CS-130A B—Trees.1

/ m~way Search Trees' \

m-way Search Tree: Empty, or if not empty then:

e Fach internal node has g children and ¢ — 1

elements, for 2 < g < m.

e Nodes with p elements have exactly p + 1

children.

e Suppose a node has p elements. Let k1, ko, ...
k, be the keys of these elements. Then
k1 < ke <...<kp Letcg,ci,...,cp be the
p + 1 children of the node.

— The elements in the subtree with root ¢y
have keys smaller than k.

— The elements in the subtree rooted at c;
have keys larger than k; and smaller than
ki—l—la 1 <1 <p.

— The elements in the subtree rooted at c,

\ have keys larger than k. /

CS-130A B—Trees.2

o a: 2,b,(10,),(80,d)
e b: 1,¢,(5,0)

o c: 6,0,(20,0),(30.1),(40,0),(50,0),(60,0),(70,0)
o d: 4,0,(82,0),(84,0),(86,0),(88,g)

o e 3,0,(2,0),(3,0),(4,0)

o f:20,(32,0),(36,0)

o o 5.0,(90,0),(92,0),(94,0),(96,0),(98,0)
e Searching; Inserting (31,65);

e Deleting (20,84,5,10);

e Format (n, Co, (61, 61), (62, 02), ceey (en, Cn))
_ /

CS-130A B—Trees.3

4 N
B-Trees of Order m > 2.

(Different from textbook [W])

A B-Tree of order m is an m-way search tree. If
the B-tree is not empty, the corresponding

extended tree satisfies the following properties:
e The root has at least two children.

e All internal nodes other than the root have at
least [m/2] children.

e All external nodes are at the same level.

A B-tree of order 7.

10 | 80

_ /

CS-130A B—Trees.4

/ ‘ Properties I \

e m > 2 because they cannot represent all

possible sets.
e B-Tree of order 3 is a 2-3 tree.

e B-Tree of order 4 is a 2-3-4 tree (Same as
RB-Tree).

Lemma 11.3: Let T be a B-tree of order m and

height h. Let d = [m /2| and let n be the number
of elements in 7.

1. 2d" 1 —1<n<mh -1
2. logm(n+1) <h <logs(®t) + 1.
Proof: (1) = (2). (1) follows from the fact that

the minimum number of nodes on levels 1, 2, 3, 4,

.., his 1,2, 2d, 2d?, ..., 2d"72, and the maximum

num. is 1, m, m?, ..., m"1. The number of null

\pointers =n+ 1. /

CS-130A B—Trees.5

4 N

e A B-tree of order 200 and height 3 has at
least 19,999 elements and therefore can
represent all UCSB students.

e A B-tree of order 200 and height 5 has at
least 199,999,999 and therefore can represent
all U.S. voters.

e The order of a B-Tree is determined by the

disk block size and size of individual elements.

e For obvious reasons all the B-tree examples

have small order.

e Searching is like in an m-way search tree.

CS-130A

B—Trees.6

/

~

30

20

40

10 | 15

25

35 45 | 50

20

138

30

40

10 | 15

25

35 | 38 45 | 50

20

155

45 | 50

55

50

Insert Example (B-Tree of Order 3)'

30

40 | 50

10 | 15

25

35 | 38 45 55

137

45

55

CS-130A

B—Trees.7

37 40
35 | 37 | 38 —> [35 38 37 | 40 | 50 —> |37 50
30 | 40
20 37 50
10 | 15 25 35 38 45 55
o oo oo oo oo oo O
10
15
5 10| 15 g 5 15
30 | 40
10 | 20 37 50
15 25 35 38 45 55
o oo oo oo oo oo oo ad

CS-130A B—Trees.8

CS-130A B—Trees.9

/ ‘ Insertion I \

Nodes are of the form n,c_0,(e_1,c_1),...,(e_n,c_n), where

the e’s are the values or keys and the c’s are the pointers.

Procedure Insert(t,e) {// t points to root, and e will be inserted
c = NULL; // (e,c) is to be inserted in leaf node
Search(t,e,P,found); // returns found=true if e in the tree

// and P will point to the node in main memory that has e;
// Returns false if e is not in the B-tree and P will poinlt
// to the last node visited (leaf node) during the search;
Done = false;
if not found {
while P != NULL & not Done do

{Insert (c,e) into appropriate position in node P;

\\\¥ Let the resulting node be P -> n,c_O,(e_l,c_l),...,(f;B/c_n)

CS-130A B—Trees.10

///7 if P->n <= m-1 {Output P to Disk; Done = true;} i\\\

else { e = P->e_{ceil(m/2)};
d = ceil(m/2);

Split P into two nodes (in main memory)

P: d-1,c_0,(e_1,c_1),...,(e_{d-1},c_{d-1})
Q: m-d,c_d, (e_{d+1},c_{d+1}),...,(e_m,c_m)
Output P and Q to Disk;

c = Q;

P = Parent(P); // Parent may be obtained from a
// stack that is built by the Search procedure;

+
+
if not Done { Create new node Q in memory;
Q: 1,t,(e,c);
t = Q;
OQutput t to Disk;

}

CS-130A B—Trees.11

Delete Example

50

30 60 | 70

10 40 55 | 58 65 75 | 80

50

30 60 | 70

10 40 55 65 75 | 80

D 65

50

30 60 | 75

10 40 55 70 80

D 55

CS-130A

B—Trees.12

/

50

30 75
10 40 60 | 70 80
oo 0O 0O O
D 40
50 | 75
10 | 30 60 | 70 80
O O O O 0O 0O

~

CS-130A B—Trees.13

4 Deletion] A

Nodes are of the form n,c_0,(e_1,c_1),...,(e_n,c_n), where

the e’s are the values or keys and the c’s are the pointers.
Procedure Delete(t,e) {
// t points to root, and e will be deleted
Search(t,x,P,found); // returns found=true if e in the tree
// and P will point to the node in main memory that has e;

// Returns false if e is not in the B-tree and P will poinlt
// to the last node visited (leaf node) during the search;

o /

CS-130A B—Trees.14

4 N

if found {

Let P point to node n,c_0,(e_1,c_1),...,(e_n,c_n),

and e_i1 has value e;
if P->c_0 !'= 0 // P is not a leaf node
{ Q = P->c_i; // Reads from Disk P->c_i and
// stores it in memory node Q
While Q is not a leaf node do
Q = Q->c_0; //Reads from Disk P->c_i and
// stores it in memory node Q
P->e_1 = Q->e_1
Write P on Disk;
P =Q;

i=1;

CS-130A B—Trees.15

4 N

delete (P->e_i, P->c_i) from

P: n,c_0,(e_1,c_1),...,(e_n,c_n)

and replace P->n by P->n-1;
while (P->n < Ceil(m/2)-1) && (P !'= t) do
{ if P has a nearest right sibling Y
{Let Z point to the parent of P and Y;
Let j be such that Z->c_{j-1} == P && Z->c_j == Y;
if Y->n >= ceil(m/2)

{ // can borrow from right sibling
P->e_{P->n+1} = Z->e_j; //move from Z to P
P->c_{P->n+1} = Y->c_0;

P->n = P->n+1;

Z->e_j = Y->e_1; //move e_1 from Y to Z

Y->(n,c_0,(e_1,c_1),...) =>
Y->(n-1,c_1,(e_2,c_2),...); //e_1 is deletled

OQutput nodes P, Z & Y on Disk;

\\\‘ return; 4///

CS-130A

B-—Trees.16

//’7

\J

}

e

}

if P->n

} N

//Has a right child but cannot borrow from it
r = 2 Ceil(m/2)-2;
// Borrow from parent and combine P and Y into one node
Output (r, P->c_0,(P->e_1,P->c_1),...,
(P->e_{P->n},P->c_{P->n}),
(Z->e_j,Y->c_0),
(Y->e_1,Y->c_1),...,
(Y->e_{Y->n},Y->c_{Y->n}))
as new node P;

Node P is now node Z except that (Z->e_j,Z->c_j) is del
1se {do the nearest left sibling instead}

= 0 {Output P onto Disk;}
else { t = P->c_0; }

/

leted;

CS-130A B—Trees.17

4)

CS-130A

B—Trees.18

/

~

Extensions '

Above material from Horowitz and Sahni
Fundamentals of DS (CS Press). But the
algorithms were modified by Prof. Gonzalez
to be more OO.

A B’-Tree is like the B-Tree, but the values
are at the failure nodes (instead of a null
pointer we have a pointer to the data).
Internal nodes have keys to direct the search.
The Textbook [W] covers B’-Trees,but calls
them B-Trees.

B*-Tree: The root has at least two children
and at most 2[(2m — 2)/3| + 1. Internal
nodes have at least [(2m — 2)/3] and at most

m children. (Saves space).

/

