
CS-130A Dictionaries.1'

&

$

%

ADT Dictionaries

• This abstract data type (ADT) operates on sets.

• The operations to be performed are: Insert(x), Delete (x), and

Membership(x).

• Remember that for sets we do not allow repeated elements.

Therefore Insert(x) when x is in the set will do nothing.



CS-130A Dictionaries.2'

&

$

%

Representation: Unsorted Array

• Represent the set of integers in an unsorted sequential array of

size N .

• n tells us how many elements we have currently in the list.

• Note that at all time 0 ≤ n ≤ N .

• Example:
N-143210

Nn

21215193 ...

• The operations are performed as follows:



CS-130A Dictionaries.3'

&

$

%

Membership(x)

do a sequential search (program discussed before) and return

true or false depending whether or not x is

in the array.

Time Complexity

• Membership takes Ω(1) and O(n) time.



CS-130A Dictionaries.4'

&

$

%

Insert(x)

If membership(x) returns false

then { if n >= N then /* No space left */ exit(1)

else add x at position n in the array

and increase n by one.

}

Time Complexity

• Insert takes Ω(1) and O(n) time.



CS-130A Dictionaries.5'

&

$

%

Delete(x)

If membership(x) returns false then return

do a sequential search (time&space.complexity.2) till you

find x, then move all the elements after x

one position to the left and decrease the

value of n by one.

Time Complexity

• Delete takes Ω(n) and O(n) time.

Actually a “faster” procedure is possible (TC is Ω(1) and O(n)).



CS-130A Dictionaries.6'

&

$

%

Representation: Sorted Array

• Represent the set of integers in a sorted sequential array of size

N .

• n tells us how many elements we have currently in the list.

• Note that at all time 0 ≤ n ≤ N .

• Example:

19151232

N-143210

Nn

...

• The operations are performed as follows:



CS-130A Dictionaries.7'

&

$

%

Membership(x) is just a binary search (Sec. 3.4 [Sa]).

Time Complexity

• Membership takes Ω(1) and O(log n).



CS-130A Dictionaries.8'

&

$

%

Insert(x)

If membership(x) returns true then return

if n >= N then /* no space left */ exit(1)

do a binary search (Sec. 3.4 [Sa]) and find the first element with

value greater than x or the element after the last one if all

the element in the list are less than x. Then move all the

elements from this position to the end of the list one unit and

insert x in the empty position. Increase n by 1.

Time Complexity

• Insert takes Ω(1) and O(n).



CS-130A Dictionaries.9'

&

$

%

Delete(x)

You may use the previous Delete(x), but using binary

search instead of sequential search.

Time Complexity

• Delete takes Ω(log n) and O(n) time.



CS-130A Dictionaries.10'

&

$

%

Representation: Unsorted Linked

• Represent the set of integers in an unsorted linked list.

• first is either null (list is empty) or points to the first object in

the list

• Example:
first 21215193



CS-130A Dictionaries.11'

&

$

%

Time Complexity

• Membership takes Ω(1) and O(n).

• Insert takes Ω(1) and O(n).

• Delete takes Ω(1) and O(n) time.



CS-130A Dictionaries.12'

&

$

%

Representation: Sorted Linked

• Represent the set of integers in a sorted linked list.

• first is either null (list is empty) or points to the first object in

the list

• Example:
first

19151232



CS-130A Dictionaries.13'

&

$

%

Time Complexity

• Membership takes Ω(1) and O(n).

• Insert takes Ω(1) and O(n).

• Delete takes Ω(1) and O(n) time.



CS-130A Dictionaries.14'

&

$

%

Table 1: Time Comlexity (Representation/Operations)

Membership Insert Delete

Unsorted Array Ω(1), O(n) Ω(1), O(n) Ω(n), O(n)

Sorted Array Ω(1), O(log n) Ω(1), O(n) Ω(log n), O(n)

Unsorted Linked List Ω(1), O(n) Ω(1), O(n) Ω(1), O(n)

Sorted Linked List Ω(1), O(n) Ω(1), O(n) Ω(1), O(n)


