m-way Search Trees

m-way Search Tree: Empty, or if not empty then:

- Each internal node has q children and $q-1$ elements, for $2 \leq q \leq m$.
- Nodes with p elements have exactly $p+1$ children.
- Suppose a node has p elements. Let k_{1}, k_{2}, \ldots k_{p} be the keys of these elements. Then $k_{1}<k_{2}<\ldots<k_{p}$. Let $c_{0}, c_{1}, \ldots, c_{p}$ be the $p+1$ children of the node.
- The elements in the subtree with root c_{0} have keys smaller than k_{1}.
- The elements in the subtree rooted at c_{i} have keys larger than k_{i} and smaller than $k_{i+1}, 1 \leq i<p$.
- The elements in the subtree rooted at c_{p} have keys larger than k_{p}.

- a: 2,b,(10,c),(80,d)
- b: 1,e,(5,0)
- c: 6,0,(20,0),(30,f),(40,0),(50,0),(60,0),(70,0)
- d: 4,0,(82,0),(84,0),(86,0),(88,g)
- e: $3,0,(2,0),(3,0),(4,0)$
- f: 2,0,(32,0),(36,0)
- g: 5,0,(90,0),(92,0),(94,0),(96,0),(98,0)
- Searching; Inserting (31,65);
- Deleting (20,84,5,10);
- Format $\left(n, c_{0},\left(e_{1}, c_{1}\right),\left(e_{2}, c_{2}\right), \ldots,\left(e_{n}, c_{n}\right)\right)$

B-Trees of Order $m>2$

(Different from textbook [W])

A B-Tree of order m is an m-way search tree. If the B-tree is not empty, the corresponding extended tree satisfies the following properties:

- The root has at least two children.
- All internal nodes other than the root have at least $\lceil m / 2\rceil$ children.
- All external nodes are at the same level.

A B-tree of order 7.

Properties

- $m>2$ because they cannot represent all possible sets.
- B-Tree of order 3 is a $2-3$ tree.
- B-Tree of order 4 is a 2-3-4 tree (Same as RB-Tree).

Lemma 11.3: Let T be a B-tree of order m and height h. Let $d=\lceil m / 2\rceil$ and let n be the number of elements in T.

1. $2 d^{h-1}-1 \leq n \leq m^{h}-1$
2. $\log _{m}(n+1) \leq h \leq \log _{d}\left(\frac{n+1}{2}\right)+1$.

Proof: $(1) \Rightarrow(2)$. (1) follows from the fact that the minimum number of nodes on levels $1,2,3,4$, \ldots, h is $1,2,2 d, 2 d^{2}, \ldots, 2 d^{h-2}$, and the maximum num. is $1, m, m^{2}, \ldots, m^{h-1}$. The number of null pointers $=n+1$.

- A B-tree of order 200 and height 3 has at least 19,999 elements and therefore can represent all UCSB students.
- A B-tree of order 200 and height 5 has at least 199,999,999 and therefore can represent all U.S. voters.
- The order of a B-Tree is determined by the disk block size and size of individual elements.
- For obvious reasons all the B-tree examples have small order.
- Searching is like in an m-way search tree.

Insert Example (B-Tree of Order 3)

I 38

I 5

I 18

Insertion

Nodes are of the form n, c_0, (e_1, c_1),..., (e_n, c_n), where the e's are the values or keys and the c's are the pointers.

Procedure Insert (t,e) \{// t points to root, and e will be inserted c = NULL; // (e,c) is to be inserted in leaf node Search(t,e,P,found); // returns found=true if e in the tree // and P will point to the node in main memory that has e; // Returns false if e is not in the B-tree and P will point // to the last node visited (leaf node) during the search; Done = false; if not found \{ while P != NULL \& not Done do
\{Insert (c, e) into appropriate position in node P; Let the resulting node be P-> $n, c_{-} 0,\left(e_{1} 1, c_{-} 1\right), \ldots$, (e_n. $\left.c_{-} n\right)$
if $\mathrm{P}->\mathrm{n}$ <= $\mathrm{m}-1$ \{Output P to Disk; Done = true; \} else $\{\mathrm{e}=\mathrm{P}->\mathrm{e}\{$ ceil $(\mathrm{m} / 2)\}$;

$$
\mathrm{d}=\operatorname{ceil}(\mathrm{m} / 2) ;
$$

$$
\text { Split } P \text { into two nodes (in main memory) }
$$

$$
P: d-1, c_{-} 0,\left(e_{-} 1, c_{-} 1\right), \ldots,\left(e_{-}\{d-1\}, c_{-}\{d-1\}\right)
$$

$$
Q: m-d, c_{-} d,\left(e_{-}\{d+1\}, c_{-}\{d+1\}\right), \ldots,\left(e_{-} m, c_{-} m\right)
$$

Output P and Q to Disk;

$$
c=Q
$$

$$
P=\text { Parent }(P) ; / / \text { Parent may be obtained from a }
$$

// stack that is built by the Search procedure;

$$
\}
$$

\}
if not Done \{ Create new node Q in memory;

$$
\begin{aligned}
& \quad \mathrm{Q}: 1, \mathrm{t},(\mathrm{e}, \mathrm{c}) ; \\
& \mathrm{t}=\mathrm{Q} \\
& \text { Output t to Disk; }
\end{aligned}
$$

$$
\}
$$

\} $\}$

D 65

Deletion

Nodes are of the form n, c_0,(e_1,c_1),...,(e_n, c_n), where the e's are the values or keys and the c's are the pointers.

Procedure Delete (the) \{
// t points to root, and e will be deleted
 // and P will point to the node in main memory that has e; // Returns false if e is not in the B-tree and P will point // to the last node visited (leaf node) during the search;

```
if found {
Let P point to node n,c_0,(e_1,c_1),...,(e_n,c_n),
                and e_i has value e;
if P->c_0 != 0 // P is not a leaf node
    { Q = P->c_i; // Reads from Disk P->c_i and
                                    // stores it in memory node Q
        While Q is not a leaf node do
            Q = Q->c_0; //Reads from Disk P->c_i and
                        // stores it in memory node Q
    P->e_i = Q->e_1
    Write P on Disk;
    P = Q;
    i = 1;
    }
```

delete (P->e_i, P->c_i) from
P: n, c_0, (e_1, c_1), ..., (e_n, c_n)
and replace $\mathrm{P}->\mathrm{n}$ by $\mathrm{P}->\mathrm{n}-1$;
while ($\mathrm{P}->\mathrm{n}$ < Ceil(m/2)-1) \&\& (P ! $=\mathrm{t}$) do
\{ if P has a nearest right sibling Y \{Let Z point to the parent of P and Y; Let j be such that $Z->c_{-}\{j-1\}==P$ \&\& $Z->c_{-} j==Y$; if $\mathrm{Y}->\mathrm{n}$ >= $\operatorname{ceil}(\mathrm{m} / 2)$
\{ // can borrow from right sibling

$$
\text { P->e_\{P->n+1\} = Z->e_j; //move from } Z \text { to } P
$$

$$
\mathrm{P}->\mathrm{c}_{-}\{\mathrm{P}->\mathrm{n}+1\}=\mathrm{Y}->\mathrm{C}_{-} 0 \text {; }
$$

$$
\mathrm{P}->\mathrm{n}=\mathrm{P}->\mathrm{n}+1 \text {; }
$$

Z->e_j = Y->e_1; //move e_1 from Y to Z

$$
Y->\left(n, c _0,\left(e_{-} 1, c_{-} 1\right), \ldots\right)=>
$$

$$
\mathrm{Y}->\left(\mathrm{n}-1, \mathrm{c}_{1} 1,\left(\mathrm{e} _2, \mathrm{c} _2\right), \ldots\right) ; / / \mathrm{e}_{-} 1 \text { is deleted }
$$

Output nodes P, Z \& Y on Disk; return;

\}

//Has a right child but cannot borrow from it
r = 2 Ceil(m/2)-2;
// Borrow from parent and combine P and Y into one node Output (r, P->c_0, (P->e_1, P->c_1),..., (P->e_\{P->n\},P->c_\{P->n\}), (Z->e_j,Y->c_0), (Y->e_1,Y->c_1),..., (Y->e_\{Y->n\},Y->c_\{Y->n\}))
as new node P;
Node P is now node Z except that ($Z->e_{-} j, Z->c_{-}$) is deleted;
\}
else \{do the nearest left sibling instead\} \}
if $\mathrm{P}->\mathrm{n}$!= 0 \{Output P onto Disk;\}
else \{ t = P->c_0; \}

Extensions

- Above material from Horowitz and Sahni Fundamentals of DS (CS Press). But the algorithms were modified by Prof. Gonzalez to be more OO.
- A B^{\prime}-Tree is like the B-Tree, but the values are at the failure nodes (instead of a null pointer we have a pointer to the data). Internal nodes have keys to direct the search. The Textbook [W] covers B^{\prime}-Trees, but calls them B-Trees.
- B^{*}-Tree: The root has at least two children and at most $2\lceil(2 m-2) / 3\rceil+1$. Internal nodes have at least $\lceil(2 m-2) / 3\rceil$ and at most m children. (Saves space).

