Shape Sensitive Geometric Permutations

Subhash Suri

Computer Science Department
UC Santa Barbara

Joint work with Yunhong Zhou.
Geometric Permutations

- Disjoint convex objects S in \mathcal{R}^d.
- ℓ a line transversal if it intersects all objects of S.
- The order induced by ℓ is a geometric permutation. (Line is undirected.)
- Example shows two permutations: (A, B, C, D) and (A, C, B, D).
- How many permutations?
Two Dimensions

- n convex objects in 2D with $2n - 2$ distinct permutations. [KLZ 85]
- $2n - 2$ also an upper bound. [ES 90]
Known Bounds

- $g_d(S)$ is number of permutations for S.
- $g_d(n) = \max\{g_d(S) \mid |S| = n\}$.
- The following bounds are known:
 1. $g_d(n) = \Omega(n^{d-1})$ [KLL 92].
 2. $g_d(n) = O(n^{2d-2})$ [W 90].
- Large gap between upper and lower bounds.
- Specialized family of convex objects, balls, [SMS 00].
 1. $g_d(n) = \Theta(n^{d-1})$ for balls in \mathcal{R}^d.
 2. For $d = 2$, congruent disks same radius have at most 2 permutations.
- Conjecture: $g_d(n) = O(1)$ for congruent balls.
New Results: Shape Sensitivity

- A set of n unit balls in \mathcal{R}^d admits at most 4 permutations, with n depending on d.

- A set of n arbitrary size, but axis-aligned, rectangular boxes in \mathcal{R}^d admits at most 2^{d-1} permutations.

- A matching lower bound of 2^{d-1} for boxes (cubes).

- If arbitrary convex objects have disjoint bounding boxes, then $g_d(S)$ is at most 2^{d-1}, as opposed to $\Omega(n^{d-1})$.
Congruent Balls: Diameter

Lemma: Largest distance between pairs of ball centers is $\Omega(n)$.

- Let $D = \text{dist}(o_1, o_2)$, where o_1, o_2 centers with max distance.

- If ℓ a line transversal, then projection of S onto ℓ has length at most $2 + D$.

- S contained in cylinder of height $2 + D$ and radius 2.

- If V_d volume of d-dim unit ball, then $(2 + D)2^{d-1}V_{d-1} \geq nV_d$.

- $D \geq \frac{nV_d}{2^{d-1}V_{d-1}} - 2 = \Omega(n)$.

Subhash Suri

UC Santa Barbara
Congruent Balls: Angles

Lemma: $\sin \theta \leq 2/D$, where θ the angle between a line transversal of B_1, B_2, and the line joining their centers; D the distance between centers.

Lemma: If z axis the line joining farthest pairs of centers in S, and ℓ a line transversal, then the angle between z and ℓ is $O(1/n)$.
Congruent Balls: Switched Pairs

- (B_1, B_2) called a switched pair if there are two transversals ℓ and ℓ' that meet B_1, B_2 in different orders.

Lemma: The distance between a switched pair of balls is $O(1/n^2)$.

Lemma: If (B_1, B_2) is a switched pair, and ℓ is a line transversal, then angle between ℓ and $\overrightarrow{o_1o_2}$ is $\pi/2 - O(1/n)$.
Distance Lemma

Lemma: \((B_1, B_2)\) a switched pair. One line transversal \((z, 0, 0, \ldots, 0)\), and another \((z, az + b, c_3, \ldots, c_d)\). If \(z_0\) is the \(z\)-coordinate of the center of gravity of \((B_1, B_2)\), then

\[
|az_0 + b| \leq a.
\]

- \(a\) is the slope, and so \(a \approx \sin \theta = O(1/n)\).
- Transversal lines pass very close to the center of gravity of a switched pair.
Congruent Balls: Switched Pairs

Lemma: A ball appears in at most one switched pair.

- Assume two pairs \((B, B_1), (B, B_2)\), sharing a ball; \(g_i\) the midpoint of \(oo_i\); \(z\) the line thru farthest pair of centers.

- Let \(\pi\) be the plane through \(o\), \(\perp\) to \(\vec{z}\), then \(o_i, g_i\) lie close to \(\pi\).

- Any transversal passes close to \(g_i\).

- If \(\ell\) passes close to both \(g_1, g_2\), it is almost \(\parallel g_1g_2\), and so almost \(\perp \vec{z}\).

- Contradiction! since the angle between \(\ell\) and \(\vec{z}\) is \(O(1/n)\).
Implications

Corollary: If k switched pairs, then 2^k permutations.

Lemma: Given two switched pairs, their centers of gravity have distance at least $\sqrt{2} - \epsilon(n)$.
Upper Bound

Theorem: A set of congruent balls S in \mathbb{R}^d admits at most 2 switched pairs, where $|S|$ is sufficiently large depending on d.

- Transversals $(z, 0, \ldots, 0), (z, az + b, c_3, \cdots, c_d)$.
- If z_1 and z_m centers of gravity, then $|az_1 + b| \leq a$ and $|az_m + b| \leq a$.
- $|z_1 - z_m| \leq 2$.
- If m pairs, then $m - 1 \leq \frac{2}{\sqrt{2}} + \epsilon(n) \leq 1$.
Rectangular Boxes

- S a set of n disjoint, axis-parallel rectangular boxes in \mathcal{R}^d.

- Two disjoint boxes P, Q always separable by a hyperplane normal to some coordinate axis.

- $\text{sign}(x) = 1$ if $x \geq 0$, and -1 otherwise.

- $\text{sign}(x) = (\text{sign}(x_1), \ldots, \text{sign}(x_d))$.

- For a line transversal ℓ, let $\vec{\ell}$ be its orientation vector.

Lemma: If $\text{sign}(\vec{\ell}) = \text{sign}(\vec{\ell'})$, then ℓ and ℓ' induce the same linear ordering on S.
Theorem: \(n \) disjoint axis-parallel boxes admit at most \(2^{d-1} \) permutations.

- If \(\ell \) a transversal, then \(\text{sign}(\ell) \in \{1,-1\}^d \).
- Exactly \(2^d \) elements in \(\{1,-1\}^d \), each corresponding to at most one linear ordering of \(S \).
- Each geometric permutation correspond to two linear orderings, and lemma follows.
- Matching lower bound, even for cubes.
Extensions

Corollary: If n convex objects in \mathbb{R}^d are such that their smallest enclosing bounding boxes are pairwise disjoint, then $g_d(n) = 2^{d-1}$.

- General convex objects can have $\Omega(n^{d-1})$ permutations. Corollary shows effect of well-separation.

Lemma: If S has a separating set of size h, then S admits at most 2^{h-1} permutations.

- Using separating hyperplanes, Wenger [W90] gives a bound of $O(h^{d-1})$.
Open Problems and New Results

- Congruent balls: what’s the right answer?

- Disjoint bounding boxes give $O(1)$ permutations, as opposed to $\Omega(n^{d-1})$ for convex bodies. Other natural conditions?

- Unit balls have $O(1)$ permutations, while general balls have $\Omega(n^{d-1})$. Dependence on ratio of radii?

- If the ratio between the largest and smallest balls of S is γ, then the number of permutations is $O(\gamma^{\log \gamma})$.

- Improve the bound.