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GRAPHS

• Introduced by Euler 1736, Koeingsberg bridge

problem (EAST PRUSSIA)
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• Problem: Starting at some land area, is it

possible to walk across all the bridges exactly

once returning to the starting land area?
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Theorem

Multi-Graph G has an euler circuit if and only if

G is connected and every node is of even degree.

Algorithm by Stephen Barnard. (Discuss Quickly)

function EULER(v:vertex) Returns Path

{ path:=NULL;

for all vertices w adjacent to v

and edge(v,w) not yet used do

{ mark (v,w) used;

path:={(v,w)} || EULER(w) || path;

// concatenate represented by ||

}

return path;

}

C++ code appears elsewhere.
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Possible Execution of Algorithm
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The labels in the edges indicate the order in

which they are used in the recursive calls. Next

slide gives more details of the recursive calls.
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GRAPHS

Set of nodes (points or vertices)

Set of edges (lines or arcs)
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V={1,2,3,4,5}

E={{1,2},{2,3},{2,4},{2,5},{3,4},{4,5}}

V={1,2,3,4,5}

E={(1,2),(2,3),(4,3),(4,5),(5,2),(1,5),(2,1)}
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Definition

Graph G = (V, E)

V : Set of vertices

E: Set of edges
i j

i j

{i,j} set

(i,j) directed pair

• {i, j}: Undirected

– i and j are adjecent

– {i, j} is incident on vertices i and j

• (i, j): Directed

– (i, j) is incident to vertex j and incident

from i

– i is adjecent to vertex j

– j is adjecent from vertex i

No mutiple copies of edges

No self edge.
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• A sequence of vertices P = i1, i2, . . . , ik is an

i1 to ik path if and only if (ij , ij+1) ∈ E for

every 1 ≤ j < k.

• Simple path: All vertices, except possibly for

the 1st and last, are different.

• Length of a path: # of edges in the path.
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Representation

Adjacency Matrix

• (vi, vj) if and only if Ai,j = 1

• Space n2 bits
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Undirected Case

Directed Case

Adjacency Lists

• Space O(n + e)
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Minimum Cost Spanning Tree (MCST)

• Definition of Spanning Tree: Let G = (V, E)

be an undirected connected graph. A

subgraph T = (V, E′) of G is a spanning tree

if and only if T is a tree.

• Definition of Minimum Cost Spanning Tree:

Let G = (V, E) be an undirected connected

graph and w : E → I+. A subgraph

T = (V, E′) of G is a

minimum cost spanning tree if
∑

(i,j)∈E w(i, j) is minimum and T is a tree.

• Kruskal Algorithm: Greedy method. Add

lowest cost edge that does not create a cycle.
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Kruskal’s Algorithm

n <- |V|; T <- NULL; E <- Set of edge in G;

while |T|<n-1 do

e <- Deletemin(E);

add e to T if it does not create a cycle

endwhile

---------

More Details

---------

Initialize Priority Queue(Q)

ADD all edges in G to priority queue

Q(i,j,w(i,j));

T:=Empty;

while |T|<n-1 do

{i,j} <- Deletemin(Q)

if {T plus {i,j}} is not a cycle

then add {i,j} to T

endwhile
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Kruskal’s Algorithm (refined)

/* G is connected*/

Initialize Union-Find(1..n):

Priority Queue(Q)

Add all edges in G to priority queue Q

as triplets (i,j,W(i,j))

/* W(i,j) is the key for comparison */

T <- NULL;

while |T|<n-1 do

{i,j} <- Deltemin(Q);

I <- Find(i);

J <- Find(j);

if I!=J then Add {i,j} to T;

Union(I,J);

endif

endwhile

Time Complexity O(e log e) → O(e log n).


