
CS-130B Time and Space Complexity.1'

&

$

%

Program Performance

• Performance: Amount of memory and time to

run a program.

• Space Complexity: amount of memory needed

to run a program. Why important?

– Running in multiuser environment

– Is there enough memory?

– Smaller programs can be run with other

programs

– Estimate the largest program we can run

• Time Complexity: Amount of time needed to

run a program. Why important?

– May need to provide a time limit.

– May need to provide a real time response

– Use appropriate program when several

alternatives exist.

grouper
Line

CS-130B Time and Space Complexity.2'

&

$

%

Example (Operation Count)

template<class T>

int SequentialSearch(T a[], const T& x, int n)

{// Search the unordered list a[0:n-1] for x.

// Return position if found; return -1 otherwise.

int i;

for (i = 0; i < n && a[i] ! = x; i++);

if (i == n) return -1;

return i;

}

• total number of steps executed by

SequentialSearch depends on the input.

– Worst case: loop executed n times

– Best case: loop executed zero times

– Average case: loop executed n
2 times (for

successful search assuming ...)

grouper
Line

grouper
Line

grouper
Line

grouper
Line

CS-130B Time and Space Complexity.3'

&

$

%

Step Count

• Program Step: (loosely defined) a syntactically or semantically

meaningful segment of a program for which the execution time

is independent of the instance characteristics. (e.g.

a+b*c+d*r)

• Initially set count to zero and each time a program step is

executed count is increased.

CS-130B Time and Space Complexity.4'

&

$

%

x = x + 1; 1 unit

for(i = 1; i <= n; i = i + 1)

x = x + 1;
∑n

i=1 1 = n units

for(i = 1; i <= n; i = i + 1)

for(j = 1; j <= i; j = j + 1)

x = x + 1;
∑n

i=1

∑i
j=1 1 =

∑n
i=1 i = n(n+1)

2

for(i = 1; i <= n; i = i + 1)

for(j = 1; j <= i; j = j + 1)

for(k = 1; k <= j; k = k + 1)

x = x + 1;
∑n

i=1

∑i
j=1

∑j
k=1 1

=
∑n

i=1

∑i
j=1 j =

∑n
i=1

i(i+1)
2

= c1n
3 + c2n

2 + c3n + c4

grouper
Rectangle

grouper
Rectangle

grouper
Rectangle

grouper
Rectangle

grouper
Rectangle

grouper
Rectangle

CS-130B Time and Space Complexity.5'

&

$

%

Big Oh Notation

f(n) = O(g(n)) ⇔ there exists a positive constant c and an n0 s.t.

f(n) ≤ cg(n) for all n, n ≥ n0.

f(n) = 3n + 2 → f(n) = O(n)

f(n) = 10n2 + 4n + 2 → f(n) = O(n2)

f(n) = 6 ∗ 2n + n2 → f(n) = O(2n)

f(n) = 9 (or 8, 933, 849) → f(n) = O(1)

f(n) = 9n2 + 4n + 2 → f(n) = O(n4), but not tight

O is used for Upper Bounds

grouper
Line

grouper
Line

grouper
Line

CS-130B Time and Space Complexity.6'

&

$

%

Ω Notation

f(n) = Ω(g(n)) ⇔ there exists a positive constant c and an n0 s.t.

f(n) ≥ cg(n) for all n, n ≥ n0.

f(n) = 3n + 2 → f(n) = Ω(n)

f(n) = 10n2 + 4n + 2 → f(n) = Ω(n2)

f(n) = 6 ∗ 2n + n2 → f(n) = Ω(2n)

f(n) = 9 (or 8, 363, 456) → f(n) = Ω(1)

f(n) = 9n2 + 4n + 2 → f(n) = Ω(n), but not tight

Ω is used for Lower Bounds

grouper
Line

grouper
Line

grouper
Line

CS-130B Time and Space Complexity.7'

&

$

%

Θ Notation

f(n) = Θ(g(n)) ⇔ f(n) is O(n), and f(n) is Ω(n).

f(n) = 3n + 2 → f(n) = Θ(n)

f(n) = 10n2 + 4n + 2 → f(n) = Θ(n2)

f(n) = 6 ∗ 2n + n2 → f(n) = Θ(2n)

f(n) = 9 (or 8, 363, 456) → f(n) = Θ(1)

f(n) = 9n2 if n is odd, and

4n + 2when n is even → f(n) is not Θ(n) nor Θ(n2)

Θ is used for Tight Bounds

grouper
Line

grouper
Line

CS-130B Time and Space Complexity.8'

&

$

%

Practical Complexities

Input Size n

log n

n

n log n

n^2
2^n

Time

grouper
Oval

grouper
Oval

grouper
Oval

grouper
Oval

grouper
Oval

CS-130B Time and Space Complexity.9'

&

$

%

Fibonacci Numbers

n is non negative integer

fib(n) =

n if n ≤ 1

fib(n − 1) + fib(n − 2) n > 1

fib(int n)

{if (n <= 1) return n;

else return (fib(n-1) + fib(n-2));

}

void main(void)

{ int n;

cin >> n ;

cout << n << ” ” << fib(n) << endl;

}

grouper
Line

CS-130B Time and Space Complexity.10'

&

$

%

28272726

2928

30

n 36 40 44 50 54 60 80 88 100

Time 2s 15s 1.6m 8m 1h 1d 6y 1c 64c

Time complexity of above method is Ω(2n/2). But it can be

computed in O(n) time and constant space.

grouper
Line

grouper
Line

CS-130B Time and Space Complexity.11'

&

$

%

Performance Measurement

• Choose problem instance size.

• Test data that exhibits worst case.

• Test data that exhibits best case.

• Test data that exhibits average case.

• Test other data.

Timing

• Use user time in “time a.out”

• Or use the following strategy.

CS-130B Time and Space Complexity.12'

&

$

%

#include <iostream>

#include ”insort.h”

int main(void)

{//Program 2.31

int a[100000], step = 1000;

clock t start, finish;

for (int n = step; n <= 1000; n += step) {

// get time for size n

for (int i = 0; i < n; i++)

a[i] = n - i; // initialize

start = clock();

InsertionSort(a, n);

finish = clock();

cout << n << ’ ’ << (finish - start) /

CLOCKS PER SEC << endl;

}

}

CS-130B Time and Space Complexity.13'

&

$

%

Sometimes Analysis Is Not Important

• Program is run a few times

• Input size is always small

• Efficient programs are sometimes hard to

maintain

• Sometimes efficient algorithms use too much

space

• Stability and accuracy issues in numerical

algorithms

grouper
Text-Box
But, most of the time it is very useful !!!

