
CS-130A Depth First Search.1'

&

$

%

DFS

Void Graph::dfs(Vertex v)

{ v.visited=true;

for each vertex w adjacent to v do

if(!w.visited) dfs(w);

}

dftraversal

{ for every v in G do

v.visited=false;

for every v in G do

if(!v.visited) dfs(v);

}

Time complexity O(n + e), n:# of nodes; e:# of

edges.



CS-130A Depth First Search.2'

&

$

%

DFS

dfs(1)
dfs(2)

dfs(4)
dfs(3)

dfs(5)

dfs(6)
dfs(8)

dfs(7)

1

2

4

3

5

6

7

8

1

2

3

4

5

6

7 8
: tree edges

: back edges

Since edges are not ordered dfs could be

dfs(1)

dfs(3)
dfs(5)

dfs(6)

1

3

5

6

dfs(4)

dfs(7)
dfs(8)

4

2

7

8

dfs(2)



CS-130A Depth First Search.3'

&

$

%

• Connectness: Is there a path between every

pair of vertices? True iff only one call from

dftraversal.

• Connected Components: Partition G = (V, E)

into G1 = (V1, E1), G2 = (V2, E2), . . ., such

that every Gi is connected. There are no

edges in G joining a vertex in Gi to one in Gj

for i 6= j. Solution: the nodes and edges

visited during the ith dfs call from dftraversal

form Gi.

• Testing if a graph is bipartite: Testing too see

if the vertices in G can be partitioned into

two sets S1 and S2 such that all the edges

join a vertex in set S1 to one in Set S2.Next

slide shows how dfs solves the problem.



CS-130A Depth First Search.4'

&

$

%

Testing for bipartite graph property via dfs

1

2

1

2 2

1

2

1

2

1 1 1 1

2

1

2

1 1

Not biparti graph
OK

Backedges

allowed Not allowed



CS-130A Depth First Search.5'

&

$

%

DFS directed graphs

Void Graph::dfs(vertex v)

{ v.visited=true;

for each vertex w adjacent from v do

if(!w.visited) dfs(w);

}

dftraversal

{ for every vertex v in G do

v.visited=false;

for every vertex v in G do

if(!v.visited) dfs(v);

}

Time complexity O(n + e), n:# of nodes; e:# of

edges.



CS-130A Depth First Search.6'

&

$

%

DFS

1

2

3

4

5

6 7

8

9
10

1

2

3

4

5

8

6

7

910

:Tree Arcs

:Back Arcs

:Forward Arcs

:Cross Arcs



CS-130A Depth First Search.7'

&

$

%

DFS

• Tree Arcs: Edges in DF spanning forest

• Back Arcs: From a vertex to one of its

ancestors in the spanning forest

• Forward Arcs:A non-spanning arc that goes

from a vertex to a proper decendant.

• Cross Arcs: From a vertex to another vertex

that is neither an ancestor nor a descendant

:Tree Arcs

:Back Arcs

:Forward Arcs

:Cross Arcs



CS-130A Depth First Search.8'

&

$

%

DFS directed graphs

Void Graph::dfs(vertex v)

{ v.dfnumber = count; // line not part of dfs

count++; // line not part of dfs

v.visited=true;

for each vertex w adjacent from v do

if(!w.visited) dfs(w);}

//When !w.visited is true

// then (v,w) is a tree edge

//v.dfnumber<w.dfnumber

// then (v,w) is a forward edge

//else (v,w) is back or cross edge

dftraversal

{ count=1;

for every vertex v in G do

v.visited=false;

for every vertex v in G do

if(!v.visited) dfs(v);}

Time complexity O(n + e), n:vertices; e:edges.



CS-130A Depth First Search.9'

&

$

%

Identification of Arcs

v

w

w.dfnumber>v.dfnumber

BACK ARCS AND CROSS ARCS

Forward Arcs

v

w

w

v

Recursive call to w has ended

w.dfnumber<v.dfnumber

Recursive call to w has not ended

back arcs

cross arcs

Using a mark bit to identify the vertices that are

active (in execution stack) one can distinguish

between the two cases. O(n + e) total time

complexity.



CS-130A Depth First Search.10'

&

$

%

Construct a total order consistent with partial

order

CS10

CS20

CS130A

CS170 CS130B

Math3C

CS40

CS10

Math3C

CS20

CS40

CS130A

CS170

CS130B

All edges directed from top to bottom.



CS-130A Depth First Search.11'

&

$

%

Print partial order

Void Graph::dfs(vertex v)

{ ... // at the end add

print(v);}

dfs(1)
dfs(2)

dfs(6)
dfs(3)

dfs(5)
dfs(4)

dfs(7)
dfs(8)

dfs(10)
dfs(9)

Prints
6
2
5
3
4
1
10
8

1

2
3

4

5

6

10

7

8 9

9
7

Reverse the order for a total order consistent with

partial order.


