follow the edge out of the current node continuing 

on the current path unless the length of the path is about to exceed pc, where 

p = w/(w - 1). In the latter case, go to the node of the next layer that is closest to 

the source, say it is at distance d from the source, and reset c to the maximum of 

ctl and ]log,d] +l. 

Although it may appear that the adversary should not introduce cross edges 

because they would only help the searcher, it turns out that this is not the case. 

That is, when w is three or more, the best strategy of the adversary is not standard 

anymore, and the above lower bound r, is strict for general layered graphs. 

3. Obstacle courses 

Suppose that a searcher must traverse a two-dimensional scene with impenetrable 

obstacles from a start position to a goal position (recall Fig. 2). Our assumptions 
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are the following: (i) The obstacles are nonintersecting rectangles with sides parallel 

to the axes. (ii) The location of the goal is known to the searcher. (iii) The obstacles 

become known to the searcher as they come within the searcher’s line of vision 

(that is, the searcher at any moment knows all parts of the perimeter of the obstacles 

that can be joined with an obstacle-free straight line to a past position of the 

searcher). Notice that our algorithms use far weaker information (that is, full 

knowledge of the side of an obstacle is acquired only when the side is reached by 

the searcher), whereas our lower bounds are valid even when full visual information 

is assumed. (iv) Neither the start position nor the goal are within an obstacle. Again, 

we wish to find strategies which achieve a bounded ratio with the shortest obstacle- 

free path. Unfortunately, the following result holds: 

Proposition 3.1. There is no strategy that achieves a bounded ratio. 

Proof. Consider Fig. 5. The goal is a horizontal distance n from the start, and all 

obstacles are rectangles of very small width, length n, and placed at integer x 

coordinates. Initially, the searcher may avoid the first obstacle by going to one of 

its corners (up or down, down in the Figure). Then an obstacle is placed in front 

of him/her. The searcher goes either up or down, to meet the next obstacle, and so 

on. There are no other obstacles. The total length traversed by the searcher is a( n’). 

However, there is a y-coordinate smaller than n3’2 that meets O(A) obstacles (since 

there are n obstacles in total each of length n), and thus the shortest path is O(n3’2). 

Fig. 5. A difficult scene. 

This is a valid lower bound if the searcher never goes back, or learns the scene 

only by tactile sensing, that is, an obstacle is sensed only when its perimeter is 

reached. However, under our assumption of visual information (assumption (iii) 

above) there are conceivable strategies under which the searcher goes back to take 

a good look at the scene, and then proceeds. We can make visual information useless 
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by supplementing Fig. 5 with some more obstacles. In particular, think of the scene 

as one with one very long vertical obstacle (a wall) at each integer x-coordinate i, 

with two very thin horizontal openings at the boundaries of the obstacle with 

x-coordinate i in Fig. 5 and with thin openings very close to all the other integer 

y-coordinates that are in the empty space in the figure. By close, we mean that the 

holes are just slightly out of alignment, so that the only thing that the searcher can 

see through a hole is that there is another obstacle behind it at the next integer 

x-coordinate. It is easy to see that the shortest path has still approximately the same 

length, and visual information can now be of no help, so the lower bound holds. 0 

The problem with Fig. 5 is that the obstacles are arbitrarily thin. What if they 

have a bounded aspect ratio? Even when they are squares, we have the following: 

Theorem 3.2. There is no strategy that achieves a ratio better than g in the case of 

square obstacles. 

Proof. The proof is the same as in Proposition 3.1, with unit squares replacing the 

long rectangles; only now the vertical motion can be guaranteed to be at least half 

the horizontal one (which is n). Finally, the shortest path is again along a y- 

coordinate which passes through at most fi obstacles, and is thus of length 

n + O(h). The lower bound follows. Visual information can be rendered useless 

by a similar (but more tedious) construction as in the Proposition. 0 

Notice that the lower bound of Theorem 3.2 is achieved by identical unit squares. 

Can the ratio of 5 be achieved by a strategy? For example, the intuitive strategy: 

“Proceed horizontally. When faced by an obstacle, go to its nearest corner (up or 

down)” may lead to a factor arbitrarily close to 2 (for example, if the nearest corner 

is always up, by very little). 

A little more care is needed to improve on 2. We first notice that, if the line from 

the start to the goal forms an angle of 45” with the axes, a bound of a (better than 

$ !) is possible: Go directly towards the goal, avoiding obstacles in the obvious way 

(Fig. 6). We can combine this observation with the nearest-corner heuristic as 

follows: “Act according to the nearest-corner heuristic, until a position is reached 

that forms an angle of 45” when joined by a line to the goal. From then on, act 

according to the 45” heuristic.” (Fig. 7). We call this the mixed heuristic. An 

elementary calculation in Fig. 7(a) shows that this rule achieves a ratio of 5 when 

start and goal are in the same horizontal level. When they are at different horizontal 

levels, at some angle 4 with the horizontal line (Fig. 7(b)), the situation may be a 

little worse: 

Theorem 3.3. The mixed heuristic achieves a ratio of &I’%. 

Proof. Consider Fig. 7(b). The worst-case distance traversed, in units of the distance 

from start to goal, is cos 4 + sin 4 + 2 . x. We calculate x, by the law of sines of the 
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Fig. 6. The 45” heuristic. 

Fig. 7. The mixed heuristic. 

obtuse lower triangle, to be f (cos 4 -sin +), and so the distance traversed is at most 

f(5 cos C$ + sin 4). This expression is maximized when C#J = arctan $, and the optimum 

is f&%= 1.7. ! 

We can do better when the squares have size at most 1 (or more generally, bounded 

by a constant); recall that $ is a lower bound in the case of unit squares as well. 

Assume first for simplicity that the start and the goal are on the same horizontal 

level. To motivate the new heuristic, recall what is wrong with the nearest-corner 
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heuristic: It may lead us away from the x-axis (that is, the line from start to goal). 

Intuitively, when we are away from the x-axis, the corner that is closest to the x-axis 

may be more attractive than the other, even though the other corner may be closer 

to the searcher’s current position. The mixed heuristic can be explained in the light 

of this insight: When we come very close to the goal in horizontal distance (cross 

the 45” line), we start preferring the corner closest to the x-axis at all costs. (In fact, 

we can improve slightly on the constant $a by preferring the upper angle by an 

appropriate amount when the goal is above the horizontal level of the starting point.) 

Is there a more continuous, “smooth” way to bias our choice of corners? Our final 

heuristics do exactly this, and achieve asymptotically (as the distance from start to 

goal grows) the optimum ratio of 2. 

We will describe first a heuristic for the simpler case that the start and the goal 

are in the same horizontal line, all the squares have (exactly) unit size and have 

their sides parallel to the axes. 

Define F = l/A, where n is the distance from start to goal (measured in sides 

of the squares). When faced with an obstacle, the searcher has a bias p towards 

the corner which is closer to the x-axis. That is, we prefer the corner closer to the 

x-axis if it is less than $+P away; otherwise, we choose the other corner. Initially 

p = 0, and every time we move to the other side of the x-axis, we reset p to 0. Every 

time we choose the corner away from the x-axis, /3 is increased by F. Every time 

we choose the corner towards the x-axis although it is the further corner, the bias 

is decreased by e; if the corner towards the x-axis is the closest corner, then we do 

not change /3. We call this the bias heuristic. When we arrive at the same x-coordinate 

as the goal, then we go directly to it using for example the straightforward heuristic 

with ratio 2. Or we may switch to the 45” heuristic when we are at a 45” angle from 

the goal. 

Note that at all times, the bias is an integer multiple of F. It is an easy calculation 

to show that, in the bias heuristic: (i) At each step we are traversing a vertical 

distance which is at most p larger than $; (ii) When we do traverse a vertical distance 

that exceeds i by the bias /3, then in some previous step we must have traversed a 

distance at least p - F less than $, for a balance of e. (iii) This balance of E per 

square is insignificant when compared to the horizontal distance of n, since n. F = fi. 

(iv) At any given time, if /3 = ke, then we are not more than 1 + 5 off from the x-axis 

because, on the one hand, every time we move away from the x-axis, we move by 

at most f and increase the bias, while on the other hand, every time we decrease 

the bias we come closer to the x-axis by at least 4. Since /3 is never larger than 4, 

we never go further than $/E = O(A) from the x-axis. Therefore, the total distance 

traversed to the goal is no more than 3n/2+0(fi). Hence we have: 

Proposition 3.4. Suppose that all obstacles are unit squares with sides parallel to the 

axes, and that the goal is at the same horizontal distance with the start position, at a 

distance of n (measured in sides of the unit square). Then the bias heuristic achieves, 

us n grows, a ratio arbitrarily close to ?, the best possible. 
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We will relax now the assumption that the start and the goal are in the same 

horizontal line and that all the obstacles are identical unit squares, but allow them 

to be any squares of size at most 1. In order to make the exposition clearer, we will 

keep for now the assumption that the sides of the squares are parallel to the axes; 

at the end we will indicate how this restriction can be lifted. 

If the goal is at an angle with respect to the start position, then things become 

somewhat more complicated. We can assume without loss of generality that the 

goal t is up and to the right of the start position s, and that the line from s to r 

forms an angle 4 G 45” with the x-axis. Let d denote the direction from s to t. At 

any given time, let p denote the position of the searcher and let q be its projection 

on the s-t line. Our heuristic will have the property that p does not get very far off 

from the s-t line, never more than O(A). Starting from s we will proceed in 

direction d avoiding the obstacles when they are in the way. When we avoid an 

obstacle, we would like the ratio of the distance travelled by p to the distance 

travelled by q in the direction d (i.e., progress towards the goal) to be bounded by 

s-t E. We cannot always guarantee this while staying close to the s-t line, but as in 

the previous case, we will achieve it in an amortized sense: if the ratio is larger than 

3 for some obstacle, then the excess work is cancelled by work saved from a previous 

obstacle. 

Suppose that while travelling in direction d we hit an obstacle ABCD at a point 

P, see Fig. 8. We either hit the side AD or AB. In the first case, we go around D, 

up the side DC part of the way until we meet the line from P parallel to d, at which 

point we resume our movement in the direction d. The ratio of the distance travelled 

by p to that covered by q is cos 4 t sin 4 G ~6 s$. We act similarly if P lies in the 

interval BE (see Fig. 8), that is, we go around B and then continue on the line 

passing through P in the direction d. Note that if 4 = 45”, then E = A, the above 

cases cover all the possibilities, and we simply have the 45” heuristic. 

So we only need to consider the case that P lies in the interval AE. Let y = IAPl 

(the length of the segment AP), let r1 = lPBl+ IBCI be the distance travelled if we 

go from P up to B and then to C around the square, TV = IPAl + IAD~ the distance 
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Fig. 8. Hitting a square at an angle. 
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if we go to A and then to D. Let r, be the projection of PC along the direction d, 

and rTTz the projection of PD along d. 

Lemma 3.5 (Fejes Toth [5]). The ratio T,/T, is a monotonically decreasing and the 

ratio TJT~ is a monotonically increasing function of the distance y of P from A. 

Furthermore, for every point P of the side AB, at least one of the two ratios is no more 

than t. 

The proof is not very difficult, see [5]. The Lemma tells us that going to at least 

one of the two corners C or D, guarantees a ratio of $, but the problem is we may 

move further away from the s-t line. Draw from P the line in direction d, and let 

Q be the point at which it intersects the side CD (see Fig. 8). 

Proof. Clearly, all the quantities scale with the size of the square. That is, the size 

of the square does not influence the Lemma, so let us assume we have a unit square. 

Letu=sin~,b=cos~.If~AP~=y,then~QD~=y+~and~QC~=1-y-~.Alsowe 

can calculate, T, = 2 - y, TV = 1 + y, V, = a + b - uy, and r2 = b - uy. The denominator 

in the ratio of the Lemma is (a’+ b2)/ b = i, and the numerator is f(y)/ b, where 

f ( y) = (u + b) + 2( b - a) y - 2 by*. Taking the derivative off, we see that this function 

is increasing from y = 0 to (b - u)/2b and then is decreasing. Substituting y = 

(b-u)/2bintof;theinequalityoftheLemma,f(y)~~,reducesto(b-l)(b-f)~0, 

which is true, since b = cos 4 and 4 d 45”. 0 

Let us partition the interval AE of the side of a unit square into equal segments 

of length E = Q$ each, where n is the straight-line distance from s to t. For i = 0, 1, . . . , 

the ith segment contains the points on AE with y between ie and (i + 1) E. Similarly, 

we partition the interval AE of a square of size K G 1 into corresponding segments 

of length EK. We label every segment “up” or “down” as follows: a segment is 

labelled up if its lowest point satisfies T , /T ,  c  $ ,  and is labelled down if the lowest 

point satisfies T*/T~S  $ .  From Lemma 3.5; all segments have at least one label, and 

some may have both. We call the last segments mixed, and the segments with only 

one label pure. 

Let Pi be the lowest point of the ith segment and let Qi be the intersection of the 

line from Pi in direction d with the side CD. If the ith segment is pure, we define 

Pi = JDQil/ CQi) if th e segment is labelled only up, and pi = 1 CQiI/ I oQiI if the segment 

is labelled only down. 

The heuristic maintains a number, called a balance, with every pure segment. 

Initially all balances are 0. We already described how the searcher moves if he hits 

an obstacle in the intervals AD or EB. Suppose that he hits at a point P that lies 

on AE and belongs to the ith segment. Let us assume that the searcher is above 
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the s-r line; the other case is similar. If the ith segment is labelled down, then the 

searcher moves to corner D and continues from there in direction d; the balance 

of the segment does not change. Suppose that the segment is not labelled down, 

i.e., is a pure segment labelled only up. Let K s 1 be the sidelength of the square. 

If the balance of the segment is at least piK then the searcher subtracts piK from 

the balance and moves to corner D as above. Otherwise, he adds K to the balance 

and moves up to corner C and resumes in direction d. We call this the balance 

heuristic. 

As we shall prove, the searcher does not move more than 0(&r) off the s-t line. 

When he comes to the same x- or y-coordinate as the goal (or at a 45” angle), then 

he can go directly towards the goal. This part of the travel is O(fi), thus negligible 

compared to the rest. 

Theorem 3.7. 7i4e as n grows to 

Proof. To prove the Theorem, we shall show that at all times (i) the distance of the 

searcher from the line s-t is O(A), and (ii) the distance travelled by the point p 

representing the searcher is no more than $+ E times the distance covered by its 

projection q on the s-t line. 

Clearly, we only have to consider the obstacles that are hit in the interval AE. 

To simplify the arguments, we may assume that whenever the searcher hits an 

obstacle at the ith segment, he hits it at the lowest point Pi of the segment. The 

error introduced by this approximation is an O(E) factor of the side of the square, 

both in terms of the travel, and in terms of the distance from the s-t line. Thus, 

the total error over all the squares encountered is no more than O(A). 

To bound the distance travelled, let us consider the ratio of the travel of p to the 

travel of q when avoiding obstacles that are hit in the ith segment. If the segment 

has both labels, then clearly this ratio is no more than s. Let us assume that the 

segment is labelled up. When the searcher is below the s-t line, then whenever he 

hits the obstacle in the ith segment he travels up to avoid it, and again the ratio in 

this case is at most 5. So we only have to consider the times the searcher is above 

the s-f line and hits the segment. Let ki be the sum of the sides of the squares for 

which the searcher went to corner C and let Z, be the sum for the squares he went 

to corner D. Since the balance never becomes negative, we have pi&s ki. The 

corresponding total travel is kiT1 + Ii~2, and the total distance covered by the projec- 

tion q is k,r, + lir2, where the quantities T, etc. are used here with respect to the 

lowest point Pi of the ith segment of a unit square. From Lemma 3.6 we have 

Pirl+c2 3 
s- 

P,T,+-772 2’ 

and since the segment is labelled up, also T,/ V, . 2. ci It follows that the contribution 

of the ith segment satisfies the $ ratio. 

Let us consider now the vertical distance from the s-t line. Let us assume without 

loss of generality that the searcher is above the line. We only need to take into 
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account the activity since the last time the s-t line was crossed. Clearly, the down 

segments only contributed in bringing the searcher closer to the line. Consider the 

ith segment, labelled up. Let bi be the value of the corresponding balance. From 

the definition of the heuristic, the balance is always smaller than pi + 1. The balance 

was nonnegative when the searcher last crossed the s-t line. Therefore, the total 

vertical deviation above the s-f line that is due to the times that the searcher hit 

the ith segment is at most biICQiI s (p, + l)lCQ,I = 1. Thus, the claim follows because 

there are (at most) & segments. 0 

We can extend the heuristic to the general case of squares with size at most one 

(or bounded size) that may not be aligned with the axes but can have arbitrary 

orientations. The basic idea is to discretize the slope of the squares. The direction 

d from the start s to the goal t hits the “hard” side of a square (side AB in Fig. 8) 

at an angle 4, which is between -45” and 45”. We divide the squares according to 

their slope $I into n”3 groups, so that cos 4 and sin 4 do not change more than 

O(n-I”) within each group. We partition the side of a square into n”3 segments 

now. From every group of squares we pick one representative, and again for each 

segment we pick an appropriate point P, to represent it. If we assume that whenever 

we hit a square at a point P, then the square is the representative in its group, and 

P is the representative point in its segment, then the error introduced by this 

approximation is at most a factor n-“3 of the side of the square hit, thus the total 

error is 0( rr2’3). For each group and each segment we define a quotient p, as before, 

where in the definition we consider the representative point on the representative 

square of the group. We have a balance associated with every group and every 

segment, that is a total of n2” numbers. The balance heuristic works exactly as 

before. Using similar arguments, one can show then that the distance traversed from 

the start to the goal is at most $n + 0( rr2”). 

Fejes Toth [5] has shown, albeit by a nonalgorithmic method, that if the straight- 

line distance from s to t is n, then there is always a path of length (3n + 1)/2 from 

s to t that avoids a set of squares of size at most 1; i.e., existentially the ratio 1.5 

is not only asymptotic but also absolute up to an additive constant. It is an open 

problem whether this can be achieved algorithmically in an on-line fashion. We 

leave it also as an open problem whether one can achieve ratio 1.5 in the case of 

arbitrary squares (unbounded size). 

4. The complexity of searching under uncertainty 

As it is probably evident from the preceding discussion, finding heuristics that 

achieve a good ratio to the shortest path in the absence of maps is a formidable 

problem. Can we use the techniques of Complexity Theory to capture this feeling? 

To this end, we must define versions of the problem in which we are given a 

partial description of the map, with several uncertainties remaining (the partial 
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description is necessary, since it will be the input to the corresponding computational 

problem). As an example of this situation, consider the following problem: 

DOUBLE-VALUED GRAPH: are given directed graph = (V, a start 

s E and a node t V Each (u, v) E has two possible lengths associated 

with it. Its length is one of the two, and the searcher finds out which one it is only 

when u is visited. Is there a strategy for traversing the graph, starting from s, ending 

in t, such that the total distance traversed is no more than r (a given ratio) times 

the shortest path from s to t in G (with edge lengths consistent with those discovered 

by the searcher)? 

Theorem 4.1. DOUBLE-VALUED GRAPH is PSPACE-complete. 

Proof. This problem is a two person game for which it is easy to show membership 

in PSPACE using standard techniques. We will now prove completeness. The 

reduction is from the quantified satisfiability problem, or QSAT [6]. Consider an 

instance 

3x,Vx,Bx3.. . F(x,, x2, x3,. . . ) x,), 

where F is a Boolean formula in conjunctive normal form with three literals in each 

clause. Let p be the number of clauses, and let m = 7(n +p). The reduction is 

highlighted in Fig. 9. The graph has less than m nodes, and the arcs have four 

possible lengths: 1 <K % L< M; for concreteness we let K = m3, L = m6, M = m12. 

Double values are shown separated by a “ I”. Edges with only one number have 

only one possible length, and unlabelled edges have length 1. The target ratio r in 

the instance of the DOUBLED-VALUE GRAPH problem is r = m4. 

We explain now the construction in detail. First we describe the subgraph defined 

by the edges that have label 1 or 11 M. This subgraph consists of two parts: the 

upper part from the start node s to the node u is a connection in series of gadgets 

that correspond to the variables x1,. . . , x,. We have nodes xi,. . . , x, and x,+~. 

There is an edge of length 1 from the start node s to node x1, and a path of two 

edges from x,,+~ to u, where the first edge has length 1 and the second has label 

11 M. For every variable xi there is a corresponding gadget that connects node Xi to 

node Xi+1 as shown in the figure. The gadget that corresponds to an existential 

variable xi consists of a path of two edges from node xi to node Xi+l, where the 

first edge has length 1, and the second edge has label 11 M; see for example the 

path from node x, to node x2 in Fig. 9. The gadget corresponding to a universal 

variable consists of two parallel paths of length three where the first and third edge 

of each path has label 1) M and the second edge has length 1; see for example the 

portion of the graph between nodes x2 and x3. The lower part from node u to the 

target node t is a connection in parallel of paths that correspond to the clauses of 

the formula F. We have for each clause a path from u to t with seven arcs whose 

labels are alternatingly 1 and 11 M. We associate the three arcs of the path labelled 

11 M with the three literals of the clause. 
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Fig. 9. The reduction. 

We describe now the arcs that have length K. Corresponding to each literal Xi or 

xi, the graph contains a path of such arcs. The path corresponding to literal xi starts 

from node xi if xi is an existential variable, or from the left successor of Xi if Xi is 

a universal variable, and then goes to the head of the edge in the lower part that 

corresponds to the first occurrence of the literal xi in the clauses. From there it goes 

to the head of the edge that corresponds to the second occurrence of Xi, and so 
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forth, and finally it comes into node x,+,. The path corresponding to a negated 

literal F is defined similarly, except that it starts from the right successor of xi if xi 

is a universal variable. In addition to these paths, there are arcs of length K coming 

into t from the tails of all the 11 A4 edges that correspond to literal occurrences in 

the lower part. Finally, we include arcs of length L from the nodes x,, . . . , x,,, to 

the target node t. This completes the description of our construction. We claim that 

the searcher can achieve ratio r = m4 or better against any adversary if and only if 

the quantified formula Q is valid. 

As usual we can view the validity question of the formula Q as a game between 

an existential player and a universal player who take turns choosing truth values 

for the variables, the first player chooses for the existential variables and the second 

player for the universal variables, where the goal of the first player is to make F 

true, while the goal of the second player is to make F false. If the formula Q is 

valid then the existential player has a winning strategy, otherwise the universal 

player has a winning strategy. 

Suppose that Q is valid. The searcher imitates the winning strategy ofthe existential 

player. From the starting node s, the searcher goes to the first variable node x,. 

Suppose that the corresponding variable is existential. Then the searcher chooses 

the length-K arc out of node x, that corresponds to the truth value chosen for the 

variable x, by the winning strategy of the existential player, say for concreteness 

that xi = true. When the searcher arrives at the head of the arc with label 11 M that 

corresponds to an occurrence of the literal x, , the adversary fixes the length of this 

arc. If the adversary lets this length be 1, then the searcher traverses this arc and 

then the length-K arc from its tail to the target node t. Clearly, the total distance 

traversed by the searcher is less than r = rnK. So, let us assume that the adversary 

fixes the length of the arc corresponding to the first occurrence of x, to be M. Then 

the searcher goes via a length-K arc to the head of the arc that corresponds to the 

second occurrence of xi. Again, if the adversary fixes the length of this arc to be 

1, then the searcher can reach the target node as above. The searcher continues 

visiting the heads of all the arcs that correspond to occurrences of x, and the 

adversary is forced to set the lengths of these arcs to M, making them effectively 

unusable. Finally the searcher reaches node x2. If x2 is an existential variable, the 

searcher chooses a truth value and proceeds as above. 

Suppose that x2 is a universal variable. The adversary can choose the lengths of 

the two 11 M arcs incident to x2. If both arcs are set to M, then we observe that s 

cannot reach t using only length 1 arcs, no matter what lengths the adversary chooses 

for the remaining arcs. Therefore, in this case the shortest path from s to t has 

length at least K. The searcher can go from x2 to t directly via the length-L edge. 

Clearly, the total distance traversed is less than mK + L G rK. Thus, for the adversary 

not to lose, he must choose at least one of the two edges out of x2 to have length 

1, which corresponds to a choice of a truth value for x2 by the universal player. 

The searcher traverses this edge, say it goes to the right successor of x2 corresponding 

to setting x2 to false. From there, the searcher goes via the length-K edge to the 
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lower part, and as above follows the path of length-K edges that corresponds to 

the literal X,, while the adversary is forced to choose length M for the edges that 

are associated with the occurrences of x2, if he does not want to lose. 

The game between the searcher and the adversary continues in this manner until 

finally, after the searcher traverses the path corresponding to literal x, or its negation 

X,, he goes to node x,+,, and from there he traverses the edge to r. The distance 

traversed until the searcher reaches node x,,, is less than mK, and thus the total 

distance is certainly less than mK + L. Since the truth assignment that has been 

chosen satisfies the formula F, every path from u to t corresponding to a clause of 

F contains an edge whose length has been set to M. Therefore, the shortest path 

from s to t has length at least K. 

Conversely, suppose that Q is not valid. First, observe that if the searcher wants 

to achieve ratio r, then at no point can he traverse an edge of length M because 

there is always a path from s to t of length L-t 1: from s to x, to t. In particular, 

this means that the searcher cannot visit the head of an arc with label 11 M in the 

upper part that enters a node xi, because the adversary can then set the length of 

this arc to M, thereby forcing the searcher to traverse the arc and lose the game. 

Suppose that the searcher decides at some point to traverse an edge of length L 

from some node xi to node t, and that at this point there is still a potential path of 

length-l edges from s to t. Then the adversary can set the lengths of all the edges 

to their lower alternatives, thus obtaining a shortest path of length at most m and 

preventing the searcher from achieving ratio r. 

It follows from the above observations that in order for the searcher to have a 

chance at winning, he must follow a play of the existential player. When the searcher 

arrives at a node x, corresponding to an existential variable, he must choose one 

of the two length-K edges corresponding to a truth value for xi. The adversary 

chooses then M to be the length of the arcs associated with the occurrences of the 

corresponding literal xi or xi. The searcher is forced to follow the path of length-K 

edges corresponding to this literal and then go to node x,,, . Suppose that x,+, is a 

universal variable. Then the adversary fixes the length of the two edges incident to 

xi+, that have label 11 M according to the truth value chosen by the winning strategy 

of the universal player; if the value is true then the left edge has length 1 and the 

right edge has length M, otherwise the roles are reversed. By our previous observa- 

tions, the searcher is forced to follow whichever edge has length 1, and then follow 

a length-K edge to the first occurrence of the corresponding literal. Since the 

universal player has a winning strategy, at all times there is a path from u to t in 

the lower part all of whose edges can still be assigned length 1. Thus, the shortest 

s-t path has length at most m. At the end of the game the searcher reaches node 

X nil, and then he must traverse the edge to t of length L. Consequently, the searcher 

does not achieve ratio 1. Completeness follows. 0 

It follows easily from the proof that approximating the optimal ratio within any 

constant is also PSPACE-complete. By a more careful construction we can show: 
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Corollary 4.2. THE CANADIAN TRAVELLER'S PROBLEM (as defined in the introduc- 

tion) is PSPACE-complete. 

Proof. The arguments are now a bit more delicate. Before applying the construction 

of Theorem 4.1, we first form a new set F’ of clauses that consists of three copies 

of the old set, followed by the (tautological) clauses X, v xi, . . . , x, v X,, followed 

by another three copies of the old clauses. Let D be the directed graph obtained 

by applying the construction of Fig. 9 using the new set F’ of clauses. Recall that 

for every literal Xi or x there is a path of length K edges that traverses the heads 

of the arcs associated with the occurrences of the literal. Modify the graph so that 

all literal paths have the same length T = 6mK, by introducing an equal number of 

length-K edges at the beginning and the end of each literal path. We also change 

the label of the edge (x,,+,, t) into 11 L. Let D’ be the resulting directed graph. 

We will first obtain from D’ an undirected graph G with double-valued edges. 

Consider the graph of Fig. 10 where there are A4 parallel paths from u to b. Clearly, 

the adversary can play so that the searcher cannot tell with certainty whether there 

is an a-b path of length 3 unless he tries all A4 paths and thus travels distance M. 

We substitute in D’ a copy of this gadget in place of each path that consisted of a 

length-l edge followed by a 11 M edge to a node xi+i or node u. Also, we replace 

every length-l edge from the lower part by a copy of this gadget. The effect of these 

replacements will be that the searcher cannot use these edges. We make now all 

remaining edges of D’ undirected and let G be the resulting graph. Let d be the 

shortest s-t path if the adversary sets all edges to their lower alternatives. Note that 

the shortest path uses only length-l edges from s to x,+, and then to t, and thus d 

is between 3n and 4n. Let the target ratio r be n( T+ 2)/d. 

a 

l/M 

b 

Fig. 10. Elimination of directed edges. 

Suppose that the quantified formula Q is valid. As before, the searcher simulates 

the winning strategy of the existential player. He traverses distance T + 1 for each 

variable, as long as the adversary plays “normally”. If the adversary chooses length 
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1 for an arc of the lower part corresponding to an occurrence of a true literal, or 

for the arc (x,+~, t), then the searcher reaches t with distance less than n( T+2) 

and thus achieves the ratio r. If the adversary chooses for some universal variable 

xi to set both of its incident edges to M, then the shortest s-t path has length at 

least K. The searcher can use the edge from x, to t and the total distance traversed 

is no more than n( T+ 1) + L s rK. Finally, if the searcher arrives at x,+, , either the 

adversary lets the edge to t have length 1, in which case the distance traversed is 

at most n( T + 2) and the shortest path has length d, or the adversary chooses length 

L in which case the shortest path has length K because the searcher followed the 

winning strategy of the existential player. 

Suppose that the formula Q is not valid. The arguments are similar to Theorem 

4.1. The difference from the directed case is that now the searcher can backtrack. 

One danger is that he may follow the path of a literal xi only partway, and then 

backtrack. The trivial clause xi v q in the middle forces him to travel at least distance 

T in order to break the u-t path corresponding to this clause, i.e., force the adversary 

to set an edge of the path to length M. Another danger is that the searcher may 

follow (at least parts of) both the paths corresponding to xi and its negation Sz; to 

force the adversary to break (set to M) the corresponding arcs from the lower part, 

in order to effectively satisfy the clauses of E The point is that unless he spends 

distance 4T/3, the innermost copies of the original clauses remain intact for at least 

one of the truth values. 

Consider now what happens when the searcher arrives at node x,+,. If he has 

travelled distance T for every variable and has travelled at least 4T/3 for some 

variable, then he has used distance (n ++) T which exceeds rd. The adversary chooses 

length 1 for the edge to f, thus ensuring an s-t path of length d. On the other hand, 

if the searcher has travelled less than 4T/3 for any variable or has not travelled T 

for some variable, then there is still a path of length-l edges in the lower part from 

u to t The adversary lets the length of the edge (x,,, , t) be L, thus forcing the 

searcher to use distance at least L, while the shortest path has length less than m. 

In either case, the searcher cannot achieve ratio r. 

Finally, we can construct from the graph G an instance G’ of the CANADIAN 

TRAVELLER’S PROBLEM where every edge has length 1 and some edges have a 

question mark. Note that all the edge lengths in G are polynomially bounded. Every 

single-valued edge of G is replaced in G’ by a path of the appropriate length. All 

double-valued edges of G are 11 M or 11 L. If (a, 6) is a double-valued edge of G, 

then we replace it by an edge (a, b) of length 1 with a question mark and a parallel 

path from a to b of length M or L (and no question mark). 0 

Consider next the following geometric problem: 

3-D OBSTACLE SCENE: We are given a three-dimensional scene, with obstacles 

that are (possibly intersecting) rectilinear blocks. However, certain special obstacles 

may not be present. We find out whether they are only by visual contact. Again, we 

wish to find a search strategy that achieves a given ratio. 
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Corollary 4.3. 3-D OBSTACLE SCENE is PSPACE-complete. 

Proof. The reduction is from DOUBLE-VALUED GRAPH. We embed the graph in 

3-space’. We implement edges as parallel “tunnels” with walls formed with obstacles 

joining two nodes. Edge lengths can be implemented by having tunnels that zig-zag 

as required. Double-valued edges are implemented as parallel tunnels of the 

appropriate lengths, the shortest of which is obstructed by a (possibly absent) 

obstacle. This obstacle is visible from both endpoints of the edge (it is easy to see 

that a graph can be embedded in 3-space so that this condition is observed). 0 

Finally, suppose that the length of each edge of a graph has a given discrete 

probability distribution. When we arrive at a node we discover the actual length of 

its incident edges. We wish to devise a strategy that minimizes the expected ratio 

to the optimum path. Or we may want a strategy that minimizes the expected distance 

traversed from the start to the goal node. For these interesting problems we can 

show the following: 

Theorem 4.4. The stochastic optimization problems mentioned above can be solved in 

polynomial space, and are #P-hard. 

Proof. Membership in PSPACE follows from the fact that this is a “game against 

Nature” [14]. We show #P-hardness for the problem of computing the expected 

cost of an optimal strategy, where cost is the total distance or the ratio to the shortest 

path. With simple modifications one can easily prove that it is also #P-hard to 

compute the optimal strategy itself (for example, to compute the best move out of 

the start vertex). Our reductions are from the s-t reliability problem: Given an 

undirected graph G with two distinguished nodes s and t, the s-t reliability is the 

probability that s is connected to t assuming that the edges of the graph fail (i.e., 

are deleted) independently with probability 4 [6]. We will show #P-hardness first 

for the minimization of the expected distance traversed, and then will show it for 

the ratio criterion. 

Let n be the number of nodes and e the number of edges of G. Let H be the 

graph obtained from G by letting every edge of G have, with probability i, length 

1 or infinity (i.e., an appropriately large number), and by adding an edge from s to 

t which has length M = 4n2’ with probability 1. Let g be the s-t reliability of G, 

and let I be the expected distance traversed by the optimal search strategy. As we 

will show, if we know 1, then we can derive g. 

’ If we could make the graph in the reduction of Theorem 4.1 planar, which at present we cannot, 

then the 2.dimensional problem could also be proved PSPACE-complete. 
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Observe that g is equal to k/2’ for some integer k. From the definitions, we have 

1~ M( 1 -g), because if s is not connected to t, using edges of length 1, then we 

must traverse the new edge (s, t). On the other hand the following strategy implies 

that I s M( 1 -g) + g2n. First explore starting from s the graph G using only length-l 

edges in a depth-first manner, and backtracking when necessary. It is easy to see 

that after traversing distance no more than 2n, we can either find a path to t through 

the graph G, or backtrack to s having determined that no such path exists. Combining 

the two inequalities, we conclude that 2’ - k s 1/4n s 2’ - k++, that is, k = 

2’ - [ 1/4n]. 

For the ratio criterion, form a graph H’ as above, except that instead of adding 

the edge (s, t) we add a new start vertex s’, an edge from s to s’ of length H = 4n2” 

and an edge from S’ to t of length L = 8n2”. One strategy for the searcher is to go 

directly from s’ to t. If the outcome of the random experiment is such that s is 

disconnected from t in G, then the shortest s’-t path has length L and the ratio is 

1, otherwise the shortest path has length between H + 1 and H + n and the ratio is 

approximately b. Thus, the expected ratio of this strategy is approximately (1 - g) + 

g(b). A second strategy for the searcher is to go to s and try to find a path through 

G, and if he does not succeed, to backtrack to s’ and follow the length L edge to 

t. This strategy has expected ratio approximately g + (1 - g) (2 H + L)/ L and thus is 

better since H < L. The optimal expected ratio r satisfies the following inequalities: 

rzl+(l-g)(2H/L) and r<l+g2n/H+(l-g)(2H+2n)/L. Let g=k/2’. Then 

it is easy to see that the integer part of r2” is equal to 22’+2’- k. 0 
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