\(\varepsilon \)-Nets and VC Dimension

- Sampling is a powerful idea applied widely in many disciplines, including CS.
- There are at least two important uses of sampling: estimation and detection.
- CNN, Nielsen, NYT etc use polling to estimate the size of a particular group in the larger population.
- By sampling a small segment of the population, one can predict the winner of a presidential election (with high confidence). How many prefer Bush to Gore; how many will use a new service etc.
- In detection, the goal is to sample so that any group with large probability measure will be caught with high confidence.
- Random traffic checks, for example. Frequent speeders (drinkers) are likely to get caught.
Sampling

- A network monitoring application.

- Want to detect flows that are suspiciously big, in terms of fraction of total packets.

- Set a threshold of $\theta\%$. Any flow that accounts for more than $\theta\%$ of traffic at a router should be flagged.

- Keeping track of all flows is infeasible; millions of flows and billions of packets per second.

- By taking a number of samples that depends only on θ, we can detect offending flows with high probability.

- Track only sampled flows.
Basic Sampling Theorem

- U is a ground set (points, events, database objects, people etc.)
- Let $R \subset U$ be a subset such that $|R| \geq \varepsilon|U|$, for some $0 < \varepsilon < 1$.

- **Theorem:** A random sample of $\left(\frac{1}{\varepsilon}\ln\frac{1}{\delta}\right)$ points from U intersects R with probability at least $1 - \delta$.

- **Proof:** A particular sample point is in R with prob ε, and not in R with prob. $1 - \varepsilon$. Prob. that none of the sampled points is in R is

 \[
 \leq (1 - \varepsilon)^{\frac{1}{\varepsilon}\ln\frac{1}{\delta}} \leq e^{-\ln\frac{1}{\delta}} = \delta.
 \]
Universal Samples

- Sample size is independent of $|U|$.
- Basic sampling theorem guarantees that for a given set R, a random sample set works.
- If we want to hit each of the sets R_1, R_2, \ldots, R_m, then this idea is too limiting. It requires a separate sample for each R_i.
- Can we get a single universal sample set, which hit all the R_i’s?

- ε-Nets and VC dimension characterize when this is possible.
ε-Nets

- Let \((\mathcal{U}, \mathcal{R})\) be a finite set system, and let \(\varepsilon \in [0, 1]\) be a real number.

- A set \(N \subseteq \mathcal{U}\) is called an \(\varepsilon\)-net for \((\mathcal{U}, \mathcal{R})\) if \(N \cap R \neq \emptyset\) for all \(R \in \mathcal{R}\) whenever \(|R| \geq \varepsilon |\mathcal{U}|\).

- A more general form of \(\varepsilon\)-net can be defined using probability measures. Think of this as endowing points of \(\mathcal{U}\) with weights.
A set system \((\mathcal{U}, \mathcal{R})\), where \(\mathcal{U}\) is the ground set and \(\mathcal{R}\) is a family of subsets.

\(\mathcal{R} = \{R_1, \ldots, R_m\}\), with \(R_i \subset \mathcal{U}\), are ranges that we want to hit.

A subset \(X \subset \mathcal{U}\) is shattered by \(\mathcal{R}\) if all subsets of \(X\) can be obtained by intersecting \(X\) with members of \(\mathcal{R}\).

That is, for any \(Y \subseteq X\), there is some \(A \in \mathcal{R}\) such that \(Y = X \cap A\).

Examples: \(\mathcal{U} = \) points in the plane. \(\mathcal{R} = \) half-spaces.
VC Dimension

- The shatter function measures the complexity of the set system.
- If instead of half-spaces, we used ellipses, then (ii) and (iii) can be shattered as well.
- So, the set system of ellipses has higher complexity than half-spaces.

VC Dimension: The VC dimension of a set system $(\mathcal{U}, \mathcal{R})$ is the maximum size of any set $X \subset \mathcal{U}$ shattered by \mathcal{R}.

- Thus, the half-spaces system has VC dimension 3.
Other Examples

- Set system where $\mathcal{U} =$ points in d-space, and $\mathcal{R} =$ half-spaces, has VC-dimension $d + 1$.

- A simplex is shattered, but no $(d + 2)$-point set is shattered (by Radon’s Lemma).

- Set system where $\mathcal{U} =$ points in the plane, and $\mathcal{R} =$ circles, has VC-dimension 4.
Convex Set System

- Consider \((\mathcal{U}, \mathcal{R})\), where \(\mathcal{U}\) is a set of points in the plane, and \(\mathcal{R}\) is a family of convex sets.
- Members of \(\mathcal{R}\) are subsets that can be obtained by intersecting \(\mathcal{U}\) with a convex polygon.
- Any subset \(X \subseteq \mathcal{U}\) can be obtained by intersecting \(\mathcal{U}\) with an appropriate convex polygon.
- Thus, the entire set \(\mathcal{U}\) is shattered.
- VC dimension of this set system is \(\infty\).
\(\varepsilon \)-Net Theorem

- Suppose \((\mathcal{U}, \mathcal{R})\) is a set system of VC dimension \(d\), and let \(\varepsilon, \delta\) be real numbers, where \(\varepsilon \in [0, 1]\) and \(\delta > 0\).

- If we draw
 \[
 O \left(\frac{d}{\varepsilon} \log \frac{d}{\varepsilon} + \frac{1}{\varepsilon} \log \frac{1}{\delta} \right)
 \]

 points at random from \(\mathcal{U}\), then the resulting set \(\mathcal{N}\) is an \(\varepsilon\)-net with probability \(\geq \delta\).

- Size of \(\varepsilon\)-Net is independent of the size of \(\mathcal{U}\).

- Example: Consider set system of points in the plane with half-space ranges. It has VC-dim = 3. Assuming \(\varepsilon, \delta\) constant, we have an \(\varepsilon\)-net of \(O(1)\) size.
Consequences

- We will not prove the ε-net theorem, but look at some applications, and prove a related result, bounding the size of the set system.

- Suppose the set system $(\mathcal{U}, \mathcal{R})$, where $|\mathcal{U}| = n$, has VC dimension d. How many sets can be in the family \mathcal{R}?

- Naively, the best one can say is that $|\mathcal{R}| \leq 2^n$.

- We will show that

$$|\mathcal{R}| \leq \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d} \leq n^d$$

- This is the best bound one can prove in general, but it’s not necessarily the best for individual set systems.

- E.g., for points and half-spaces in the plane, this theorem gives n^3, while we can see that the real bound is n^2.
• **Define** $g(d, n) = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d}$.

• **Proof by induction.** Base case trivial: $n = d = 0$ and $\mathcal{U} = \mathcal{R} = \emptyset$.

• Choose an arbitrary point $x \in \mathcal{U}$, and consider $\mathcal{U}' = \mathcal{U} - \{x\}$.

• Let \mathcal{R}' be the projection of \mathcal{R} onto \mathcal{U}'. That is, $\mathcal{R}' = \{A \cap \mathcal{U}' | A \in \mathcal{R}\}$.

• **VC-dim of** $(\mathcal{U}', \mathcal{R}')$ is at most d—if \mathcal{R}' shatters a $(d + 1)$-size set, so does \mathcal{R}.

• **By induction,** $|\mathcal{R}'| \leq g(d, n - 1)$.

System (U, R) System (U', R')
Proof

- What’s the difference between \mathcal{R} and \mathcal{R}'?
- Two sets $A, A' \in \mathcal{R}$ map to same set in \mathcal{R}' only if $A = A' \cup \{x\}$ and $x \notin A'$.
- Define a new set system $(\mathcal{U}, \mathcal{R}''')$ where
 \[\mathcal{R}''' = \{ A' | A' \in \mathcal{R}, \ x \notin A', \ A' \cup \{x\} \in \mathcal{R} \} \]
- $|\mathcal{R}| = |\mathcal{R}'| + |\mathcal{R}'''|$—sets in \mathcal{R}''' are exactly those that are counted only once in \mathcal{R}'.
- Claim: VC-dim of \mathcal{R}''' is $\leq d - 1$.
- We show that whenever \mathcal{R}''' shatters Y, \mathcal{R} shatters $Y \cup \{x\}$.
Proof

• Two cases: Consider \(A \subseteq Y \cup \{x\} \).

1. If \(A \subseteq Y \), then since \(Y \) is shattered, \(\exists S \in \mathcal{R}'' \) so that \(S \cap Y = A \).
2. Since \(x \notin S \), but \(S \in \mathcal{R} \), it follows that \(S \cap (Y \cup \{x\}) = A \).
3. If \(x \in A \), then \(\exists S \in \mathcal{R}'' \) so that \(S \cap Y = A - \{x\} \).
4. By definition of \(\mathcal{R}'' \), \(S \cup \{x\} \in \mathcal{R} \), and so \((S \cup \{x\}) \cap (Y \cup \{x\}) = A \cup \{x\} = A \).

• Thus, \(Y \cup \{s\} \) is shattered.

• Thus, VC-dim of \(\mathcal{R}'' \) is at most \(d - 1 \), and by induction, \(|\mathcal{R}''| \leq g(d - 1, n - 1) \).
Proof

• Since $|\mathcal{R}| = |\mathcal{R}'| + |\mathcal{R}''|$, we have

\[
|\mathcal{R}| \leq g(d, n-1) + g(d-1, n-1)
\]

\[
= \sum_{i=0}^{d} \binom{n-1}{i} + \sum_{i=0}^{d-1} \binom{n-1}{i}
\]

\[
= \binom{n-1}{0} + \sum_{i=1}^{d} \left(\binom{n-1}{i} + \binom{n-1}{i-1} \right)
\]

\[
= \binom{n}{0} + \sum_{i=1}^{d} \binom{n}{i}
\]

\[
= g(d, n)
\]
ε-Approximation

- Suppose $(\mathcal{U}, \mathcal{R})$ is a set system of VC dimension d, and let ε, δ be real numbers, where $\varepsilon \in [0, 1]$ and $\delta > 0$.

- A set $N \subseteq \mathcal{U}$ is called an ε-approximation for $(\mathcal{U}, \mathcal{R})$ if for any $A \in \mathcal{R}$,

$$\left| \frac{|N \cap A|}{|N|} - \frac{|A|}{|\mathcal{U}|} \right| \leq \varepsilon$$

- If we draw

$$O\left(\frac{d}{\varepsilon^2 \log \frac{d}{\varepsilon}} + \frac{1}{\varepsilon^2 \log \frac{1}{\delta}}\right)$$

points at random from \mathcal{U}, then the resulting set N is an ε-approximation with probability $\geq \delta$.

- An ε-approximation is also an ε-net, but not vice versa.