
CS-130A B–Trees.1✬

✫

✩

✪

m-way Search Trees

m-way Search Tree: Empty, or if not empty then:

• Each internal node has q children and q − 1

elements, for 2 ≤ q ≤ m.

• Nodes with p elements have exactly p+ 1

children.

• Suppose a node has p elements. Let k1, k2, ...

kp be the keys of these elements. Then

k1 < k2 < ... < kp. Let c0, c1, ..., cp be the

p+ 1 children of the node.

– The elements in the subtree with root c0

have keys smaller than k1.

– The elements in the subtree rooted at ci

have keys larger than ki and smaller than

ki+1, 1 ≤ i < p.

– The elements in the subtree rooted at cp

have keys larger than kp.

CS-130A B–Trees.2✬

✫

✩

✪

Example

b

e

c

f

d

g

10 80a

40 5030 6020 70 82 84 86 885

32 4 32 36 94 96 989290

• a: 2,b,(10,c),(80,d)

• b: 1,e,(5,0)

• c: 6,0,(20,0),(30,f),(40,0),(50,0),(60,0),(70,0)

• d: 4,0,(82,0),(84,0),(86,0),(88,g)

• e: 3,0,(2,0),(3,0),(4,0)

• f: 2,0,(32,0),(36,0)

• g: 5,0,(90,0),(92,0),(94,0),(96,0),(98,0)

• Searching; Inserting (31,65);

• Deleting (20,84,5,10);

• Format (n, c0, (e1, c1), (e2, c2), . . . , (en, cn))

CS-130A B–Trees.3✬

✫

✩

✪

B-Trees of Order m > 2

(Different from textbook [W])

A B-Tree of order m is an m-way search tree. If

the B-tree is not empty, the corresponding

extended tree satisfies the following properties:

• The root has at least two children.

• All internal nodes other than the root have at

least ⌈m/2⌉ children.

• All external nodes are at the same level.

A B-tree of order 7.

888684822 4 6 706050403020

8010

CS-130A B–Trees.4✬

✫

✩

✪

Properties

• m > 2 because they cannot represent all

possible sets.

• B-Tree of order 3 is a 2-3 tree.

• B-Tree of order 4 is a 2-3-4 tree (Same as

RB-Tree).

Lemma 11.3: Let T be a B-tree of order m and

height h. Let d = ⌈m/2⌉ and let n be the number

of elements in T .

1. 2dh−1 − 1 ≤ n ≤ mh − 1

2. logm(n+ 1) ≤ h ≤ logd(
n+1

2
) + 1.

Proof: (1) ⇒ (2). (1) follows from the fact that

the minimum number of nodes on levels 1, 2, 3, 4,

..., h is 1, 2, 2d, 2d2, ..., 2dh−2, and the maximum

num. is 1, m, m2, ..., mh−1. The number of null

pointers = n+ 1.

CS-130A B–Trees.5✬

✫

✩

✪

• A B-tree of order 200 and height 3 has at

least 19,999 elements and therefore can

represent all UCSB students.

• A B-tree of order 200 and height 5 has at

least 199,999,999 and therefore can represent

all U.S. voters.

• The order of a B-Tree is determined by the

disk block size and size of individual elements.

• For obvious reasons all the B-tree examples

have small order.

• Searching is like in an m-way search tree.

CS-130A B–Trees.6✬

✫

✩

✪

Insert Example (B-Tree of Order 3)

30

20 40

10 15 25 35 45 50

I 38

30

20 40

10 15 25 45 5035 38

I 55

30

20

10 15 25

45 50 55 45 55

50

45 5535 38

40 50

I 37

CS-130A B–Trees.7✬

✫

✩

✪

251510

20

35 37 38 35 38

37

37 40 50 37

40

50

35 38 45 55

37 50

30 40

I 5

25 35 38 45 55

37 50

30 40

5 10 15 5

10

15

5 15

10 20

I 18

CS-130A B–Trees.8✬

✫

✩

✪

1815

2010

5

4030

37

383525

50

5545

I 12

12 15 18 12

15

18 10 15 20 10

15

20 15 30 40 15

30

40

5

10

12

15

18

20

25

30

35

37

38

40

45

50

55

CS-130A B–Trees.9✬

✫

✩

✪

Insertion

Nodes are of the form n,c_0,(e_1,c_1),...,(e_n,c_n), where

the e’s are the values or keys and the c’s are the pointers.

Procedure Insert(t,e) {// t points to root, and e will be inserted

c = NULL; // (e,c) is to be inserted in leaf node

Search(t,e,P,found); // returns found=true if e in the tree

// and P will point to the node in main memory that has e;

// Returns false if e is not in the B-tree and P will point

// to the last node visited (leaf node) during the search;

Done = false;

if not found {

while P != NULL & not Done do

{Insert (c,e) into appropriate position in node P;

Let the resulting node be P -> n,c_0,(e_1,c_1),...,(e_n,c_n)

CS-130A B–Trees.10✬

✫

✩

✪

if P->n <= m-1 {Output P to Disk; Done = true;}

else { e = P->e_{ceil(m/2)};

d = ceil(m/2);

Split P into two nodes (in main memory)

P: d-1,c_0,(e_1,c_1),...,(e_{d-1},c_{d-1})

Q: m-d,c_d,(e_{d+1},c_{d+1}),...,(e_m,c_m)

Output P and Q to Disk;

c = Q;

P = Parent(P); // Parent may be obtained from a

// stack that is built by the Search procedure;

}

}

if not Done { Create new node Q in memory;

Q: 1,t,(e,c);

t = Q;

Output t to Disk;

}

} }

CS-130A B–Trees.11✬

✫

✩

✪

Delete Example

D 55

80

75

7055

60

50

40

30

10

D 65

55 8075

70

65

60

50

40

30

10

D 58

8075

70

65

60

5855

50

40

30

10

CS-130A B–Trees.12✬

✫

✩

✪

803010 60 70

7550

70 80

75

60

50

40

30

10

D 40

CS-130A B–Trees.13✬

✫

✩

✪

Deletion

Nodes are of the form n,c_0,(e_1,c_1),...,(e_n,c_n), where

the e’s are the values or keys and the c’s are the pointers.

Procedure Delete(t,e) {

// t points to root, and e will be deleted

Search(t,x,P,found); // returns found=true if e in the tree

// and P will point to the node in main memory that has e;

// Returns false if e is not in the B-tree and P will point

// to the last node visited (leaf node) during the search;

CS-130A B–Trees.14✬

✫

✩

✪

if found {

Let P point to node n,c_0,(e_1,c_1),...,(e_n,c_n),

and e_i has value e;

if P->c_0 != 0 // P is not a leaf node

{ Q = P->c_i; // Reads from Disk P->c_i and

// stores it in memory node Q

While Q is not a leaf node do

Q = Q->c_0; //Reads from Disk P->c_i and

// stores it in memory node Q

P->e_i = Q->e_1

Write P on Disk;

P = Q;

i = 1;

}

CS-130A B–Trees.15✬

✫

✩

✪

delete (P->e_i, P->c_i) from

P: n,c_0,(e_1,c_1),...,(e_n,c_n)

and replace P->n by P->n-1;

while (P->n < Ceil(m/2)-1) && (P != t) do

{ if P has a nearest right sibling Y

{Let Z point to the parent of P and Y;

Let j be such that Z->c_{j-1} == P && Z->c_j == Y;

if Y->n >= ceil(m/2)

{ // can borrow from right sibling

P->e_{P->n+1} = Z->e_j; //move from Z to P

P->c_{P->n+1} = Y->c_0;

P->n = P->n+1;

Z->e_j = Y->e_1; //move e_1 from Y to Z

Y->(n,c_0,(e_1,c_1),...) =>

Y->(n-1,c_1,(e_2,c_2),...); //e_1 is deleted

Output nodes P, Z & Y on Disk;

return;

CS-130A B–Trees.16✬

✫

✩

✪

}

//Has a right child but cannot borrow from it

r = 2 Ceil(m/2)-2;

// Borrow from parent and combine P and Y into one node

Output (r, P->c_0,(P->e_1,P->c_1),...,

(P->e_{P->n},P->c_{P->n}),

(Z->e_j,Y->c_0),

(Y->e_1,Y->c_1),...,

(Y->e_{Y->n},Y->c_{Y->n}))

as new node P;

Node P is now node Z except that (Z->e_j,Z->c_j) is deleted;

}

else {do the nearest left sibling instead}

}

if P->n != 0 {Output P onto Disk;}

else { t = P->c_0; }

}

CS-130A B–Trees.17✬

✫

✩

✪

}

CS-130A B–Trees.18✬

✫

✩

✪

Extensions

• Above material from Horowitz and Sahni

Fundamentals of DS (CS Press). But the

algorithms were modified by Prof. Gonzalez

to be more OO.

• A B′-Tree is like the B-Tree, but the values

are at the failure nodes (instead of a null

pointer we have a pointer to the data).

Internal nodes have keys to direct the search.

The Textbook [W] covers B′-Trees,but calls

them B-Trees.

• B∗-Tree: The root has at least two children

and at most 2⌈(2m− 2)/3⌉+ 1. Internal

nodes have at least ⌈(2m− 2)/3⌉ and at most

m children. (Saves space).

