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e Introduced by Euler 1736, Koeingsberg bridge

problem (EAST PRUSSIA)

e Problem: Starting at some land area, is it
possible to walk across all the bridges exactly

once returning to the starting land area?
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Theorem §

Multi-Graph G has an euler circuit if and only if

(G is connected and every node is of even degree.

Algorithm by Stephen Barnard. (Discuss Quickly)

function EULER(v:vertex) Returns Path
{ path:=NULL;
for all vertices w adjacent to v
and edge(v,w) not yet used do
{ mark (v,w) used;
path:={(v,w)} || EULER(w) || path;
// concatenate represented by ||

¥

return path;

h
C++ code appears elsewhere.
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‘Possible Execution of Algorithm'

The labels in the edges indicate the order in
which they are used in the recursive calls. Next

slide gives more details of the recursive calls.
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Set of nodes (points or vertices)

Set of edges (lines or arcs)

UNDIRECTED DIRECTED
Vv={1,2,3,4,5} Vv={1,2,3,4,5}
E={{1,2}.{2,3}.{2,4}.{2,5}.{3,4}.{4.5}} E={(1,2).(2,3).(4,3),(4,5),(5,2).(1,5).(2,1)}
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Graph G = (V, F)
V. Set of vertices

E: Set of edges

(i,j) directed pair
e {i,7}: Undirected

— ¢ and j are adjecent
— {1,7} is incident on vertices ¢ and j
e (i,7): Directed
— (1, 7) is incident to vertex j and incident
from ¢
— 1 is adjecent to vertex j

— 7 is adjecent from vertex ¢

No mutiple copies of edges

\No self edge. /
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e A sequence of vertices P = 71,1%9,...,%; 1S an
i1 to i path if and only if (i;,i;41) € E for
every 1 < j < k.

e Simple path: All vertices, except possibly for
the 15t and last, are different.

e Length of a path: # of edges in the path.
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Representation I

Adjacency Matrix

o (v;,v;)ifand onlyif 4;,;, =1

e Space n° bits

Directed Case

Undirected Case

Adjacency Lists

\_

e Space O(n + e)

I mEESOE
2 [~
s [~z
A= el

Bit Matrix

A| 1234
1

010¢C
2] 001¢C
3|1 0001
41 100¢C

Bit Matrix

Al 1234
1

0101
2] 101¢
310101
41 101¢
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Minimum Cost Spanning Tree (MCST )I

e Definition of Spanning Tree: Let G = (V, F)
be an undirected connected graph. A

subgraph T'= (V, E’) of G is a spanning tree

if and only if T' is a tree.

e Definition of Minimum Cost Spanning Tree:
Let G = (V, F) be an undirected connected
graph and w : E — I*. A subgraph
T=(V,E") of Gis a

minimum cost spanning tree if

> i jyer W(i, 7) is minimum and 7' is a tree.

e Kruskal Algorithm: Greedy method. Add
lowest cost edge that does not create a cycle.
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‘ Kruskal’s Algorithm I

n <- |[V|; T <- NULL; E <- Set of edge in G;
while |T|<n-1 do
e <- Deletemin(E);

add e to T if it does not create a cycle

endwhile

Initialize Priority Queue(Q)
ADD all edges in G to priority queue
Qdi,j,w(i,j));
T:=Empty;
while |T|<n-1 do
{i,j} <- Deletemin(Q)
if {T plus {i,j}} is not a cycle
then add {i,j} to T

endwhile
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Kruskal’s Algorithm (refined) I

/* G is connectedx/

Initialize Union-Find(1..n):
Priority Queue(Q)

Add all edges in G to priority queue Q

as triplets (i,j,W(i,j))

/* W(i,j) is the key for comparison */
T <- NULL;
while |T|<n-1 do

{i,j} <- Deltemin(Q);

I <- Find(i);
J <- Find(j);
if I!'=J then Add {i,j} to T;
Union(I,J);
endif
endwhile

Time Complexity O(eloge) — O(elogn).
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