Hashing

- Table (hd) with D (or TableSize) entries or b (buckets).
- Hash function $f(x)$ maps keys to $\{0,1,2, \ldots, D-1\}$, i.e., the universe is partitioned into D regions by the hash function.
- In the ideal situation the objects to be represented are mapped (via the hash function) to different positions in the hash table.
- Therefore, initialization takes $O(D)$, and insert, delete and membership can be done in $O(1)$ time (assuming the ideal situation).
- Most common hash function $f(k)=k \% D . f(k)$ gives the home bucket.

Linear Open Addressing Hashing

- Example: $\mathrm{D}=11$.
- $f(80) \rightarrow 3, f(40) \rightarrow 7, f(65) \rightarrow 10$.
$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
80
40
65
- If we try to insert 58 which maps to 3 also, there is a collision.
- An overflow occurs when there is no more space for the element.
- Where do we store it? Next available space (circular) [linear open addressing].
- in this case is inserted in position 4.

0	1	2	3	4	5	6	7	8	9	10
		80	58			40			65	

- Insert 24 (maps to 2) does not cause a collision.
$\begin{array}{llrrrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ & 24 & 80 & 58 & & & 40 & & & 65\end{array}$
- Insert 35 (maps to 2) causes a collision. So it ends up in position 5 .
$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ $\begin{array}{llllll}24 & 80 & 58 & 35 & 40 & 65\end{array}$
- Insert 98 (maps to 10) causes a collision and ends up in position 0.

0	1	2	3	4	5	6	7	8	9	10
98		24	80	58	35		40			65

- Begin at the home bucket till
- You find the element (x is in the table), or
- An empty spot (x is not in the table), or
- Back at the home bucket (x is not in the table)

Deletion

- Just erase the element will not work! (Like delete 80)
- Use a NeverUsed bit (and modify search and insert)

Performance (No Proofs for this part Discussed)

- Number of buckets is $b=D$.
- $\alpha=n / b$ is the load factor.
- Avg. Num. of buckets examined during unsuccessful searches $U_{n} \sim \frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right)$
- Avg. Num. of buckets examined during successful searches $S_{n} \sim \frac{1}{2}\left(1+\frac{1}{1-\alpha}\right)$
- $\alpha=0.5$ the U_{n} is 2.5 and S_{n} is 1.5.
- $\alpha=0.9$ the U_{n} is 50.5 and S_{n} is 5.5 .
D should be a prime or have no prime factors less than 20.

Random Proving: Defn. \& Analysis

- Overflow: Next bucket is found at random.
- Actually pseudo-random in order to be able to reproduce results.

Theorem 10.1 [Sa, Origin: Probability Theory]:
Let p be the probability that certain event occurs.
The expected number of independent trials
needed for that event to occur is $1 / p$.
Coin flips (for H or T): 2 , and
Die throw (for number in 1-6): 6.

- $\alpha=n / b$ is the load factor.
- Probability of an occupied bucket is α.
- Probability that a bucket is empty is $1-\alpha$.
- Unsuccessful search: Looks for an empty bucket. Using independent trials the expected number of buckets examined is:

$$
U_{n} \approx \frac{1}{1-\alpha}
$$

Random Proving: S_{n}

- Eqn for S_{n} is derived from U_{n}.
- Elements in table are $1,2, \ldots, n$ (in the order inserted).
- When element i is inserted an unsuccessful search is performed and the element is inserted.
- From above, the buckets searched were $\frac{1}{1-\frac{i-1}{b}}$.
- Assuming the each element in the table is searched with equal probability, we know that ... (Next Slide)

Random Proving: S_{n} cont'

$$
\begin{aligned}
S_{n} & \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1-\frac{i-1}{b}} \\
& =\frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{1-\frac{i}{b}} \\
& \approx \frac{1}{n} \int_{i=0}^{n-1} \frac{1}{1-\frac{i}{b}} d i \\
& \approx \frac{1}{n} \int_{i=0}^{n} \frac{1}{1-\frac{i}{b}} d i \\
& \left.=-\frac{b}{n} \ln \left(1-\frac{i}{b}\right)\right]_{0}^{n} \\
& =-\frac{1}{\alpha} \ln (1-\alpha)
\end{aligned}
$$

Linear v.s. Random Proving

- When $\alpha=0.9 U_{n}=50.5$ with linear proving, but only 10 when using random proving.
- The important thing is run-time rather than number of buckets searched. It take more time to generate a random number than to search a few buckets.
- The cache effect also comes to play in random proving as the places being searched may cause "caching and paging faults" (section 4.5 [Sa]).

Hashing with Chaining

- Bucket has a linked list of the keys that mapped to that bucket (inc. order)

0 -> 11 -> 33 -> 55 -> 66
1
2
3 -> 36 -> 69
4
5 -> 16 -> 49 -> 82

- plus infinity object at the end of the list simplifies the code (Actually only one object).

0 -> 11 -> 33 -> 55 -> 66 -> BIG
1 -> BIG
2 -> BIG
3 -> 36 -> 69 -> BIG
4 -> BIG
5 -> 16 -> 49 -> 82 -> BIG

Performance (No Proofs Discussed (See 10.5.4 in [Sa])

- $\alpha=n / D$ is the load factor.
- Avg. Num. of nodes examined during successful searches $S_{n} \sim 1+\frac{\alpha}{2}$
- Avg. Num. of nodes examined during unsuccessful searches $U_{n} \leq \alpha, \quad \alpha<1$ $U_{n} \approx \frac{\alpha(\alpha+3)}{2(\alpha+1)}, \quad \alpha \geq 1$

Text Compression: LZW

- Compress string aaabbbbbbaabaaba, with $\sum=\{a, b\}$
- "a" is assigned code 0 and "b" is assigned code 1.
- Mapping is stored in table
$0 \quad 1$
a b
- Beginning with the above dictionary, find the longest prefix, p, of the un-encoded part of the input file that is in the dictionary and output its code.
- If there is a next character c, in the input file then $p c$ is assigned the next code and inserted in the dictionary.

Example

01
ab
a aabbbbbbaabaaba
we output 0 and add aa with code 2
012
ab aa
aa bbbbbbaabaaba
we output 2 and add abb with code 3
0123
ab aa abb
b bbbbbaabaaba
we output 1 and add bb with code 4
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
ab aa abb bb
bb bbbaabaaba
we output 4 and add bbb with code 5
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
ab aa abb bb bbb
bbb aabaaba
we output 5 and add bbba with code 6
$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
a b aa abb bb bbb bbb
abb aba
we output 3 and add aba with code 7
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
a b aa abb bb bbb bbba aba
aba
we output 7 .
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
ab aa abb bb bbb bbba aba

Actual Dictionary

$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
a b 0a 2b 1b 4b 5a 3a
a b aa aab bb bbb bbba aaba <-- extra

- Output is 0214537

Representation of Code Table

- Codes are 4096
- Access via code number plus symbol
- Use hash table with chaining $(D=4099)$
- Can use tries too (reqs. more space).
- Code table is not transmitted to decompressor, because it can be reconstructed from the output of the compressor.

Decompression

$0 \quad 214537$
01
ab
The 0 outputs a
The code 2 is $0 *$
$2 \quad 14537$
The 2 implies that the fo (first character) is a
So code 2 is $0 a$ and added to the table
$0 \quad 1 \quad 2$
ab Da
a b aa <-- extra line
The 2 outputs aa
The code 3 is $2 *$

14537
The 1 implies that the fc is b
So code 3 is 2 b and added to the table
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
ab Da Rb
a b aa dab <-- extra line
The 1 outputs b
The code 4 is $1 *$

4537
The 4 implies that the fc is b
So code 4 is 1 b and added to the table
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
a b Da Rb ib
a b aa abb bb <-- extra line
The 4 outputs bb
The code 5 is $4 *$
$5 \quad 37$
The 5 implies that the fc is b
So code 5 is $4 b$ and added to the table
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$a \quad b \quad 0 a \quad 2 b \quad 1 b \quad 4 b$
a b aa abb bb bbb <-- extra line
The 5 outputs bbb
The code 6 is $5 *$

3
7
The 3 implies that the fo is a
So code 6 is 5 a and added to the table
$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
a b Da 2b ib 4b aa
a b aa abb bb bbb bbba <-- extra line
The 3 outputs abb
The code 7 is $3 *$

The 7 implies that the fc is a
So code 7 is 3 a and added to the table
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
a b 0a 2b 1b 4b 5a 3a
a b aa aab bb bbb bbba aaba <-- extra line
The 7 outputs aaba
The code 8 is $7 *$

- Output is aaabbbbbbaabaaba

Representation of Code Table

- Codes are 4096
- Access via code number
- Use 1D array of size 4096

Universal Hashing

- If the hash function is fixed in advance, then one can choose n keys so that all keys hash into the same place. So worst case may occur.
- Universal Hashing: Choose hash function randomly (independently of the hash keys being stored). Good performance on average.
- Ranodomized algorithms behave differently in each execution, even when the input is the same.
- Probability of a bad hash function is low.
- \mathcal{H} : Finite collection of hash functions that map a given universe U of keys into the range $\{0,1, \ldots, m-1\}$.
- \mathcal{H} is said to be universal if for each pair of distinct keys $x, y \in U$, the number of hash functions $h \in \mathcal{H}$ for which $h(x)=h(y)$ is precisely $|\mathcal{H}| / m$. In other words, with a hash function randomly chosen from \mathcal{H}, the chance of a collision between x and y when $x \neq y$ is exactly $1 / m$, which is exactly the chance of a collision if $h(x)$ and $h(y)$ are randomly chosen from the set
$\{0,1, \ldots, m-1\}$.

Expected Number of Collisions

- Theorem: If h is chosen from a universal collection of hash functions to map n keys to a table with m entries $(n \leq m)$, the expected number of collisions involving a key x is less than one.
- Proof: Given y and z, let $C_{y z}$ be a random variable equal to 1 if $h(y)=h(z)$ and 0 otherwise.
- By definition (of universal hashing) $E\left[C_{y z}\right]=1 / m$.
- Given x, let C_{x} be the total number of collisions involving key x in hash table T of size m with n keys.
- $E\left[C_{x}\right]=\sum_{y \in T, y \neq x} E\left[C_{x y}\right]=(n-1) / m$
- Since $n \leq m$, we know $E\left[C_{x}\right]<1$.

Universal class of hash Functions

- m is prime
- Decompose key x into $r+1$ bytes
$\left(x=\left[x_{0}, x_{1}, \ldots, x_{r}\right]\right.$ such that the maximum value of a byte is less than m.
- Let $a=\left[a_{0}, a_{1}, \ldots, a_{r}\right]$ denote a sequence of $r+1$ elements chosen randomly from the set $\{0,1, \ldots, m-1\}$.
- The hash function $h_{a} \in \mathcal{H}$ is defined as $h_{a}(x)=\sum_{i=0}^{r} a_{i} x_{i} \bmod m$.
- $\mathcal{H}=\cup_{a}\left\{h_{a}\right\}$. Which has m^{r+1} members.

\mathcal{H} just Defn is Universal

- \mathcal{H} just defined is Universal.
- Let x and y be two distinct keys.
- Assume that $x_{0} \neq y_{0}$. (Similar argument can be made in other cases).
- For fixed values of $a_{1}, a_{2}, \ldots, a_{r}$, there is exactly one value of a_{0} that satisfies $h(x)=h(y)$ since a_{0} is the solution of $a_{0}\left(x_{0}-y_{0}\right)=-\sum_{i=1}^{r} a_{i}\left(x_{i}-y_{i}\right)(\bmod m)$. Because m is a prime.
- Therfore each pair of keys x and y collide for exactly m^{r} values of a.
- Since there are m^{r+1} possible sequences a, the probability of collision is exactly $m^{r} / m^{r+1}=1 / m$.
- Therefore \mathcal{H} is universal.

m is a prime

Suppose that $x_{-} 0$ > y_0 (other case is similar)

Let $m=11$ and $x_{-} 0-y_{-} 0$ is 5

a_0	0	1	2	3	4	5	6	7	8	9	10
a_0* (x_0-y_0)	0	5	10	15	20	25	30	35	40	45	50
$\bmod 11$	0	5	10	4	9	3	8	2	7	1	6

So probability of a confict (previous theorem) is $1 / \mathrm{m}=1 / 11$.

m is NOT a prime

However if $m=10$ and $x _0-y _0$ is 5

a_0	0	1	2	3	4	5	6	7	8	9
a_0*(x_0-y_0)	0	5	10	15	20	25	30	35	40	45
mod 10	0	5	0	5	0	5	0	5	0	5

So probability of a confict (previous theorem) is NOT $1 / \mathrm{m}=1 / 10$. It is $1 / 2$.

That is why m is selected as a prime.

