
CS-130A Graphs.1'

&

$

%

Biconnectivity

• Graph G is biconnected if there are no

vertices whose removal disconnects the rest of

the graph

Not BiconnectedBiconnected

• Articulation Points: Vertex in a graph whose

removal disconnects the graph into two or

more components

CS-130A Graphs.2'

&

$

%

Identifying Articulation Points

(Finding Articulation Points)

Define

• Num(v): DFS NUMBER

• Low(v): Lowest-numbered vertex that is

reachable from v by taking zero or more tree

edges and then possibly one back edge (in

that order)
B A

C D

G E

F

A

B

C

D

E

F

G

1/1

2/1

3/1

4/1

5/4

6/4

7/7

Num(v)/Low(v)

CS-130A Graphs.3'

&

$

%

Computation of Low(v)

minimum of

• Num(v)

• lowest Num(w) among all back edges (v,w)

• the lowest Low(w) among all tree edges (v,w).

v v

CS-130A Graphs.4'

&

$

%

A

B C

D
E

F

G

H

C

A

B

D

E

F

H

G

1/1

2/1

3/1

4/1

5/1

6/1

7/5

8/5

CS-130A Graphs.5'

&

$

%

• Root is an articulation

point if it has two or more tree edges

• Vertex v (other than a root) is an articulation

point iff v has some child w such that Low(w)

≥ Num(v), i.e., w cannot be higher than than

v.
4

5

4

4

CS-130A Graphs.6'

&

$

%

Finding Strong Components

• A directed graph is strongly connected iff for

every i 6= j there is a directed path from i to

j and one from j to i.

• Partition the set of vertices in G = (V, E) into

sets V1, V2, . . . , Vk. The graph

Gi = (Vi, E(Vi)) is said to be a strongly

connected component iff for every l 6= j in Vi

there is a path from l to j and one from j to l;

and for no vertex j ∈ Vi and q ∈ V − Vi, there

is a path from q to j and from j to q in G.

CS-130A Graphs.7'

&

$

%

A B

CD

E

F

G

H

IJ

Residual graph is acyclic graph

CS-130A Graphs.8'

&

$

%

Identifying Strongly Connected Components

• Perform a dfs on G (number vertices in the

order in which you end their recursive calls)

• Construct the reversed graph Gr from G

GrG

• Perform a dfs on Gr always starting a new dfs

search at the vertex with highest number (last

one to end recursive call in past (first item))

*Every tree in the dfs forest is a strongly

connected component.

CS-130A Graphs.9'

&

$

%

Theorem

Theorem:

There is a path from u to v in G and a path from

v to u in G, if and only if u and v end up in the

same spanning tree in the 2nd DFS traversal.

Proof:

(→) If there is a path from u to v in G and a

path from v to u in G, then u and v end up in the

same spanning tree in the 2nd DFS traversal.

u
v

In the 2nd DFS assume the dfs(u) is called before

dfs(v).

CS-130A Graphs.10'

&

$

%

Proof: Cont’

We know there is a path from u to v.
......u vu1 u2 uk

ui must appear in the same spanning tree as u or

in a previous one. The same holds for v. Since u

is visited before v then u and v are in the same

spanning tree.

CS-130A Graphs.11'

&

$

%

Theorem

Proof for (←)

If u and v end up in the same spanning tree in

the 2nd DFS traversal, then there is a path from u

to v in G and a path from v to u in G.

Assume without of generality that the spanning

tree for u and v is

x

u v

xu v

Therefore, #x > #u, #x > #v. This implies that

dfs(x) terminated after dfs(u) in the first dfs.

→ time increases from left to right

dfs(x)

dfs(u)

dfs(x)

dfs(u)

alternative dfs(x)

dfs(u)

dfs(x)

Not possible

Not possible, there is a path from u to x in G

In the first dfs
x

u
path from x to u

Using similar argument we know that there is a

path from x to v. This concludes the proof.

