CS-130A Graphs.1

/ Biconnectivity I \

e Graph G is biconnected if there are no

vertices whose removal disconnects the rest of

the graph

N /

\Q/

Biconnected Not Biconnected

e Articulation Points: Vertex in a graph whose

removal disconnects the graph into two or

more components

CS-130A Graphs.2

‘Identifying Articulation Points.

(Finding Articulation Points)
Define

e Num(v): DFS NUMBER

e Low(v): Lowest-numbered vertex that is
reachable from v by taking zero or more tree
edges and then possibly one back edge (in
that order)

7@ ,*"d%)m

4/1

CS-130A Graphs.3

4 N

Computation of Low(v) I

minimum of
e Num(v)
e lowest Num(w) among all back edges (v,w)

e the lowest Low(w) among all tree edges (v,w).

Yo

CS-130A

Graphs.4

/

\c

~

CS-130A Graphs.b

4 N

e Root is an articulation

point if it has two or more tree edges

e Vertex v (other than a root) is an articulation
point iff v has some child w such that Low(w)
> Num(v), i.e., w cannot be higher than than

4

CS-130A Graphs.6

4 N

‘Finding Strong Components'

e A directed graph is strongly connected iff for
every ¢ % j there is a directed path from i to

7 and one from j to 1.

e Partition the set of vertices in G = (V, E) into
sets Vi, Vs, ..., V. The graph
G; = (Vi, E(V;)) is said to be a strongly
connected component iff for every [£ j in V;
there is a path from [to 5 and one from 5 to [;
and for no vertex 7 € V; and g € V — 'V, there
is a path from ¢ to 7 and from j to ¢ in G.

_ /

CS-130A Graphs.7

CS-130A Graphs.8

4 N

Identifying Strongly Connected Comppnen

e Perform a dfs on G (number vertices in the

order in which you end their recursive calls)

e Construct the reversed graph G, from G
O—0=0-—0
G Gr

e Perform a dfs on GG, always starting a new dfs
search at the vertex with highest number (last

one to end recursive call in past (first item))

*Every tree in the dfs forest is a strongly

connected component.

_ /

CS-130A Graphs.9

4 N
[Theorem §

Theorem:

There is a path from u» to v in G and a path from
v to u in G, if and only if v and v end up in the
same spanning tree in the 224 DFS traversal.

Proof:
(—) If there is a path from u to v in G and a

path from v to v in GG, then u and v end up in the

same spanning tree in the 224 DFS traversal.

In the 224 DFS assume the dfs(u) is called before
dfs(v).

_ /

CS-130A Graphs.10

4 N

Proof: Cont’ '

We know there is a path from u to v.

(o ()~ ()
u; must appear in the same spanning tree as u or
in a previous one. The same holds for v. Since u
is visited before v then u and v are in the same

spanning tree.

CS-130A

4 Theorem A

Proof for («+)
If v and v end up in the same spanning tree in

the 224 DFS traversal, then there is a path from u
to v in G and a path from v to » in G.

Assume without of generality that the spanning
tree for u and v is

Therefore, #x > #u, #x > #v. This implies that
dfs(x) terminated after dfs(u) in the first dfs.
— time increases from left to right

: dfs(ﬁfs(x) Inthefirst dfs (0
aternative > path from x tou
]

dfs(u)
dfs(x)
< Not possible

——
dfs(u)

< }%{ Not possible, thereisapath fromutoxin G
dfs(u)

Using similar argument we know that there is a

Qath from x to v. This concludes the proof. /

Graphs.11

