
CS-130A Graphs (Basic).1✬

✫

✩

✪

GRAPHS

• Introduced by Euler 1736, Koeingsberg bridge

problem (EAST PRUSSIA)

A

C

D

Ba b

c d

e

f

g

A

C

D

Ba b

c d

e

f

g

• Problem: Starting at some land area, is it

possible to walk across all the bridges exactly

once returning to the starting land area?

A

B

C

D

c
d

e

b
a

f

PBS
EULER CIRCUIT

MULTI−GRAPH

CS-130A Graphs (Basic).2✬

✫

✩

✪

1

9

10

2

3

45

6

7

8

1

9

10

2

3

45

6

7

8

CS-130A Graphs (Basic).3✬

✫

✩

✪

Theorem

Multi-Graph G has an euler circuit if and only if

G is connected and every node is of even degree.

Algorithm by Stephen Barnard. (Discuss Quickly)

function EULER(v:vertex) Returns Path

{ path:=NULL;

for all vertices w adjacent to v

and edge(v,w) not yet used do

{ mark (v,w) used;

path:={(v,w)} || EULER(w) || path;

// concatenate represented by ||

}

return path;

}

C++ code appears elsewhere.

CS-130A Graphs (Basic).4✬

✫

✩

✪

Possible Execution of Algorithm

1

9

10

2

3

45

6

7

8
1

2

3

4

5

6

7

8

9

10
11

12

13

14 15

16

17

18

19

20

21

22

The labels in the edges indicate the order in

which they are used in the recursive calls. Next

slide gives more details of the recursive calls.

CS-130A Graphs (Basic).5✬

✫

✩

✪

CS-130A Graphs (Basic).6✬

✫

✩

✪

GRAPHS

Set of nodes (points or vertices)

Set of edges (lines or arcs)

1

2
3

45

1

2
3

45

V={1,2,3,4,5}

E={{1,2},{2,3},{2,4},{2,5},{3,4},{4,5}}

V={1,2,3,4,5}

E={(1,2),(2,3),(4,3),(4,5),(5,2),(1,5),(2,1)}

UNDIRECTED DIRECTED

OK

CS-130A Graphs (Basic).7✬

✫

✩

✪

Definition

Graph G = (V, E)

V : Set of vertices

E: Set of edges
i j

i j

{i,j} set

(i,j) directed pair

• {i, j}: Undirected

– i and j are adjecent

– {i, j} is incident on vertices i and j

• (i, j): Directed

– (i, j) is incident to vertex j and incident

from i

– i is adjecent to vertex j

– j is adjecent from vertex i

No mutiple copies of edges

No self edge.

CS-130A Graphs (Basic).8✬

✫

✩

✪

GRAPHS

• A sequence of vertices P = i1, i2, . . . , ik is an

i1 to ik path if and only if (ij , ij+1) ∈ E for

every 1 ≤ j < k.

• Simple path: All vertices, except possibly for

the 1st and last, are different.

• Length of a path: # of edges in the path.

CS-130A Graphs (Basic).9✬

✫

✩

✪

Representation

Adjacency Matrix

• (vi, vj) if and only if Ai,j = 1

• Space n2 bits

1 2

34

Bit Matrix

A 1 2 3 4

1
2
3
4

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

1 2

34

Bit Matrix

A 1 2 3 4

1
2
3
4

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

Undirected Case

Directed Case

Adjacency Lists

• Space O(n + e)

1

2

3

4

2

2

4

4 1

4

1 3

1

2

3

4

CS-130A Graphs (Basic).10✬

✫

✩

✪

Minimum Cost Spanning Tree (MCST)

• Definition of Spanning Tree: Let G = (V, E)

be an undirected connected graph. A

subgraph T = (V, E′) of G is a spanning tree

if and only if T is a tree.

• Definition of Minimum Cost Spanning Tree:

Let G = (V, E) be an undirected connected

graph and w : E → I+. A subgraph

T = (V, E′) of G is a

minimum cost spanning tree if
∑

(i,j)∈E w(i, j) is minimum and T is a tree.

• Kruskal Algorithm: Greedy method. Add

lowest cost edge that does not create a cycle.

CS-130A Graphs (Basic).11✬

✫

✩

✪

a

b

c

d
e

1

32

9

5
8

{d,e}

{b,e}

{c,e}

{b,c}

{c,d}

{a,b}

a

b

c

d
e

a

b

c

d
e

a

b

c

d
e

2

1

3

a

b

c

d
e

2

1

3

1

1

2

8

CS-130A Graphs (Basic).12✬

✫

✩

✪

Kruskal’s Algorithm

n <- |V|; T <- NULL; E <- Set of edge in G;

while |T|<n-1 do

e <- Deletemin(E);

add e to T if it does not create a cycle

endwhile

More Details

Initialize Priority Queue(Q)

ADD all edges in G to priority queue

Q(i,j,w(i,j));

T:=Empty;

while |T|<n-1 do

{i,j} <- Deletemin(Q)

if {T plus {i,j}} is not a cycle

then add {i,j} to T

endwhile

CS-130A Graphs (Basic).13✬

✫

✩

✪

Kruskal’s Algorithm (refined)

/* G is connected*/

Initialize Union-Find(1..n):

Priority Queue(Q)

Add all edges in G to priority queue Q

as triplets (i,j,W(i,j))

/* W(i,j) is the key for comparison */

T <- NULL;

while |T|<n-1 do

{i,j} <- Deltemin(Q);

I <- Find(i);

J <- Find(j);

if I!=J then Add {i,j} to T;

Union(I,J);

endif

endwhile

Time Complexity O(e log e) → O(e log n).

