
CS-130A Hashing.1'

&

$

%

Hashing

• Table (hd) with D (or TableSize) entries or b (buckets).

• Hash function f(x) maps keys to {0, 1, 2, . . . , D − 1}, i.e., the

universe is partitioned into D regions by the hash function.

• In the ideal situation the objects to be represented are mapped

(via the hash function) to different positions in the hash table.

• Therefore, initialization takes O(D), and insert, delete and

membership can be done in O(1) time (assuming the ideal

situation).

• Most common hash function f(k) = k%D. f(k) gives the

home bucket.

CS-130A Hashing.2'

&

$

%

Linear Open Addressing Hashing

• Example: D = 11.

• f(80) → 3, f(40) → 7, f(65) → 10.

0 1 2 3 4 5 6 7 8 9 10

80 40 65

• If we try to insert 58 which maps to 3 also,

there is a collision.

• An overflow occurs when there is no more

space for the element.

• Where do we store it? Next available space

(circular) [linear open addressing].

• in this case is inserted in position 4.

0 1 2 3 4 5 6 7 8 9 10

80 58 40 65

CS-130A Hashing.3'

&

$

%

• Insert 24 (maps to 2) does not cause a

collision.

0 1 2 3 4 5 6 7 8 9 10

24 80 58 40 65

• Insert 35 (maps to 2) causes a collision. So it

ends up in position 5.

0 1 2 3 4 5 6 7 8 9 10

24 80 58 35 40 65

• Insert 98 (maps to 10) causes a collision and

ends up in position 0.

0 1 2 3 4 5 6 7 8 9 10

98 24 80 58 35 40 65

CS-130A Hashing.4'

&

$

%

Search for x

• Begin at the home bucket till

– You find the element (x is in the table), or

– An empty spot (x is not in the table), or

– Back at the home bucket (x is not in the

table)

CS-130A Hashing.5'

&

$

%

Deletion

• Just erase the element will not work! (Like

delete 80)

• Use a NeverUsed bit (and modify search and

insert)

Performance (No Proofs for this part Discussed)

• Number of buckets is b = D.

• α = n/b is the load factor.

• Avg. Num. of buckets examined during

unsuccessful searches Un ∼ 1
2 (1 + 1

(1−α)2)

• Avg. Num. of buckets examined during

successful searches Sn ∼ 1
2 (1 + 1

1−α
)

• α = 0.5 the Un is 2.5 and Sn is 1.5.

• α = 0.9 the Un is 50.5 and Sn is 5.5.

D should be a prime or have no prime factors less

than 20.

CS-130A Hashing.6'

&

$

%

Random Proving: Defn. & Analysis

• Overflow: Next bucket is found at random.

• Actually pseudo-random in order to be able

to reproduce results.

Theorem 10.1 [Sa, Origin: Probability Theory]:

Let p be the probability that certain event occurs.

The expected number of independent trials

needed for that event to occur is 1/p.

Coin flips (for H or T): 2, and

Die throw (for number in 1 - 6): 6.

• α = n/b is the load factor.

• Probability of an occupied bucket is α.

• Probability that a bucket is empty is 1 − α.

• Unsuccessful search: Looks for an empty

bucket. Using independent trials the expected

number of buckets examined is:

Un ≈ 1
1−α

CS-130A Hashing.7'

&

$

%

Random Proving: Sn

• Eqn for Sn is derived from Un.

• Elements in table are 1, 2, . . . , n (in the order

inserted).

• When element i is inserted an unsuccessful

search is performed and the element is

inserted.

• From above, the buckets searched were 1
1− i−1

b

.

• Assuming the each element in the table is

searched with equal probability, we know that

... (Next Slide)

CS-130A Hashing.8'

&

$

%

Random Proving: Sn cont’

Sn ≈
1

n

n∑
i=1

1

1 − i−1
b

=
1

n

n−1∑
i=0

1

1 − i
b

≈
1

n

∫ n−1

i=0

1

1 − i
b

di

≈
1

n

∫ n

i=0

1

1 − i
b

di

= −
b

n
ln(1 −

i

b
)]n0

= −
1

α
ln(1 − α)

CS-130A Hashing.9'

&

$

%

Linear v.s. Random Proving

• When α = 0.9 Un = 50.5 with linear proving,

but only 10 when using random proving.

• The important thing is run-time rather than

number of buckets searched. It take more

time to generate a random number than to

search a few buckets.

• The cache effect also comes to play in random

proving as the places being searched may

cause “caching and paging faults” (section 4.5

[Sa]).

CS-130A Hashing.10'

&

$

%

Hashing with Chaining

• Bucket has a linked list of the keys that

mapped to that bucket (inc. order)

0 -> 11 -> 33 -> 55 -> 66

1

2

3 -> 36 -> 69

4

5 -> 16 -> 49 -> 82

• plus infinity object at the end of the list

simplifies the code (Actually only one object).

0 -> 11 -> 33 -> 55 -> 66 -> BIG

1 -> BIG

2 -> BIG

3 -> 36 -> 69 -> BIG

4 -> BIG

5 -> 16 -> 49 -> 82 -> BIG

CS-130A Hashing.11'

&

$

%

Performance (No Proofs Discussed (See 10.5.4 in

[Sa])

• α = n/D is the load factor.

• Avg. Num. of nodes examined during

successful searches Sn ∼ 1 + α
2

• Avg. Num. of nodes examined during

unsuccessful searches Un ≤ α, α < 1

Un ≈ α(α+3)
2(α+1) , α ≥ 1

CS-130A Hashing.12'

&

$

%

Text Compression: LZW

• Compress string aaabbbbbbaabaaba, with∑
= {a, b}

• “a” is assigned code 0 and “b” is assigned

code 1.

• Mapping is stored in table

0 1

a b

• Beginning with the above dictionary, find the

longest prefix, p, of the un-encoded part of

the input file that is in the dictionary and

output its code.

• If there is a next character c, in the input file

then pc is assigned the next code and inserted

in the dictionary.

CS-130A Hashing.13'

&

$

%

Example

0 1

a b

a aabbbbbbaabaaba

we output 0 and add aa with code 2

0 1 2

a b aa

aa bbbbbbaabaaba

we output 2 and add aab with code 3

0 1 2 3

a b aa aab

b bbbbbaabaaba

we output 1 and add bb with code 4

0 1 2 3 4

a b aa aab bb

CS-130A Hashing.14'

&

$

%

bb bbbaabaaba

we output 4 and add bbb with code 5

0 1 2 3 4 5

a b aa aab bb bbb

bbb aabaaba

we output 5 and add bbba with code 6

0 1 2 3 4 5 6

a b aa aab bb bbb bbba

aab aaba

we output 3 and add aaba with code 7

0 1 2 3 4 5 6 7

a b aa aab bb bbb bbba aaba

aaba

we output 7.

0 1 2 3 4 5 6 7

a b aa aab bb bbb bbba aaba

CS-130A Hashing.15'

&

$

%

Actual Dictionary

0 1 2 3 4 5 6 7

a b 0a 2b 1b 4b 5a 3a

a b aa aab bb bbb bbba aaba <-- extra line

• Output is 0214537

Representation of Code Table

• Codes are 4096

• Access via code number plus symbol

• Use hash table with chaining (D = 4099)

• Can use tries too (reqs. more space).

• Code table is not transmitted to

decompressor, because it can be reconstructed

from the output of the compressor.

CS-130A Hashing.16'

&

$

%

Decompression

0 214537

0 1

a b

The 0 outputs a

The code 2 is 0*

2 14537

The 2 implies that the fc (first character) is a

So code 2 is 0a and added to the table

0 1 2

a b 0a

a b aa <-- extra line

The 2 outputs aa

The code 3 is 2*

CS-130A Hashing.17'

&

$

%

1 4537

The 1 implies that the fc is b

So code 3 is 2b and added to the table

0 1 2 3

a b 0a 2b

a b aa aab <-- extra line

The 1 outputs b

The code 4 is 1*

4 537

The 4 implies that the fc is b

So code 4 is 1b and added to the table

0 1 2 3 4

a b 0a 2b 1b

a b aa aab bb <-- extra line

The 4 outputs bb

The code 5 is 4*

CS-130A Hashing.18'

&

$

%

5 37

The 5 implies that the fc is b

So code 5 is 4b and added to the table

0 1 2 3 4 5

a b 0a 2b 1b 4b

a b aa aab bb bbb <-- extra line

The 5 outputs bbb

The code 6 is 5*

3 7

The 3 implies that the fc is a

So code 6 is 5a and added to the table

0 1 2 3 4 5 6

a b 0a 2b 1b 4b 5a

a b aa aab bb bbb bbba <-- extra line

The 3 outputs aab

The code 7 is 3*

CS-130A Hashing.19'

&

$

%

7

The 7 implies that the fc is a

So code 7 is 3a and added to the table

0 1 2 3 4 5 6 7

a b 0a 2b 1b 4b 5a 3a

a b aa aab bb bbb bbba aaba <-- extra line

The 7 outputs aaba

The code 8 is 7*

• Output is aaabbbbbbaabaaba

Representation of Code Table

• Codes are 4096

• Access via code number

• Use 1D array of size 4096

CS-130A Hashing.20'

&

$

%

Universal Hashing

• If the hash function is fixed in advance, then

one can choose n keys so that all keys hash

into the same place. So worst case may occur.

• Universal Hashing: Choose hash function

randomly (independently of the hash keys

being stored). Good performance on average.

• Ranodomized algorithms behave differently in

each execution, even when the input is the

same.

• Probability of a bad hash function is low.

CS-130A Hashing.21'

&

$

%

• H: Finite collection of hash functions that

map a given universe U of keys into the range

{0, 1, . . . , m − 1}.

• H is said to be universal if for each pair of

distinct keys x, y ∈ U , the number of hash

functions h ∈ H for which h(x) = h(y) is

precisely | H | /m. In other words, with a

hash function randomly chosen from H, the

chance of a collision between x and y when

x 6= y is exactly 1/m, which is exactly the

chance of a collision if h(x) and h(y) are

randomly chosen from the set

{0, 1, . . . , m − 1}.

CS-130A Hashing.22'

&

$

%

Expected Number of Collisions

• Theorem: If h is chosen from a universal

collection of hash functions to map n keys to

a table with m entries (n ≤ m), the expected

number of collisions involving a key x is less

than one.

• Proof: Given y and z, let Cyz be a random

variable equal to 1 if h(y) = h(z) and 0

otherwise.

• By definition (of universal hashing)

E[Cyz] = 1/m.

• Given x, let Cx be the total number of

collisions involving key x in hash table T of

size m with n keys.

• E[Cx] =
∑

y∈T,y 6=x E[Cxy] = (n − 1)/m

• Since n ≤ m, we know E[Cx] < 1.

CS-130A Hashing.23'

&

$

%

Universal class of hash Functions

• m is prime

• Decompose key x into r + 1 bytes

(x = [x0, x1, . . . , xr] such that the maximum

value of a byte is less than m.

• Let a = [a0, a1, . . . , ar] denote a sequence of

r + 1 elements chosen randomly from the set

{0, 1, . . . , m − 1}.

• The hash function ha ∈ H is defined as

ha(x) =
∑r

i=0 aixi mod m.

• H= ∪a{ha}. Which has mr+1 members.

CS-130A Hashing.24'

&

$

%

H just Defn is Universal

• H just defined is Universal.

• Let x and y be two distinct keys.

• Assume that x0 6= y0. (Similar argument can

be made in other cases).

• For fixed values of a1, a2, . . . , ar, there is

exactly one value of a0 that satisfies

h(x) = h(y) since a0 is the solution of

a0(x0 − y0) = −
∑r

i=1 ai(xi − yi)(mod m).

Because m is a prime.

• Therfore each pair of keys x and y collide for

exactly mr values of a.

• Since there are mr+1 possible sequences a,

the probability of collision is exactly

mr/mr+1 = 1/m.

• Therefore H is universal.

CS-130A Hashing.25'

&

$

%

m is a prime

Suppose that x_0 > y_0 (other case is similar)

Let m = 11 and x_0-y_0 is 5

a_0 0 1 2 3 4 5 6 7 8 9 10

a_0*(x_0-y_0) 0 5 10 15 20 25 30 35 40 45 50

mod 11 0 5 10 4 9 3 8 2 7 1 6

So probability of a confict (previous theorem) is

1/m = 1/11.

CS-130A Hashing.26'

&

$

%

m is NOT a prime

However if m = 10 and x_0-y_0 is 5

a_0 0 1 2 3 4 5 6 7 8 9

a_0*(x_0-y_0) 0 5 10 15 20 25 30 35 40 45

mod 10 0 5 0 5 0 5 0 5 0 5

So probability of a confict (previous theorem) is NOT

1/m = 1/10. It is 1/2.

That is why m is selected as a prime.

