Biconnectivity

- Graph G is biconnected if there are no vertices whose removal disconnects the rest of the graph

Biconnected

Not Biconnected

- Articulation Points: Vertex in a graph whose removal disconnects the graph into two or more components

Identifying Articulation Points

(Finding Articulation Points)
Define

- Num(v): DFS NUMBER
- Low(v): Lowest-numbered vertex that is reachable from v by taking zero or more tree edges and then possibly one back edge (in that order)

Computation of Low(v)

minimum of

- $\operatorname{Num}(\mathrm{v})$
- lowest $\operatorname{Num}(\mathrm{w})$ among all back edges (v,w)
- the lowest Low(w) among all tree edges (v,w).

- Root is an articulation
point if it has two or more tree edges

- Vertex v (other than a root) is an articulation point iff v has some child w such that $\operatorname{Low}(w)$ $\geq \operatorname{Num}(v)$, i.e., w cannot be higher than than v.

Finding Strong Components

- A directed graph is strongly connected iff for every $i \neq j$ there is a directed path from i to j and one from j to i.
- Partition the set of vertices in $G=(V, E)$ into sets $V_{1}, V_{2}, \ldots, V_{k}$. The graph $G_{i}=\left(V_{i}, E\left(V_{i}\right)\right)$ is said to be a strongly connected component iff for every $l \neq j$ in V_{i} there is a path from l to j and one from j to l; and for no vertex $j \in V_{i}$ and $q \in V-V_{i}$, there is a path from q to j and from j to q in G.

Identifying Strongly Connected Componen

- Perform a dfs on G (number vertices in the order in which you end their recursive calls)
- Construct the reversed graph G_{r} from G

- Perform a dfs on G_{r} always starting a new dfs search at the vertex with highest number (last one to end recursive call in past (first item))
*Every tree in the dfs forest is a strongly connected component.

Theorem

Theorem:

There is a path from u to v in G and a path from v to u in G, if and only if u and v end up in the same spanning tree in the $2 \underline{\text { nd }}$ DFS traversal. Proof:
(\rightarrow) If there is a path from u to v in G and a path from v to u in G, then u and v end up in the same spanning tree in the $2 \underline{\text { nd }}$ DFS traversal.

In the $2 \underline{\text { nd }}$ DFS assume the $\mathrm{dfs}(u)$ is called before dfs (v).

Proof: Cont'

We know there is a path from u to v.

u_{i} must appear in the same spanning tree as u or in a previous one. The same holds for v. Since u is visited before v then u and v are in the same spanning tree.

Theorem

$\underline{\text { Proof for }}(\leftarrow)$
If u and v end up in the same spanning tree in the $2 \underline{n d}$ DFS traversal, then there is a path from u to v in G and a path from v to u in G.
Assume without of generality that the spanning tree for u and v is

Therefore, $\# x>\# u, \# x>\# v$. This implies that $\mathrm{dfs}(x)$ terminated after $\mathrm{dfs}(u)$ in the first dfs.
\rightarrow time increases from left to right

Using similar argument we know that there is a path from x to v. This concludes the proof.

