GRAPHS

- Introduced by Euler 1736, Koeingsberg bridge problem (EAST PRUSSIA)

- Problem: Starting at some land area, is it possible to walk across all the bridges exactly once returning to the starting land area?

EULER CIRCUIT
MULTI-GRAPH

Theorem

Multi-Graph G has an euler circuit if and only if G is connected and every node is of even degree.

Algorithm by Stephen Barnard. (Discuss Quickly)
function EULER(v:vertex) Returns Path \{ path:=NULL;
for all vertices w adjacent to v and edge(v,w) not yet used do \{ mark (v,w) used; path:=\{(v,w)\} || EULER(w) || path; // concatenate represented by || \}
return path; \}

C++ code appears elsewhere.

Possible Execution of Algorithm

The labels in the edges indicate the order in which they are used in the recursive calls. Next slide gives more details of the recursive calls.

GRAPHS

Set of nodes (points or vertices)
Set of edges (lines or arcs) UNDIRECTED DIRECTED

$0: 0$ X

x

OK

Definition

Graph $G=(V, E)$
V : Set of vertices
E : Set of edges

- $\{i, j\}$: Undirected
$-i$ and j are adjecent
- $\{i, j\}$ is incident on vertices i and j
- (i, j) : Directed
- (i, j) is incident to vertex j and incident from i
- i is adjecent to vertex j
- j is adjecent from vertex i

No mutiple copies of edges
No self edge.

GRAPHS

- A sequence of vertices $P=i_{1}, i_{2}, \ldots, i_{k}$ is an i_{1} to i_{k} path if and only if $\left(i_{j}, i_{j+1}\right) \in E$ for every $1 \leq j<k$.
- Simple path: All vertices, except possibly for the $1^{\text {st }}$ and last, are different.
- Length of a path: \# of edges in the path.

Representation

Adjacency Matrix

- $\left(v_{i}, v_{j}\right)$ if and only if $A_{i, j}=1$
- Space n^{2} bits

Directed Case

Undirected Case

Bit Matrix

A	1	2	3	4
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	0	0	0

Bit Matrix

A	1	1	2	3
1	0	1	0	1
2	1	0	1	0
3	0	1	0	1
4	1	0	1	0

Adjacency Lists

- Space $O(n+e)$

Minimum Cost Spanning Tree (MCST)

- Definition of Spanning Tree: Let $G=(V, E)$ be an undirected connected graph. A subgraph $T=\left(V, E^{\prime}\right)$ of G is a spanning tree if and only if T is a tree.
- Definition of Minimum Cost Spanning Tree: Let $G=(V, E)$ be an undirected connected graph and $w: E \rightarrow I^{+}$. A subgraph
$T=\left(V, E^{\prime}\right)$ of G is a
minimum cost spanning tree if $\sum_{(i, j) \in E} w(i, j)$ is minimum and T is a tree.
- Kruskal Algorithm: Greedy method. Add lowest cost edge that does not create a cycle.

Kruskal's Algorithm

$\mathrm{n}<-\mathrm{IV\mid} ; \mathrm{T}<-\mathrm{NULL} ; \mathrm{E}<-$ Set of edge in G ; while $|T|<n-1$ do e <- Deletemin(E);
add e to T if it does not create a cycle endwhile

More Details

Initialize Priority Queue (Q) ADD all edges in G to priority queue Q(i,j,w(i,j));
T:=Empty;
while $|T|<n-1$ do
$\{i, j\}<-\operatorname{Deletemin}(Q)$
if $\{T$ plus $\{i, j\}\}$ is not a cycle then add $\{i, j\}$ to T
endwhile

Kruskal's Algorithm (refined)

/* G is connected*/
Initialize Union-Find(1..n):
Priority Queue (Q)
Add all edges in G to priority queue Q as triplets (i,j,W(i,j))
/* W(i,j) is the key for comparison */
T <- NULL;
while $|\mathrm{T}|<\mathrm{n}-1 \mathrm{do}$
$\{i, j\}<-\operatorname{Deltemin}(Q) ;$
I <- Find (i);
$\mathrm{J}<-\operatorname{Find}(\mathrm{j})$;
if $I!=J$ then Add $\{i, j\}$ to T;
Union (I, J) ;
endif
endwhile
Time Complexity $O(e \log e) \rightarrow O(e \log n)$.

