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Abstract

Given a set of points P and axis-aligned rectangles R in the plane, a point p 2 P is called exposed if
it lies outside all rectangles in R. In the max-exposure problem, given an integer parameter k, we want to
delete k rectangles from R so as to maximize the number of exposed points. We show that the problem is
NP-hard and assuming plausible complexity conjectures is also hard to approximate even when rectangles
in R are translates of two fixed rectangles. However, if R only consists of translates of a single rectangle,
we present a polynomial-time approximation scheme. For general rectangle range space, we present a
simple O(k) bicriteria approximation algorithm; that is by deleting O(k2) rectangles, we can expose at
least ⌦(1/k) of the optimal number of points.

1 Introduction

Let S = (P,R) be a geometric set system, also called a range space, where P is a set of points and each
R 2 R is a collection of subsets of P , also called a range. We are primarily interested in range spaces defined
by a set of points in two dimensions and ranges defined by axis-aligned rectangles. We say that a point p 2 P
is exposed if no range in R contains p. The max-exposure problem is defined as follows: given a range space
(P,R) and an integer parameter k � 1, remove k ranges from R so that a maximum number of points are
exposed. That is, we want to find a subfamily R⇤ ✓ R with |R⇤| = k, so that the number of exposed points
in the (reduced) range space (P,R \R⇤) is maximized.

The max-exposure problem arises naturally in many geometric coverage settings. For instance, if points
are the location of clients, and ranges are coverage of some facilities in the plane, then exposed points are
those not covered by any facility. The max-exposure problem in this case gives a worst-case bound on the
number of clients that can be exposed if an adversary disables k facilities. Similarly, in distributed sensor
networks, ranges correspond to sensing zones, points correspond to physical assets being monitored by
the network, and the max-exposure problem computes the number of assets exposed when k sensors are
compromised.

More broadly, the max-exposure problem is related to the densest k-subgraph problem in hypergraphs. In
the densest k-subhypergraph problem, we are given a hypergraph H = (X,E), and we want to find a set of k
vertices with a maximum number of induced hyperedges. In general hypergraphs, finding k-densest subgraphs
is known to be (conditionally) hard to approximate within a factor of n1�✏, where n is the number of vertices.
The max-exposure problem is equivalent to the densest k-subhypergraph problem on a dual hypergraph, the
vertex set X corresponds to the ranges R, and set of edges E of the dual hypergraph correspond to the set of
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points P . In the rest of the paper, we will use n = |R| for the number of ranges in R and m = |P | to be the
number of points. We show that if the range space is defined by convex polygons, then the max-exposure
problem is just as hard as the densest k-subhypergraph problem. However, for ranges defined by axis-aligned
rectangles, one can achieve much better approximation. In particular, we obtain the following results.

• We show that the max-exposure problem is NP-hard and assuming the dense vs random conjecture to
be true, it is also hard to approximate better than a factor of O(n1/4) even if the range space is defined
by only two types of rectangles in the plane. (For range space defined by convex polygons, we show
that max-exposure is equivalent to densest k-subhypergraph problem, which is hard to approximate
within O(n1�✏)).

• When ranges are defined by translates of a single rectangle, we give a polynomial-time approximation
scheme (PTAS) for max-exposure. The PTAS stands in sharp contrast to the inapproximability of
ranges defined by two types of rectangles. Moreover, as an easy consequence of this result, we obtain a
constant approximation when the ratio of longest and smallest side of rectangles in R is bounded by a
constant.

• For ranges defined by arbitrary rectangles, we present a simple greedy algorithm that achieves a bicrite-
ria O(k)-approximation. No such approximation is possible for general hypergraphs. If rectangles in
R have a bounded aspect ratio, the approximation improves to O(

p
k).

Related Work Coverage and exposure problems have been widely studied in geometry and graphs. In
the classical set cover problem, we want to select a subfamily of k sets that cover the maximum number
of items (points) [14, 17]. For the set cover problem, the classical greedy algorithm achieves a factor log n
approximation on the number of sets needed to cover all the items, or factor (1 � 1/e) approximation
on the number of items covered by using exactly k sets. Similarly, in geometry, the art gallery problems
explore coverage of polygons using a minimum number of guards. Unlike coverage problems where
greedy algorithms deliver reasonably good approximation, the exposure problems turn out to be much harder.
Specifically, choosing k sets whose union is of minimum size is much harder to approximate with a conditional
inapproximability of O(n1�✏) where n is the number of elements and O(m1/4�✏) where m is the number of
sets [10]. This so-called min-union problem is essentially the densest k-subgraph problem on hypergraphs [9].
The densest k-subgraph problem for graphs has a long history [2, 3, 6, 15]. The classical coverage problems
have been extensively studied for geometric set systems and significantly better approximation bounds have
been achieved for them [1, 7, 20]. Several other variations such as the set multi-cover problem [8, 12] where
each input point needs to be covered by more than one set have also been studied. Also closely related to
max-exposure is the geometric constraint removal problem [4, 13], where given a set of ranges, the goal is
to expose a path between two given points by deleting at most k ranges (a path is exposed if it lies in the
exterior of all ranges). Even for simple shapes such as unit disks (or unit squares) [5, 19], no PTAS is known
for this problem.

The remainder of the paper is organized as follows. In Section 2, we discuss our hardness results followed
by the bicriteria O(k)-approximation in Section 3. In Section 4, we study the case when R consists of
translates of a fixed rectangle and describe a PTAS for it. Finally, in Section 5, we use these ideas to obtain a
bicriteria O(

p
k)-approximation when aspect ratio of rectangles in R is bounded by a constant.

2 Hardness of Max-Exposure

We show that max-exposure problem for geometric ranges is both NP-hard and inapproximable within a
polynomial factor, under some well known hardness conjectures. In particular, we first show that the densest
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k-subgraph on bipartite graphs (bipartite-DkS) can be easily reduced to the max-exposure problem. In the
bipartite-DkS problem, we are given a bipartite graph G = (A,B,E), an integer k, and we want to compute
a set of k vertices such that the induced subgraph on those k vertices has the maximum number of edges.
Given an instance G = (A,B,E) of bipartite-DkS, we will construct a max-exposure instance as follows.

Figure 1: Bipartite-DkS
to Max-exposure

Let R1 = [0, ✏] ⇥ [0, n] be a thin vertical rectangle and R2 = [0, n] ⇥ [0, ✏] be
a thin horizontal rectangle. For each vertex vi 2 A, we create a copy Ri of R1,
and place it such that its lower-left corner is at (i, 0). Similarly, for each vertex
vj 2 B, we create a copy Rj of R2, and place it such that its lower-left corner is at
(0, j). These |A|+ |B| rectangles create a checkerboard arrangement, with |A|⇥ |B|
cells of intersection. For each edge (vi, vj) 2 E, we place a single point in the
cell corresponding to intersection of Ri and Rj . It is now easy to see that G has a
k-subgraph with m⇤ edges if and only if we can expose m⇤ points in this instance by removing k-rectangles:
the removed rectangles are exactly the k vertices chosen in the graph, and each exposed point corresponds to
the edge included in the output subgraph. (See also Figure 1.)

Lemma 1. The max-exposure problem is at least as hard as bipartite-DkS.

Since bipartite-DkS is known to be NP-hard [16], we have the following.

Theorem 1. Max-exposure problem with axis-aligned rectangles is NP-hard.

2.1 Hardness of Approximation

The construction in the preceding proof shows that max-exposure with rectangles is at least as hard as
bipartite-DkS problem. Moreover, the geometric construction uses translates of only two rectangles R1, R2.
In the following, we show that even with such a restricted range space, the problem is also hard to approximate.
To that end we prove that bipartite-DkS cannot be approximated better than a factor O(n1/4), where n is
the number of vertices in this graph. More precisely, if the densest subgraph over k vertices has m⇤ edges,
it is hard to find a subgraph over k vertices that contains at least ⌦(m⇤/n1/4�✏) edges in polynomial time.
This hardness of approximation is conditioned on the so-called dense vs random conjecture [10] being true.
Roughly speaking, we are given a graph G, constants 0 < ↵,� < 1, and a parameter k, and we want to
distinguish between the following two cases.

1. (RANDOM) G = G(n, p) where p = n↵�1, that is, G has average degree approximately n↵.

2. (DENSE) G is adversarially chosen so that the densest k-subgraph of G has average degree k� .

The conjecture states that for all 0 < ↵ < 1, sufficiently small ✏ > 0, and for all k 
p
n, one cannot

distinguish between the dense and random cases in polynomial time (w.h.p), when �  ↵� ✏.
In order to obtain hardness guarantees using the above conjecture, one needs to find the ‘distinguishing

ratio’ r, that is the least multiplicative gap between the optimum solution for the problem on the dense and
random instances. If there exists an algorithm with an approximation factor significantly smaller than r,
then we would be able to use it to distinguish between the dense and random instances, thereby refuting
the conjecture. We obtain the following result for densest k-subgraph problem on bipartite graphs. (See
Appendix A.1 for a proof.)

Lemma 2. Assuming that dense vs random conjecture is true, the densest k-subgraph problem on bipartite
graphs is hard to approximate better than a factor O(n1/4) of optimum.

Using the same construction as in Lemma 1, we obtain the following.

Corollary 1. Assuming the dense vs random conjecture, max-exposure with axis-aligned rectangles is hard
to approximate better than a factor O(n1/4) of optimum.
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Hardness of Max-exposure with Convex Polygons If the range space (P,R) consists of convex polygons,
the max-exposure problem is equivalent to the densest k-subhypergraph problem for general hypergraphs.
A max-exposure instance (P,R) naturally corresponds to a hypergraph H = (R, P ) whose vertices are
the ranges and the edges correspond to points and are defined by the containment relationship. Clearly, the
densest k-subhypergraph corresponds to the set of k ranges deleting which exposes maximum number of
points. For the other direction, we have the following lemma.
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Figure 2: Hypergraph vertices
A,B shown as convex ranges.

Lemma 3. Given a hypergraph H = (X,E), one can construct a max-
exposure instance with convex ranges R and points P such that the densest
k-subhypergraph of H corresponds to a solution of max-exposure.

Proof. For each edge e 2 E of the hypergraph, add a point pe 2 P . We place
all the points of P in convex position. Let v 2 X be a vertex and Ev be the
set of hyperedges adjacent to v. Then for every v 2 X , we add a convex
polygon Rv 2 R such that the corners of Rv are the points corresponding to hyperedges in Ev. Note that
this is possible since points of P are in convex position. It is easy to see that in order to include an edge e
(expose pe), we must include all vertices in Ev, which corresponds to removing all polygons corresponding
to vertices in Ev.

3 A Bicriteria O(k)-approximation Algorithm

In this section, we present a simple approximation algorithm for the max-exposure problem that achieves
bicriteria O(k)-approximation for range spaces defined by arbitrary axis-aligned rectangles. Specifically,
if the optimal number of points exposed is m⇤, the algorithm picks a subset of k2 rectangles such that the
number of points exposed is at least m⇤/ck, for some constant c. In fact, the results hold for any polygonal
range with O(1) complexity.

This bicriteria approximation should be contrasted with the fact that no such approximation is possible
for for the densest k-subhypergraph problem: that is, one cannot compute a set of O(kb) vertices for any
constant b such that the number of edges in the induced subhypergraph is at least optimal. Thus the geometric
properties of the range space have a significant impact on the problem complexity. In particular, if R consists
of rectangle ranges, we show that the following strategy picks a subset of ↵k ranges such that the number
of points exposed is at least ↵m⇤/ck2, for a parameter 1  ↵  k and constant c that will be fixed later.
Choosing ↵ = k gives us the claimed bound.

Our algorithm is essentially greedy. We divide the points into maximal equivalence classes, where each
class is the maximal subset of points belonging to the same subset of ranges. We define R(p) as the set of
ranges that contain a point p 2 P , and remove all points that are contained in more than k ranges, since
they can be never exposed in the optimal solution. Therefore, without loss of generality, we can assume that
|R(p)|  k for all points p 2 P .

Algorithm: Greedy-Bicriteria

1. Partition P into a set G of groups where each group Gi 2 G is an equivalence class of points that are
contained in the same set of ranges. That is, for any p 2 Gi, p0 2 Gj , we have R(p) = R(p0) if i = j
and R(p) 6= R(p0), otherwise.

2. Sort the groups in G by decreasing order of their size |Gi| and select the first ↵ groups. Return
m0 =

P
1i↵ |Gi| as the number of points exposed.

Observe that every point p 2 Gi is contained in the same set of ranges Ri = R(p) and |Ri|  k.
Therefore, the total number of ranges that we remove is at most ↵k. It remains to show that the number of
points exposed m0 is at least ↵m⇤/ck2.
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Lemma 4. Let m0 be the number of points exposed by the algorithm Greedy-Bicriteria, and let m⇤ be the
optimal number of exposed points, Then, m0 � ↵m⇤/ck2.

Proof. Consider the optimal set R⇤ of k ranges that are deleted, and let P ⇤ be the set of exposed points. We
partition the set of points P ⇤ into groups G⇤ as before, such that each group G⇤

i
2 G⇤ is identified by the

range set R⇤
i
= R(p), for any p 2 G⇤

i
. Since P ⇤ ✓ P , we must have that G⇤ ✓ G. This holds because for

every group G⇤
i
2 G⇤ there must be a group Gi 2 G such that R⇤

i
= Ri. Moreover since P ⇤ is the maximum

set of points that can be exposed, we must have that G⇤
i
= Gi. Finally, we note that the number of groups

|G⇤| is bounded by the number of cells in the arrangement of ranges in R⇤ which is at most ck2 for some
fixed constant c, for all O(1)-complexity ranges.

If the groups in G are arranged by decreasing order of their sizes, we have that

m⇤ =
X

1i|G⇤|
|G⇤

i | 
X

1i|G⇤|
|Gi| 

X

1ick2

|Gi|  ck2

↵

X

1i↵

|Gi| =
ck2

↵
·m0

The parameter ↵ can be tuned to improve the approximation guarantee with respect to one criterion (say
the number of exposed points) at the cost of other. With ↵ = k, the algorithm exposes at least ⌦(m⇤/k) by
removing k2 ranges. If the range space R consists of pseudodisk of bounded-ply (no point in the plane is
incident to more than a constant number ⇢ of pseudodisks), then the algorithm Greedy-Bicriteria achieves an
O(⇢) approximation. This holds because the number of cells in an arrangement of k pseudodisks with depth
at most ⇢ is O(⇢k) [11].

4 A PTAS for Unit Square Ranges

We have seen that max-exposure is hard to approximate even if the ranges are translates of two types of
rectangles. We now describe an approximation scheme when the ranges are translates of a single rectangle.
In this case, we can scale the axes so that the rectangle becomes a unit square without changing any point-
rectangle containment. Therefore, we can assume that our ranges are all unit squares. The problem is
non-trivial even for unit square ranges, and as a warmup we first solve the following special case: all the
points lie inside a unit square. We develop a dynamic programming algorithm to solve this case exactly, and
then use it to design an approximation for the general set of points.

4.1 Exact Solution in a Unit Square

`1

`0

C

Figure 3: Max-exposure in a unit square C.
Type 0 ranges are drawn with solid lines, Type 1
ranges are dash-dotted.

We are given a max-exposure instance consisting of unit square
ranges R and a set of points P in a unit square C. Without
loss of generality, we can assume that the lower left corner
of C lies at origin (0, 0) and all ranges in R intersect C. We
classify the ranges in R to be one of the two types: (See also
Figure 3).

Type-0 : Unit square ranges that intersect x = 0.

Type-1 : Unit square ranges that intersect x = 1.

(A unit square range coincident with both x = 0 and x = 1 is assumed to be Type-0 ). We draw two
parallel horizontal lines `0 : y = 0 and `1 : y = 1 coincident with bottom and top horizontal sides of C
respectively. We say that a range R 2 R is anchored to a line ` if it intersects `. Note that every R 2 R is
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anchored to exactly one of `0 or `1. (When R is coincident with both `0 and `1, we say that it is anchored to
`0). Moreover, for the rest of our discussion, let x = xi be a vertical line and define Pi ✓ P to be the set of
points that have x-coordinate at least xi. Similarly, define Ri ✓ R to be the set of ranges that have at least
one corner to the right of x = xi. That is a range R 2 Ri either intersects x = xi or lies completely to the
right of it.

In order to gain some intuition, we will first consider the following two natural dynamic programming
formulations for the problem.

DP-template-0 Suppose that the points in P are ordered by their increasing x-coordinates and let xi be
the x-coordinate of the ith point pi. We define a subproblem as S(i, k0,Rd) which represents the maximum
number of points in Pi that can be exposed by removing k0 ranges from the set Ri \ Rd. If we define x0 = 0,
then S(0, k, ;) gives the optimal number of exposed points for our problem.

Let ki = |R(pi) \ Rd| be the number of ranges of Ri \ Rd that contain pi. Then, we can can express the
subproblems at i in terms of subproblems at i+ 1 as follows.

S(i, k0,Rd) = max

(
S(i+ 1, k0 � ki, Rd [R(pi)) + 1 expose pi

S (i+ 1, k0, Rd) otherwise

Roughly speaking, at x = xi which is the event corresponding to a point pi 2 P , we have two choices :
expose pi or do not expose pi. If we expose pi, we pay for deleting the ranges in Ri \ Rd that contain pi and
mark them as deleted by adding to the deleted range set Rd. Moreover, since we only delete ranges from
Ri \ Rd, we can assume that Rd = Rd \Ri at each xi. It is easy to see that this correctly computes the
optimal number of exposed points. However, there is one complication: a priori it is not clear how to bound
the number of range subset Rd used by this dynamic program. We later argue that the geometry of range
space for Type-0 ranges allows us to use only a polynomial number of choices.

DP-template-1 An alternative approach is to consider both point and begin-range events. That is, x = xi
is either incident to a point pi 2 P or to the left vertical side of a range Ri 2 R. Then, we can define a
subproblem by the tuple S(i, k0, Pf ) which represents the maximum number of points in (Pi \ Pf ) that can
be exposed by removing k0 ranges in Ri. If we define x0 = 0, then S(0, k, ;) gives the optimal number of
exposed points. Let P (Ri) ✓ P be the set of points contained in the range Ri, then we have the following
recurrence.

S(i, k0, Pf ) = max

(
S(i+ 1, k0 � 1, Pf ) delete range Ri

S(i+ 1, k0, Pf [ P (Ri)) otherwise

(event x = xi was beginning of a range Ri 2 Ri)

= max

(
S(i+ 1, k0, Pf ) if pi 2 Pf , cannot expose pi

S(i+ 1, k0, Pf ) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi 2 Pi)

In the above formulation, at each begin-range event for some Ri 2 Ri, we have two choices: delete Ri or do
not delete Ri. If Ri was deleted, we reduce the budget k0 by one. Otherwise, if Ri was not deleted, we can
never expose the points in P (Ri), and therefore we add P (Ri) to the forbidden point set Pf . The correctness
of the dynamic program follows from the fact that for every point pi, all the ranges containing it must begin
before x = xi, and we expose pi only if those ranges were deleted. Finally, since we only expose points in
Pi \ Pf , we can assume that Pf = Pf \ Pi at each xi. Again, it is not obvious how many different subsets
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Pf are needed by the dynamic program. However, we will later show that by keeping track of polynomial
number of sets Pf , we can solve max-exposure with Type-1 ranges.

We note that the Type-0 and Type-1 ranges may superficially seem symmetric but once we fix the order
of computing subproblems, they become structurally different. Therefore, we would need slightly different
techniques to handle each type. For the ease of exposition, we present dynamic programs for Type-0 and
Type-1 ranges separately and finally combine them.

p

`0

`1

p0

R
R0

d(R0, `0)

Figure 4: p is closer to `1 than p0.
R is closer to `0 than R0.

We first define the following ordering relations that will be useful. Let
` be a horizontal line, and let d(p, `) denote the orthogonal distance of
p 2 P from `. If p, p0 2 P are two points, we say that p is closer to ` than
p0 if d(p, `) < d(p0, `). Similarly, for a range R 2 R that is anchored to `,
let d(R, `) be the vertical distance inside the unit square C between ` and
the side of R parallel to `. If R,R0 2 R are two ranges, we say that R is
closer (or equivalently R0 is farther ) from ` if both R,R0 are anchored
to ` and d(R, `) < d(R0, `). (See Figure 4.)

Max-exposure with Type-0 Ranges Recall that Type-0 ranges intersect the vertical lines x = 0 and are
anchored to either `0 or `1. We will apply the formulation discussed in DP-template-0. The key challenge
here is to bound the number of possible deleted range sets Rd. Towards that end, we make the following
claim.

Lemma 5. Let q0, q1 be the two exposed points strictly to the left of x = xi that are closest to `0 and `1
respectively. Then our dynamic program only needs to consider the set of deleted ranges Rd = R(q0)[R(q1)
at x = xi conditioned on q0, q1.

Proof. Observe that since R consists of Type-0 ranges, every range in Ri must intersect the vertical line
x = xi. Suppose we partition Ri into ranges R0

i
that are anchored to `0 and R1

i
that are anchored to `1. Let

P 0 ✓ P be the set of all exposed points strictly to the left of x = xi. Observe that for all p 2 P 0, any range
R 2 R0

i
that contains p must also contain q0. Therefore, we must have R0

i
\R(p) ✓ R0

i
\R(q0), for all

p 2 P 0. Similarly, R1
i
\R(p) ✓ R1

i
\R(q1), for all p 2 P 0. Hence,

S
p2P 0 Ri \R(p) = R(q0) [R(q1).

Recall that Rd is precisely the set of ranges at x = xi that contain any exposed point to the left of x = xi, so
we have Rd = R(q0) [R(q1).

Therefore, if our dynamic program remembers the exposed points q0, q1, then we can compute the deleted
range set Rd = R(q0) [R(q1) at x = xi. There are O(m2) choices for the pair q0, q1, so the number of
possible sets Rd is also O(m2). We can therefore identify our subproblems by the tuple S(i, k0, q0, q1)
which represents the maximum number of exposed points with x-coordinates xi or higher using k0 rectangles
from the set Ri \ Rd. With ki = |R(pi) \ Rd|, we obtain the following recurrence:

S(i, k0, q0, q1) = max

(
S (i+ 1, k0 � ki, closer(pi, q0), closer(pi, q1)) + 1 expose pi

S (i+ 1, k0, q0, q1) otherwise

where the function closer(pi, q0) returns whichever of pi, q0 is closer to `0, and closer(pi, q1) returns
whichever of pi, q1 is closer to `1. The optimal solution is given by S(0, k, q⇤0, q

⇤
1), where q⇤0 = (0, 1) and

q⇤1 = (0, 0) are two artificial points with R(q⇤0) = R(q⇤1) = ; (not contained in any range). The base case is
defined by the vertical line x = 1 and is initialized with zeroes for all q0, q1 and k0 � 0. Any subproblem
with k0 < 0 has value �1.
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Max-exposure with Type-1 Ranges Next we consider the case when we only have Type-1 ranges in R.
Unfortunately in this case, our previous dynamic program does not work and we need to remember a different
set of parameters. More precisely, we will apply the formulation discussed in DP-template-1, and bound the
number of possible forbidden point sets Pf .

`0

`1

xi

Q1

Q0

Figure 5: Ranges Q0 and Q1.

Lemma 6. Let Q0, Q1 be two ranges that begin to the left of x = xi and were
not deleted. Moreover, Q0 is anchored to and is farthest from `0. Similarly Q1

is anchored to and is farthest from `1 (Figure 5). Then the forbidden point set
at x = xi is given by Pf = P (Q0) [ P (Q1), where P (Q) is the set of points
contained in range Q.

Proof. Recall that the set Ri consists of ranges that have at least one corner to the right of the vertical line
x = xi. Since we are dealing with Type-1 ranges, every range that begins to the left of x = xi lies in Ri. Now
let R0 ✓ Ri be the set of ranges that begin to the left of x = xi and were not deleted. Recall that Pi is the set
of points in P that have x-coordinate xi or higher. Now consider any range R 2 R0. Observe that if R was
anchored to `0, then every point of Pi that lies in R also lies in Q0. Otherwise, if R was anchored to `1, every
point of Pi that lies in R also lies in Q1. Therefore, we must have

S
R2R0 (Pi \ P (R)) = P (Q0) [ P (Q1).

Recall that Pf was precisely the set of points in Pi contained in ranges that begin to the left of x = xi and
were not deleted. Therefore, we have that Pf = P (Q0) [ P (Q1).

Therefore, if our dynamic program remembers the ranges Q0 and Q1, we can compute the forbidden
point set Pf = P (Q0) [ P (Q1) at x = xi. Since there are O(n2) choices for the pair Q0, Q1, the number of
possible sets Pf is also O(n2). We can now identify the subproblems by the tuple S(i, k0, Q0, Q1) which
represents the maximum number of points in Pi \ Pf that are exposed by deleting k0 ranges that begin on or
after x = xi. This gives us the following recurrence.

S(i, k0, Q0, Q1) = max

8
>><

>>:

S(i+ 1, k0 � 1, Q0, Q1) delete range Ri

S(i+ 1, k0, farther(Ri, Q0), Q1) otherwise, Ri is not deleted and anchored to `0

S(i+ 1, k0, Q0, farther(Ri, Q1)) otherwise, Ri is not deleted and anchored to `1

(event x = xi was beginning of a range Ri 2 R)

= max

(
S(i+ 1, k0, Q0, Q1) if pi 2 Pf , cannot expose pi

S(i+ 1, k0, Q0, Q1) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi 2 P )

Here, farther(Ri, Q0) returns whichever of Ri, Q0 is farther from `0; and farther(Ri, Q1) returns whichever
of Ri, Q1 is farther from `1. The optimal solution is given by P (0, k,Q⇤

0, Q
⇤
1), where Q⇤

0, Q
⇤
1 are two artificial

ranges of zero-width : Q⇤
0 is anchored to `0 and is defined by corners (0, 0) and (0, 1); similarly, Q⇤

1 is
anchored to `1 and is defined by corners (0, 1) and (1, 1).

R1

R2

p1

R

R0

p

p0
p2

p3

(a) (b)

Figure 6: Remembering one of R1, R2 in
(a) or one of p1, p2 in (b) is not sufficient.

Remark: We note that remembering constant number of exposed
points q0, q1 or a constant number of undeleted ranges Q1, Q2 by
themselves cannot solve both Type-0 and Type-1 ranges. For in-
stance, in Figure 6(a) with Type-0 ranges, if R1, R2 were both not
deleted but we remembered one of them, then we will incorrectly
expose one of p, p0. Similarly in Figure 6(b) with Type-1 ranges,
if p1, p2 were both exposed but we only remembered one of them,
we will pay for one of the ranges R,R0 again when we expose p3.
However, since the previous dynamic programs for Type-0 and Type-1 ranges express subproblems at event i
in terms of subproblems at event i+ 1, we can easily combine them with minor adjustments.
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Combining them together In the following, we combine the dynamic programs for Type-0 and Type-1 ranges
to obtain a dynamic program for max-exposure in a unit square C. We will need a couple of changes. First, the
events at x = xi are now defined by either a point pi 2 P or beginning of a Type-1 range Ri. Next, the deleted
range set Rd at x = xi will only consist of Type-0 ranges and is defined as Rd = Ri0 \ (R(q0) [R(q1))
where Ri0 ✓ Ri is the set of Type-0 ranges that intersect the vertical line x = xi, The forbidden point set
Pf = P (Q0) [ P (Q1) stays the same. Here q0, q1, Q0, Q1 are same as defined before. The subproblems
represent the maximum number of points in Pi \ Pf that can be exposed by deleting k0 ranges from Ri \ Rd.
If ki = |R(pi) \ Rd|, then we obtain the following combined recurrence.

S(i, k0, q0, q1, Q0, Q1) = max

8
>><

>>:

S(i+ 1, k0, q0, q1, Q0, Q1) if pi 2 Pf , cannot expose pi

S(i+ 1, k0, q0, q1, Q0, Q1) choose to not expose pi

S(i+ 1, k0 � ki, q0, q1, Q0, Q1) + 1 otherwise, expose pi

(event x = xi was a point pi 2 Pi)

= max

8
>><

>>:

S(i+ 1, k0 � 1, q0, q1, Q0, Q1) delete Type-1 range Ri

S(i+ 1, k0, q0, q1, farther(Ri, Q0), Q1) Ri is not deleted and anchored to `0

S(i+ 1, k0, q0, q1, Q0, farther(Ri, Q1)) Ri is not deleted and anchored to `1

(event x = xi was beginning of a Type-1 range Ri 2 Ri)

The optimal solution is given by S(0, k, q⇤0, q
⇤
1, Q

⇤
0, Q

⇤
1). The correctness of the above formulation follows

from the fact that when we choose to expose pi, we are guaranteed that all Type-1 ranges in R(pi) have
already been deleted, and the expression ki only charges for Type-0 ranges containing pi. As for the running
time, for each event x = xi, we compute O(kn2m2) entries and computing each entry takes constant time.
Since there are O(n+m) events, we obtain the following.

Lemma 7. Given a set P of m points in a unit square C and a set of n unit square ranges R, we can compute
their max-exposure in O(k(n+m)n2m2) time.

4.2 A Constant Factor Approximation

We now use the preceding algorithm to solve the max-exposure problem for general set of points and unit
square ranges within a factor 4 of optimum. In particular, we compute a set of 4k ranges in R such that the
number of points exposed in P by deleting them is at least the optimal number of points. Suppose we embed
the ranges R on a uniform unit-sized grid G, and define C as the collection of all cells in G that contain at
least one point of P . We have the following approximation algorithm.

Algorithm: DP-Approx

1. Apply Lemma 7 to solve max-exposure locally in every cell Ci 2 C for all 0  ki  k. Call this a
local solution denoted by local(P (Ci),R(Ci), ki), where P (Ci) ✓ P is the set of points contained in
cell Ci and R(Ci) is the set of ranges intersecting Ci.

2. Process cells in C in any order C1, C2, . . . , Cg, and define global(i, k0) as the maximum number
of points exposed in the cells Ci through Cg using k0 ranges. Combine local solutions to obtain
global(i, k0) as follows.

global(i, k0) = max
0kik0

global(i+ 1, k0 � ki) + local(P (Ci), R(Ci), ki)

3. Return global(1, 4k) as the number of exposed points.

9



We have the following lemma. (See Section A.2 in the Appendix for a proof.)

Lemma 8. If P ⇤ ✓ P is the optimal set of exposed points, then global(1, 4k) � |P ⇤|, that is , the algorithm
DP-Approx achieves a 4-approximation and runs in O(k(n+m)n2m2) time.

4.3 Towards a PTAS

We now consider the max-exposure instance in a horizontal strip of unit width. That is, all points in P

CjCj�1

`0

`1

Figure 7: Max-exposure instance in a strip.
Cj�1, Cj 2 C are two consecutive cells.

lie in a horizontal strip bounded by lines `0, `1 and R consists
of unit square ranges. Suppose, we subdivide the strip into unit
square cells C1, C2, . . . , Cr 2 C ordered from left to right. We
make the following simple observation.

Lemma 9. Let R 2 R be a unit square range and Cj�1 be the
first cell from left which it intersects. Then the only other cell
that R can intersect is Cj . Moreover, R is Type-1 with respect to
Cj�1 and Type-0 with respect to Cj . (See Figure 7.)

Observe that the set of points exposed in cell Cj will also depend on the set of Type-0 objects of Cj that
were already deleted in Cj�1. So we need to ensure that we do not double count the set of ranges that were
already deleted in Cj�1. To do this, we again use a dynamic program similar to that for max-exposure within
a cell where we express the subproblems at x = xi in terms of subproblems to the right of x = xi. However,
there are some important differences in how we define our subproblems. First, events at a vertical line x = xi
are one of three types:

1. cell-boundary: x = xi is coincident with left-boundary of a cell Cj 2 C,

2. begin-range: x = xi is coincident with left-vertical side of a range Ri 2 R

3. point: x = xi is incident to an input pi 2 P

Moreover for a given cell Cj , in addition to the points q0, q1, and ranges Q0, Q1, we will also need to
remember two additional ranges : L0 (anchored to `0) and L1 (anchored to `1) that begin in Cj�1, were not
deleted and are farthest from `0, `1 respectively. For the sake of clarity, we will use Z0 = (q0, Q0, L0) to
denote the triplets corresponding to `0 and Z1 = (q1, Q1, L1) to denote the triplets corresponding to `1.

Suppose x = xi lies in the cell Cj . Then we show that the set of deleted ranges Rd consisting of
Type-0 ranges in Cj , and the set of forbidden points Pf can be uniquely identified using the triples Z0, Z1.

• Deleted Type-0 range-set Rd Let Rj�1 be the set of ranges that begin in cell Cj�1, and therefore
are Type-1 with respect to Cj�1. Suppose we define L>0 ✓ Rj�1 to be the set consisting of ranges
anchored to `0 and farther from `0 than L0. Similarly, L>1 ✓ Rj�1 consists of ranges anchored to `1
and farther from `1 than L1. Then, we define Rd = (R(q0) [R(q1) [ L>0 [ L>1).

• Forbidden point-set Pf We define Pf = (P (L0) [ P (L1) [ P (Q0) [ P (Q1)).

Finally, we say that a range R dominates another range R0, if both R,R0 begin in the same cell Cj and
R0 \ Cj ✓ R \ Cj . That is, R completely contains the part of R0 that lies in cell Cj . Note that the key
difference from earlier formulations is that at a begin-range event for a Type-1 range Ri in cell Cj , we choose
to ignore Ri if it is dominated by ranges Q0 or Q1, because the points of Ri contained in Cj already lie in
the forbidden set Pf . With ki = |R(pi) \ Rd|, we obtain the following recurrence.
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S(i, k0, Z0, Z1) = S(i+ 1, k, U(Z0, Cj), U(Z1, Cj)) (event x = xi is left-boundary of cell Cj)

= max

8
>><

>>:

S(i+ 1, k0, Z1, Z2) if pi 2 Pf , cannot expose pi

S(i+ 1, k0, Z1, Z2) otherwise, choose to not expose pi

S(i+ 1, k0 � ki, Z1, Z2) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi in cell Cj)

= max

8
>>>>><

>>>>>:

S(i+ 1, k0, Z0, Z1) if either Q0 or Q1 dominates Ri, ignore Ri

S(i+ 1, k0 � 1, Z0, Z1) otherwise, delete Type-1 range Ri

S(i+ 1, k0, U(Z0, Ri), Z1) otherwise if Ri is not deleted and anchored to `0

S(i+ 1, k0, Z0, U(Z1, Ri)) otherwise, Ri is not deleted and anchored to `1

(otherwise, event x = xi was beginning of a Type-1 range Ri in cell Cj .)

The function U(Z, E) used above is defined as follows. Roughly speaking, it updates the triplets Z 2
{Z0, Z1} based on the event E and returns an updated triplet. We have the following three cases.

• For a cell-boundary event Cj , if we have Z0 = (q0, Q0, L0), the function U(Z0, Cj) = (q⇤0, Q
⇤
0, Q0).

Similarly, U(Z0, Cj) = (q⇤1, Q
⇤
1, Q1). This corresponds to resetting the points q0, q1, rectangles

Q0, Q1 for the current cell Cj , and remembering the rectangles L0, L1 from the previous cell Cj�1.

• For a point event pi, we have U(Z0, pi) = (closer(pi, q0), Q0, L0) and similarly U(Z1, pi) =
(closer(pi, q1), Q1, L1). Recall that the function closer(pi, q0) returns whichever of pi, q0 is closer to
`0, and closer(pi, q1) returns whichever of pi, q1 is closer to `1.

• Finally for a begin-rectangle event Ri, we have U(Z0, Ri) = (q0, farther(Ri, Q0), L0) and U(Z1, Ri) =
(q1, farther(Ri, Q1), L1). Recall that the function farther(Ri, Q0) returns whichever of Ri, Q0 is
farther from `0, and farther(Ri, Q1) returns whichever of Ri, Q1 is farther from `1.

The optimal solution is given by W (0, k, Z;
0 , Z

;
1 ) where Z;

0 = (q⇤0, Q
⇤
0, Q

⇤
0) and Z;

1 = (q⇤1, Q
⇤
1, Q

⇤
1).

In order to establish the correctness of the above formulation, we make the following claim.

Lemma 10. Let P ⇤ ✓ P be the optimal set of exposed points. Then, for every point pi 2 P ⇤, we count the
range R 2 R(pi) towards the total number of deleted ranges exactly once.

Proof. We begin by noting that R intersects at most two cells : Cj�1 as a Type-0 range and Cj as a
Type-1 range. It suffices to show that we count R towards the total number of deleted ranges in exactly one
of these two cells. Alternatively, it suffices to show that we count R in cell Cj if and only if we have not
already counted R in Cj�1. Recall that we can only count for R in Cj�1 by deleting it at a begin-range event.
Moreover, we can only count for R in Cj when a point pi 62 Pf that lies in cell Cj is exposed. Without loss
of generality, assume that R is anchored to `0. The case when R is anchored to `1 is symmetric.

We first consider the easy case when R was not deleted in Cj�1. Observe that since R is Type-0 with
respect to Cj , similar to the earlier cases, the terms R(q0) [R(q1) in the expression for Rd will correctly
charge for R in cell Cj .

Now, we move to the second case where we are currently in cell Cj and we have already counted R by
deleting it at a begin-range event in cell Cj�1. In this case, we show that we will not count R again in Cj .
More precisely, we show that if R contains a point p that lies in cell Cj but is not contained in the forbidden
point set Pf , then the deleted range set Rd contains R, and therefore the expression ki = R(p) \ Rd will not
charge for R again. We have three cases.
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CjCj�1

`0

R1

R3

R2

L0

Figure 8: Three cases for the proof: R1 2 L>0, and R2, R3 62 L>0. R2 begins before L0 and R3 begins after L0.

1. R 2 L>0. This case is straightforward as Rd contains all ranges in L>0.

2. R 62 L>0 and R begins before L0. This case is not possible because any point that is contained in
(R \ Cj) is also contained in L0. This holds because R and L0 have the same width, so if R begins
before L0 in Cj�1, it must end before L0 in Cj . Since every point contained in L0 is contained in the
forbidden set Pf , we must have p 2 Pf which is a contradiction. (See Figure 8 with R = R2.)

3. R 62 L>0 and R begins after L0. This case is also not possible because if this were true L0 would
have dominated R. Therefore, we would have ignored R in Cj�1 and would not have deleted it. (See
Figure 8 with R = R3.)

Lemma 11. The restricted max-exposure instance such that all points in P lie within a unit-width horizontal
strip bounded by lines `0, `1 and R consists of unit squares can be solved in O(k(n+m)n4m2) time, where
m = |P | and n = |R|.

Using similar ideas as Lemma 8, the above lemma readily gives a 2-approximation for max-exposure.
More precisely, we can embed the input instance on to a unit-sized grid as before, but instead of solving
max-exposure in a cell, we use the above algorithm to solve max-exposure locally in a row of the grid. Since
each range R 2 R can intersect at most two rows, R is split into two sub-ranges R1, R2 contained in at most
two rows. Since these new sub-ranges in two different rows are disjoint, there exists an optimal solution
with 2k sub-ranges. Therefore, if we have already computed the local solutions for each row i, using the
algorithm DP-Approx we can compute global(1, 2k) which exposes at least optimal number of points using
at most 2k ranges.

Corollary 2. There exists a 2-approximation algorithm for max-exposure with unit square ranges running in
O(k(n+m)n4m2) time.

Generalizing to h anchor lines The dynamic program for max-exposure in a horizontal strip bounded by
two anchor lines `0, `1 can be generalized to the case when we have h anchor lines `1, `2, . . . , `h. However,
there is a minor technical change required. Observe that for a given anchor line `i, there can be points
and anchored ranges on either side of `i. Therefore, we will need to remember the closest exposed points
and the farthest undeleted ranges on both sides of `i. So for each anchor line `i, we will need the triplet
Z+
i
= (q+

i
, Q+

i
, L+

i
) for points and ranges above `i and the triplet Z�

i
= (q�

i
, Q�

i
, L�

i
) for points and ranges

below `i. The dynamic program will now need to remember at most 4h ranges and 2h points which gives a
running time of O(k(n+m)n4hm2h). If we denote a collection of h consecutive anchor lines by a bundle of
width h, then we have the following.

Lemma 12. Max-exposure in a bundle of width h can be solved in O(k(n+m)n4hm2h) time.
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4.4 An (1 + ✏)-Approximation Algorithm

We are now ready to describe our PTAS for the problem. Suppose the anchor lines correspond to the horizontal
lines of the uniform unit-sized grid G. Since we have already solved max-exposure exactly for h consecutive
rows in G, we can now apply standard shifting techniques [18] to obtain an (1 + ✏)-approximation. If P ⇤ is
the optimal set of exposed points, then we show how to compute a set of (1 + ✏)k ranges deleting which will
expose at least |P ⇤| points. Note that using similar ideas, it is also possible to expose at least (1 � ✏)|P ⇤|
points by deleting exactly k ranges (See Appendix A.3).

Suppose that anchor lines `1, `2, . . . , `z are ordered by increasing y-coordinates. We define a bundle Bj

to be a set of h consecutive anchor lines, identified by the lowest index anchor `j . We also define bundle-set
to be a sequence of consecutive bundles, identified by the index of the lowest bundle. For instance the
bundle B1 comprises of anchor lines `1 through `h (inclusive). And the bundle-set B1 comprises of bundles
B1, Bh, B2h, . . . Bdz/he. The lines `1, `h, . . . , `dz/he form the bundle boundaries @B1 of bundle-set B1.

For each bundle Bj 2 B1, we can use the dynamic program from Lemma 12 to solve max-exposure
locally. Using the exact solution for each bundle as local solution, we can use the algorithm DP-Approx (from
Section 4.2) to combine them into a global solution for the bundle-set B1 given by P (B1) = global(1, (k +
k/h)). We repeat this for each bundle-set Bi for all i 2 {1, 2, . . . , h}, and return the point set P (Bi) that has
maximum cardinality over all i 2 {1, 2, . . . , h}.

It remains to show that this achieves a good approximation. To see this, we observe that the only ranges
that may be double counted are the ones that are anchored to bundle boundaries of @Bi. In the following, we
show that this number is a small fraction of the optimum solution.

Lemma 13. The bundle boundaries @Bi, @Bj for any two bundle-set Bi,Bj are disjoint, and therefore the
set of ranges anchored to lines in @Bi are also disjoint. Then, there exists a bundle-set Bmin such that the
number of ranges of the optimal solution anchored to lines in @Bmin is at most k/h.

Proof. Let R⇤ ✓ R be the optimal set of ranges, and let R⇤
i
✓ R⇤ be the set of ranges anchored to lines in

@Bi. Since
S

i2{1,...h} @Bi is the set of all anchor lines, we have
[

i2{1,...h}
R⇤

i = R⇤ =)
X

i2{1,...h}
|R⇤

i | = k

=)
X

i2{1,...h}
|R⇤

min|  k =) |R⇤
min|  k/h

Choosing ✏ = 1/h gives us a set of (1 + ✏)k objects such that the number of points exposed by selecting
these objects is at least the optimum number of points.

Theorem 2. There exists an (1 + ✏)-approximation algorithm for max-exposure with unit square ranges
running in O(k(n+m)n4/✏m2/✏) time.

5 Extensions and Applications

In this section, we discuss some extensions and applications of our the results from previous section. We say
that the range family R consists of fat rectangles if every range R 2 R is a rectangle of bounded aspect ratio.
Moreover, we say that R consists of similar and fat rectangles, if ranges in R are rectangles and the ratio of
the largest to the smallest side in R is constant. We show that if R consists of similar and fat rectangles, one
can achieve a constant approximation. Moreover, if R consists of fat rectangles one can achieve a bicriteria
O(

p
k)-approximation.
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5.1 Approximation for Similar and Fat Rectangles

Let a, b be the length of smallest and largest sides of rectangles in R such that b/a = c is constant. Then we
can modify the input instance as follows. Replace each range R 2 R by tiling it with at most c2 squares of
sidelength a such that the area occupied by R and its replacements are the same. Now, we have a modified
set of ranges R0 consisting of squares that have the same sidelength. Consider the optimal solution with k
ranges R⇤ that exposes m⇤ points. It is easy to see that the set R⇤ corresponds to at most c2k ranges in the
modified instance, and therefore deleting c2k ranges from R0 exposes at least m⇤ points. Therefore, we can
run the polynomial-time 2-approximation algorithm (Corollary 2) to obtain a set of at most 2c2k ranges that
expose at least m⇤ points.

Theorem 3. Given a set of points P , a set of rectangle ranges R such that the ratio of largest to smallest
side in R is bounded by a constant, then there exists a polynomial time O(1)-approximation algorithm for
max-exposure.

5.2 Approximation for Fat Rectangles

We now consider the case when rectangles in R have bounded aspect ratio. That is for all rectangles R 2 R,
the ratio of its two sides is bounded by a constant c. We transform the input ranges R to obtain a modified set
of ranges R0 as follows. For each rectangle R 2 R, let x be the length of the smaller side of R. Then we
replace R by at most dce squares each of sidelength x. If m⇤ is the optimal number of points exposed by
deleting k ranges from R, then there exists a set of O(k) ranges in R0 deleting which will expose at least m⇤

points. Observe that the set R0 consists of square ranges, of possibly different sizes. Therefore, if we can
obtain an f -approximation for square ranges, we can easily obtain O(f)-approximation with fat rectangles.

A Bicriteria O(
p
k)-approximation for Squares We will describe an approximation algorithm for the

case when the set of ranges R consists of axis-aligned squares. We achieve an approximation algorithm in
three steps. First, we partition the point set by assigning them to one of the input squares. Next, we solve the
problem exactly for a fixed square. Finally, we combine these solutions to achieve a good approximation to
the optimal solution.

We define A : P ! R to be a function that assigns a point in P to exactly one range in R. If R(pi)
is the set of squares that contain pi, then A(pi) is the smallest square in R(pi). This assignment scheme
ensures the following property.

Lemma 14. Let R 2 R be a square and let P (R) = A�1(R) be the set of points assigned to it. Moreover,
let R0 ✓ R be the set of squares that intersect R and contain at least one point in P (R). Then, every square
R0 2 R0 must have sidelength bigger than that of R, and therefore contains at least one corner of R.

Now suppose we fix a square R, and consider a restricted max-exposure instance with the set of its
assigned points P (R). Since, ranges that contain a point in P (R) are all bigger then R, this case is essentially
the same as points inside a unit square, and therefore Lemma 7 can be easily extended to solve it exactly.
This gives us the following algorithm. Here 1  ↵  k is a parameter.

Algorithm: Greedy-Squares

1. For every square R 2 R, apply Lemma 7 over the point set P (R) to expose the maximum set of points
P (R, k) ✓ P (R) by deleting k ranges.

2. Order squares in R by decreasing |P (R, k)| values, and pick the set S ✓ R of first ↵ squares. ReturnS
R2S P (R, k) as the set of exposed points.
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Lemma 15. Let m⇤ be the optimal number of points exposed using k squares, then algorithm Greedy-Squares
computes a set of at most ↵k squares that expose at least ↵m⇤/k points.

Proof. It is easy to see that the number of squares is at most ↵k. To show the bound on number of points
exposed, consider the optimal solution R⇤ and let the optimal set of points exposed by R⇤ to be P ⇤. We will
now use the same assignment procedure A⇤ : P ⇤ ! R⇤ to assign points in P ⇤ to a square in R⇤. That is,
A⇤(pi) is the smallest square in R⇤ that contains pi. We claim that A⇤(pi) = A(pi) for all pi 2 P ⇤ since
every square that contains pi lies in R⇤. Moreover, let P ⇤(R) denote the set of points of P ⇤ assigned to R.

Let m0 be the number of points exposed by the algorithm Greedy-Squares. If squares in R are ordered
such that |P (Ri, k)| � |P (Rj , k)| for all i < j, we have the following.

m⇤ =

������

[

R2R⇤
P ⇤(R)

������
=

X

R2R⇤
|P ⇤(R)| 

X

1ik

|P (Ri, k)|  k

↵

X

1i↵

|P (Ri, k)| =
k

↵
m0

For ↵ =
p
k, the above algorithm achieves a bicriteria O(

p
k)-approximation. Since an f -approximation

for square ranges gives an O(f)-approximation for fat rectangles, we obtain the following.

Theorem 4. Given a set of points P and a set of ranges R consisiting of rectangles of bounded aspect ratio,
then one can obtain a bicriteria O(

p
k)-approximation for max-exposure in polynomial time.

6 Conclusion

In this paper, we introduced the max-exposure problem for geometric set systems and presented approximation
algorithms when range space consists of axis-aligned rectangles. We showed that the problem is hard to
approximate even when the ranges consist of translates of two fixed rectangles, and therefore focused on the
complexity of the problem for the case when the ranges consist of translates of a single rectangle. We show
that in this case, the geometry of ranges can be exploited to obtain a PTAS. A natural question to consider is
how does the complexity of the problem change with more general shapes. In particular, does there exist a
constant approximation for max-exposure with axis-aligned squares?
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A Appendix

A.1 Proof of Lemma 2

Given a graph G0 = (V 0, E0) sampled from one of the dense or random instances, we first construct a bipartite
graph G = (A,B,E) as follows. For every vertex v 2 V 0, we add a vertex va to A and vb to B. Now for
every edge e = (u, v) 2 E0, we add the pair of edges e1 = (ua, vb) and e2 = (va, ub) to E. That is, every
edge e 2 E0 is mapped to two copies e1, e2 2 E and we can define par(e1) = par(e2) = e. Similarly, we
define par(ua) = par(ub) = u. We say that G is dense if the underlying graph G0 was sampled from the
dense case, otherwise we say that G is random.

Consider a set of k⇤ = 2k vertices in G. If G came from the dense case, there must be a set of
2k vertices that have 2k�+1 edges between them. So the number of edges in dense case m⇤

d
� 2k�+1.

Otherwise, we are in the random case. Consider the optimal set of 2k vertices V ⇤ and let E⇤ be the set of
edges in the induced subgraph G[V ⇤]. Now consider the corresponding set of vertices Vp = {par(v) | v 2
V ⇤} of the original graph G0 and the set of edges Ep in the induced subgraph G0[Vp]). We have that
|Vp|  |V ⇤| = 2k and |Ep| � |E⇤|/2 because for each edge e = (u, v) 2 E⇤, we will have the edge
par(e) = (par(u), par(v)) 2 Ep. We can now bound the number of edges Ep over 2k vertices in the random
case to be Õ(max(2k, 4k2n↵�1)) w.h.p, and therefore the optimum number of edges in the random case is
m⇤

r = |E⇤|  2|Ep| = Õ(max(k, k2n↵�1)) w.h.p.
Choosing k = n1/2, ↵ = 1

2 , � = 1
2 � ✏, gives us m⇤

r = Õ(n1/2) w.h.p. and m⇤
d
= ⌦̃(n

3�2✏
4 ). Suppose,

we could approximate this problem within a factor O(n1/4�✏), then in the dense case, the number of edges
computed by this approximation algorithm is ⌦̃(n

1+✏
2 ) which is strictly more than the maximum possible

edges in the random case. Therefore, we would be able to distinguish between dense and random cases, and
thereby refuting the conjecture for these values of ↵,� and k.

A.2 Proof of Lemma 8

Figure 9: Optimal solution in each
grid cell can be computed exactly.

Consider the optimal set of ranges R⇤ ✓ R. Observe that each range
R 2 R⇤ intersects at most four grid cells. Let Ri = R \ Ci be the
rectangular region defined by intersection of R and Ci. Clearly, there are
at most four regions Ri for each R 2 R⇤ and therefore 4k in total. At this
point, the regions in cell Ci are disjoint from regions in some other cell
Cj 2 C. Therefore, optimal solution exposes |P ⇤| points over a set of cells
C⇤ such that the set R⇤ has at most 4k disjoint components in the cells C⇤.
Since we can solve the problem exactly for each cell and can combine them
using the above dynamic program, we have that global(1, 4k) � |P ⇤| and
we achieve a 4-approximation.

For the running time, we observe that solving max-exposure locally in a cell Ci takes O(k(ni+mi)n2
i
m2

i
)

time, where ni is the number of ranges that intersect Ci and mi is the number of points in P that lie in Ci.
Summed over all cells, we get the following bound.
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2
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 k(n+m) (
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i

ni)
2 (

X

i

mi)
2 = O(k(n+m)n2m2)

Once the local solutions are computed, the dynamic program that merges them into a global solution has
O(k|C|) subproblems and computing each subproblem takes O(k) time. Recall that every cell in C contains
at least one point, so |C|  n and the merge step takes an additional O(k2n) time.
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A.3 PTAS for Unit Square Ranges on Number of Exposed Points

Given a set of points P , unit square ranges R, we will now show that the PTAS for unit square ranges can be
modified so that we can compute a set of k ranges that expose at least (1�✏) fraction of the maximum possible
number of points. For simplicity we assume that h is odd. The basic setup is the same : we have the anchor
lines `1, `2, . . . , `z that are unit distance apart. However, there is one important change, we will only use the
odd-numbered lines `1, `3, . . . , `h, `h+2, . . . , `z to define bundles. For instance, the bundle B1 now consists
of the anchor lines `1, `3, . . . , `h, while the bundle-set B1 now comprises of bundles B1, Bh, B2h, . . . , Bz/h.
Same as before, the lines `1, `h, . . . , `z/h form the boundary @B1. We have the following algorithm.

Algorithm: PTAS-Exposed-Points

1. Assign each point p 2 P to the closest line among l1, l3, . . . lz .

2. For each i 2 {1, 3, . . . , h}, process bundle set Bi as follows.

• Let Pi be the set of points assigned to anchor lines lj 2 @Bi, boundaries of Bi.
• Using the exact algorithm for each bundle B 2 Bi as local solutions, we run the algorithm

DP-Approx (from Section 4.2) over the point set P \ Pi to obtain global solutions given by
global(1, k). Let P (Bi) be the set of exposed points returned by DP-Approx.

3. Return the set P (Bi) that has maximum cardinality over all i 2 {1, 3, . . . , h}.

Clearly, the number of ranges used by the above algorithm is k. It remains to show that the number of
points m0 exposed by the algorithm is also close to m⇤, the optimal number of exposed points. Let P ⇤ ✓ P
be the optimal set of exposed points.

Lemma 16. The bundle boundaries @Bi, @Bj for any two bundle-set Bi,Bj are disjoint, and therefore the
set of points assigned to lines in @Bi are also disjoint. Then, there exists a bundle-set Bmin such that the
number of points of P ⇤ assigned to its boundaries @Bmin is at most 2m⇤

h�1 .

Proof. let P ⇤
i
✓ P ⇤ be the set of points in P ⇤ that are assigned to lines in boundaries @Bi of some bundle Bi.

Since
S

i2{1,3,...,h} @Bi is the set of all anchor lines to which we assign points, we have
[

i2{1,3,...h}
P ⇤
i = P ⇤ =)

X

i2{1,3...h}
|P ⇤

i | = m⇤

=)
X

i2{1,3,...h}
|P ⇤

min|  m⇤ =)
Å
h� 1

2

ã
|P ⇤

min|  m⇤

=) |P ⇤
min|  2m⇤

h� 1

Observe that for the bundle-set Bmin, we may have removed Pmin points, but the remaining set P \ Pmin

consists at least m⇤ � 2m⇤

h�1 = (1� 2
h�1)m

⇤ points of the optimal set P ⇤. Moreover, observe that we have
removed points that are within a unit distance on either side of anchor line `j 2 @Bmin, the set of ranges
deleted in each bundle are disjoint from another. Therefore, the value P (Bmin) returned by the algorithm
DP-Approx exposes at least P \Pmin = (1� 2

h�1)m
⇤ points by deleting k ranges. If we set h = 2/✏+ 1 we

have the following result.

Theorem 5. There exists an (1� ✏)-approximation on the number of exposed points for max-exposure with
unit-square ranges running in O(k(nm)O(1/✏)) time.
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