Program Performance

- Performance: Amount of memory and time to run a program.
- Space Complexity: amount of memory needed to run a program. Why important?
- Running in multiuser environment
- Is there enough memory?
- Smaller programs can be run with other programs
- Estimate the largest program we can run
- Time Complexity: Amount of time needed to run a program. Why important?
- May need to provide a time limit.
- May need to provide a real time response
- Use appropriate program when several alternatives exist.

Example (Operation Count)

template $<$ class $\mathrm{T}>$ int SequentialSearch(T a[], const T\& x, int n) \{// Search the unordered list a[0:n-1] for x.
// Return position if found; return -1 otherwise.
int i;
for $(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} \& \& \mathrm{a}[\mathrm{i}]!=\mathrm{x} ; \mathrm{i}++)$;
if $(\mathrm{i}==\mathrm{n})$ return -1 ;
return i;
\}

- total number of steps executed by

SequentialSearch depends on the input.

- Worst case: loop executed n times
- Best case: loop executed zero times
- Average case: loop executed $\frac{n}{2}$ times (for successful search assuming ...)

Step Count

- Program Step: (loosely defined) a syntactically or semantically meaningful segment of a program for which the execution time is independent of the instance characteristics. (e.g. $\left.a+b^{*} c+d^{*} r\right)$
- Initially set count to zero and each time a program step is executed count is increased.

$$
\begin{aligned}
& x=x+1 ; \\
& \text { for }(i=1 ; i<=n ; i=i+1) \\
& x=x+1 ; \\
& \text { for }(i=1 ; i<=n ; i=i+1) \\
& \text { for }(j=1 ; j<=i ; j=j+1) \\
& x=x+1 ; \\
& \text { for }(i=1 ; i<=n ; i=i+1) \\
& \text { for }(j=1 ; j<=i ; j=j+1) \\
& \text { for }(k=1 ; k<=j ; k=k+1) \\
& x=x+1 ; \\
& 1 \text { unit } \\
& \sum_{i=1}^{n} 1=n \text { units } \\
& \sum_{i=1}^{n} \sum_{j=1}^{i} 1=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
& \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 \\
& =\sum_{i=1}^{n} \sum_{j=1}^{i} j=\sum_{i=1}^{n} \frac{i(i+1)}{2} \\
& =c_{1} n^{3}+c_{2} n^{2}+c_{3} n+c_{4}
\end{aligned}
$$

Big Oh Notation

$f(n)=O(g(n)) \Leftrightarrow$ there exists a positive constant c and an n_{0} s.t. $f(n) \leq c g(n)$ for all $n, n \geq n_{0}$.
$f(n)=3 n+2$
$\rightarrow f(n)=O(n)$
$f(n)=10 n^{2}+4 n+2 \rightarrow f(n)=O\left(n^{2}\right)$
$f(n)=6 * 2^{n}+n^{2} \rightarrow f(n)=O\left(2^{n}\right)$
$f(n)=9($ or $8,933,849) \rightarrow f(n)=O(1)$
$f(n)=9 n^{2}+4 n+2 \rightarrow f(n)=O\left(n^{4}\right)$, but not tight
O is used for Upper Bounds

Ω Notation

$$
f(n)=\Omega(g(n)) \Leftrightarrow \text { there exists a positive constant } c \text { and an } n_{0} \text { s.t. }
$$

$$
f(n) \geq c g(n) \text { for all } n, n \geq n_{0}
$$

$$
f(n)=3 n+2
$$

$$
\rightarrow \quad f(n)=\Omega(n)
$$

$$
f(n)=10 n^{2}+4 n+2 \quad \rightarrow \quad f(n)=\Omega\left(n^{2}\right)
$$

$$
f(n)=6 * 2^{n}+n^{2} \quad \rightarrow \quad f(n)=\Omega\left(2^{n}\right)
$$

$$
f(n)=9(\text { or } 8,363,456) \rightarrow f(n)=\Omega(1)
$$

$$
f(n)=9 n^{2}+4 n+2 \quad \rightarrow \quad f(n)=\Omega(n), \text { but not tight }
$$

Ω is used for Lower Bounds

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \Leftrightarrow f(n) \text { is } O(n) \text {, and } f(n) \text { is } \Omega(n) . \\
& f(n)=3 n+2 \\
& \rightarrow f(n)=\Theta(n) \\
& f(n)=10 n^{2}+4 n+2 \\
& \rightarrow f(n)=\Theta\left(n^{2}\right) \\
& f(n)=6 * 2^{n}+n^{2} \\
& \rightarrow f(n)=\Theta\left(2^{n}\right) \\
& f(n)=9(\text { or } 8,363,456) \\
& \rightarrow f(n)=\Theta(1) \\
& f(n)=9 n^{2} \text { if } n \text { is odd, and } \\
& 4 n+2 \text { when } n \text { is even } \rightarrow f(n) \quad \text { is not } \Theta(n) \text { nor } \Theta\left(n^{2}\right) \\
& \Theta \text { is used for Tight Bounds }
\end{aligned}
$$

Practical Complexities

Fibonacci Numbers

n is non negative integer
$f i b(n)= \begin{cases}n & \text { if } n \leq 1 \\ f i b(n-1)+f i b(n-2) & n>1\end{cases}$
fib(int n)
\{if ($\mathrm{n}<=1$) return n ; else return (fib(n-1) $+\mathrm{fib}(\mathrm{n}-2)$);
\}
void main(void)
\{ int n;
cin $\gg \mathrm{n}$;
cout $\ll \mathrm{n} \ll " \geqslant \ll \operatorname{fib}(\mathrm{n}) \ll$ endl;
$\}$

Time complexity of above method is $\Omega\left(2^{n / 2}\right)$. But it can be computed in $O(n)$ time and constant space.

Performance Measurement

- Choose problem instance size.
- Test data that exhibits worst case.
- Test data that exhibits best case.
- Test data that exhibits average case.
- Test other data.

Timing

- Use user time in "time a.out"
- Or use the following strategy.
\#include <iostream>
\#include "insort.h"
int main(void)
\{//Program 2.31
int a[100000], step $=1000$;
clock_t start, finish;
for (int $\mathrm{n}=$ step; $\mathrm{n}<=1000 ; \mathrm{n}+=$ step) \{
// get time for size n
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
$\mathrm{a}[\mathrm{i}]=\mathrm{n}-\mathrm{i} ; / /$ initialize
start $=\operatorname{clock}() ;$
InsertionSort(a, n);
finish $=\operatorname{clock}() ;$
cout $\ll \mathrm{n} \ll,, \ll$ (finish - start) $/$
CLOCKS_PER_SEC \ll endl;
\}
\}

Sometimes Analysis Is Not Important

- Program is run a few times
- Input size is always small
- Efficient programs are sometimes hard to maintain
- Sometimes efficient algorithms use too much space
- Stability and accuracy issues in numerical algorithms

