CS-130A

Graphs (Basic).1

/

GRAPHS '

e Introduced by Euler 1736, Koeingsberg bridge

problem (EAST PRUSSIA)

e Problem: Starting at some land area, is it
possible to walk across all the bridges exactly

once returning to the starting land area?

=R

(&)

EULER CIRCUIT

MULTI-GRAPH

~

A PBS

Graphs (Basic).2

CS-130A

CS-130A Graphs (Basic).3

4 N
Theorem §

Multi-Graph G has an euler circuit if and only if

(G is connected and every node is of even degree.

Algorithm by Stephen Barnard. (Discuss Quickly)

function EULER(v:vertex) Returns Path
{ path:=NULL;
for all vertices w adjacent to v
and edge(v,w) not yet used do
{ mark (v,w) used;
path:={(v,w)} || EULER(w) || path;
// concatenate represented by ||

¥

return path;

h
C++ code appears elsewhere.

_ /

CS-130A Graphs (Basic).4

4 N

‘Possible Execution of Algorithm'

The labels in the edges indicate the order in
which they are used in the recursive calls. Next

slide gives more details of the recursive calls.

_ /

CS-130A

Graphs (Basic).5

-~

Reco sive Colls

~

248 Theratioa

= I#Q%M Lazfp (yw) P?'//L

(ij) Pa+[‘

edse
[abel

)
£()
E(3)
e¢)
e@)
&lro)
EY)
E(s)
e)
@)
e)

c (1)

(2) () Gr)(¢3) Ty
(2,3) (23)(39) (43) b4
(3,9) (3;‘4) ($3) P4 A o,
(4,3) (43) P4 _ ' ‘
a’}?o) (3/, 10) (10,4) (115)(5;0) P3 , |
(l; q) (1")'4)“/;?)(7/") P

7 (g5 (50 P /1
(5,0) (53 | |
9 (6 @0 (@D (18 fe |
(1,6) (6) () LB T
(¢,7) M9 P | n
1,8 (1,9 P , n
(1) (B0 (13 (11O P |/
(1, %) (1,3} (1,10) B (1,2

(9,1

Alco i

c(8)
el)
e(9)
Q)

£ (/0)
e(2)
z (1°)
e

1 (q/lo) P‘ (Q]‘) Y

2) (10,2) (#1°) (10,7) (7,4} (¢110) (18,3) .
(219 (10,7) (1,¢) (¢,19) ((0,%)

CER)) (1, (6,10 (10,%)

(1,¢)(6,10) (10,9)

#
(¢#2)

(6,000 (£00)10)4)

5(2,03 22 |€19,9) (10,2)
el &
[+ P= (16,2)(2,19) (oM (7,6) (6,10)(10,)
e 11—
| pe @D () (0 P 0
TA(Se ave ;Z:i f:? PB: /5/7)(?/0) (6)7)(7)8> P—¢
% it Pe= (3,10)(10,8) (4,) (1¢) P
2moo

CS-130A Graphs (Basic).6

4 N

GRAPHS '

Set of nodes (points or vertices)

Set of edges (lines or arcs)

UNDIRECTED DIRECTED
Vv={1,2,3,4,5} Vv={1,2,3,4,5}
E={{1,2}.{2,3}.{2,4}.{2,5}.{3,4}.{4.5}} E={(1,2).(2,3).(4,3),(4,5),(5,2).(1,5).(2,1)}

O v o0~
O—0., avp =

CS-130A Graphs (Basic).7

/ Definition I \

Graph G = (V, F)
V. Set of vertices

E: Set of edges

(i,j) directed pair
e {i,7}: Undirected

— ¢ and j are adjecent
— {1,7} is incident on vertices ¢ and j
e (i,7): Directed
— (1, 7) is incident to vertex j and incident
from ¢
— 1 is adjecent to vertex j

— 7 is adjecent from vertex ¢

No mutiple copies of edges

\No self edge. /

CS-130A Graphs (Basic).8

4 N

GRAPHS '

e A sequence of vertices P = 71,1%9,...,%; 1S an
i1 to i path if and only if (i;,i;41) € E for
every 1 < j < k.

e Simple path: All vertices, except possibly for
the 15t and last, are different.

e Length of a path: # of edges in the path.

CS-130A

Graphs (Basic).9

/

Representation I

Adjacency Matrix

o (v;,v;)ifand onlyif 4;,;, =1

e Space n° bits

Directed Case

Undirected Case

Adjacency Lists

_

e Space O(n + e)

I mEESOE
2 [~
s [~z
A= el

Bit Matrix

A| 1234
1

010¢C
2] 001¢C
3|1 0001
41 100¢C

Bit Matrix

Al 1234
1

0101
2] 101¢
310101
41 101¢

SN
Ao

~

/

CS-130A Graphs (Basic).10

Minimum Cost Spanning Tree (MCST)I

e Definition of Spanning Tree: Let G = (V, F)
be an undirected connected graph. A

subgraph T'= (V, E’) of G is a spanning tree

if and only if T' is a tree.

e Definition of Minimum Cost Spanning Tree:
Let G = (V, F) be an undirected connected
graph and w : E — I*. A subgraph
T=(V,E") of Gis a

minimum cost spanning tree if

> i jyer W(i, 7) is minimum and 7' is a tree.

e Kruskal Algorithm: Greedy method. Add
lowest cost edge that does not create a cycle.

_ /

CS-130A

Graphs (Basic).11

/

(B s ©
@ ©
@/% .
9 Ly

{d,e} -
{be}
{cet
{b,c} X
{c,d} X
{a,p} -

~

CS-130A Graphs (Basic).12

‘ Kruskal’s Algorithm I

n <- |[V|; T <- NULL; E <- Set of edge in G;
while |T|<n-1 do
e <- Deletemin(E);

add e to T if it does not create a cycle

endwhile

Initialize Priority Queue(Q)
ADD all edges in G to priority queue
Qdi,j,w(i,j));
T:=Empty;
while |T|<n-1 do
{i,j} <- Deletemin(Q)
if {T plus {i,j}} is not a cycle
then add {i,j} to T

endwhile

/

CS-130A Graphs (Basic).13

Kruskal’s Algorithm (refined) I

/* G is connectedx/

Initialize Union-Find(1..n):
Priority Queue(Q)

Add all edges in G to priority queue Q

as triplets (i,j,W(i,j))

/* W(i,j) is the key for comparison */
T <- NULL;
while |T|<n-1 do

{i,j} <- Deltemin(Q);

I <- Find(i);
J <- Find(j);
if I!'=J then Add {i,j} to T;
Union(I,J);
endif
endwhile

Time Complexity O(eloge) — O(elogn).

_ /

